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We first obtain exponential inequalities for martingales. Let (X k )(1 ≤ k ≤ n) be a sequence of martingale differences relative to a filtration (F k ), and set Sn = X1 + ... + Xn. We prove that if for some δ > 0, Q ≥ 1, K > 0 and all k, a.s.

and c(x) = cx Q if x > 1; the converse also holds if (Xi) are independent and identically distributed. It extends Bernstein's inequality for Q = 1, and Hoeffding's inequality for Q = 2. We then apply the preceding result to establish exponential concentration inequalities for the free energy of directed polymers in random environment, show its rate of convergence (in probability, almost surely, and in L p ), and give it an expression in terms of free energies of some multiplicative cascades, which improves an inequality of Comets and Vargas (2006, [13]) to an equality.

Introduction and main results

Our work was initially motivated by the study of the free energy of a directed polymer in a random environment. Comets and Vargas (2006, [13]) proved that the free energy (at ∞) is bounded by the infimum of those of some generalized multiplicative cascades, and that the equality holds if the environment is bounded or gaussian. The essential point in their proof for the equality is an exponential concentration inequality for the free energy (at time n), which was not known for a general environment. Using a large deviation inequality of Lesigne and Volny (2001, [27]) on martingales, Comets, Shiga and Yoshida (2003, [START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF]) did obtain a concentration inequality for the free energy; but their bound is larger than the exponential one, and is not sharper enough to imply the equality mentioned above. Another non satisfactory point of their inequality is that it cannot be used to prove rigourous results on the rate of convergence, for the almost sure (a.s.) or L p convergence of the free energies.

The objective of the present paper is to establish exponential large deviation inequalities, and to use them to show exponential concentration inequalities for the free energy of a polymer in general random environment, its rate of convergence, and an expression of its limit value in terms of those of some multiplicative cascades.

Large deviation inequalities are very powerful tools in probability theory, and have been studied by many authors: see e.g. the classical works of Bernstein (1924, [3]), Cramér (1938, [15]), Hoeffding (1963, [22]), Azuma (1967, [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF]), Chernoff (1981, [8]), the books of Chow and Teicher (1978, [START_REF] Yuan | Probability theory[END_REF]), and Petrov (1995, [START_REF] Valentin | Limit theorems of probability theory, volume 4 of Oxford Studies in Probability[END_REF]), and the recent papers by de la Peña, (1999, [START_REF] Victor | A general class of exponential inequalities for martingales and ratios[END_REF]), Lesigne and Volný (2001, [27]), Bentkus (2004, [2]), and Chung and Lu (2006, [10]). See also Ledoux (1999, [26]) and Wang (2005, [33]) for related concentration inequalities and general functional inequalities. Let (Ω, F , P ) be a probability space, and let F 0 = {∅, Ω} ⊂ F 1 ⊂ • • • ⊂ F n be an increasing sequence of sub-σ-fields of F . Let X 1 , ..., X n be a sequence of real-valued martingale differences defined on (Ω, F , P ), adapted to the filtration (F k ): that is, for each 1 ≤ k ≤ n, X k is F k measurable, and E[X k |F k-1 ] = 0. Set S n = X 1 + ... + X n .

(1.1)

We are interested in exponential large deviation inequalities of the form

P [|S n | > nx] = O(e -c(x)n ), (1.2) 
where x > 0 and c(x) > 0. When (X i ) are independent and identically distributed (iid) with mean EX i = 0, it is known [see Petrov (1995, [31] p.137)] that (1.2) holds for all x > 0 and some c(x) > 0 if and only if for some δ > 0, Ee δ|X1| < ∞.

(1.3)

For a sequence of martingale differences, Lesigne and Volný (2001, [27]) proved that if for some constant K > 0 and all k = 1, ..., n,

Ee |X k | ≤ K, (1.4) 
then for any x > 0,

P S n n > x = O(e -1 4 x 2/3 n 1/3 ), (1.5) 
and that this is the best possible inequality that we can have under the condition (1.4), even in the class of stationary and ergodic sequences of martingale differences, in the sense that there exist such sequences of martingale differences (X i ) satisfying (1.4) for some K > 0, but

P S n n > 1 > e -cn 1/3 (1.6)
for some constant c > 0 and infinitely many n. It is therefore interesting to know what is the good condition to have the exponential inequality (1.2) in the martingale case. It turns out that (1.2) still holds if we replace the expectation in (1.4) by the conditional one given F k-1 . In fact we shall prove the following much sharper result. It is a consequence of Theorems 2.1, 3.1, and 3.2.

Theorem 1.1 Let (X k ) be a {F k }-adapted sequence of martingale differences. Assume that for some constants Q ≥ 1, δ > 0, K > 0 and all k ∈ {1, • • • , n}, almost surely

E[e δ|X k | Q |F k-1 ] ≤ K. (1.7)
Then there exists a constant c > 0 depending only on Q, δ and K, such that for all x > 0,

P ± S n n > x ≤ e -ncx 2 if x ∈]0, 1], e -ncx Q if x ∈]1, ∞[. (1.8) 
The converse also holds in the iid case: if X k are iid and if P [± Sn n > x] ≤ e -ncx Q holds for some n ≥ 1, Q ≥ 1, c > 0, x 1 > 0 and all x ≥ x 1 , then for all δ ∈]0, c[, there exists

K = K(δ, Q, c, x 1 ) > 0 such that E[e δ|X1| Q ] ≤ K.
By the result of Lesigne and Volný ([27]) cited above, the conditional exponential moment condition (1.7) cannot be relaxed to the non conditional one. When (X k ) are iid with E[X k ] = 0, Bernstein's inequality states (cf. [START_REF] Valentin | Limit theorems of probability theory, volume 4 of Oxford Studies in Probability[END_REF], page 57

) that if σ 2 = E[X 2 k ] < ∞ and |EX m k | ≤ 1 2 m!σ 2 H m-2 (1.9)
for some H > 0 and all m = 2, 3, • • • , then

P ± S n n > x ≤ e -nc0x 2 if x ∈]0, x 0 ], e -nc1x if x ∈]x 0 , ∞[, (1.10) 
where

c 0 = 1 4σ 2 , c 1 = 1 4H , x 0 = σ 2 H .
Notice that (in the iid case) Bernstein's condition (1.9) is equivalent to Cramer's condition that ∃δ > 0 such that

E[e δ|X k | ] < ∞.
(1.11)

In applications we find more convenient to use Cramer's condition. Taking Q = 1 in Theorem 1.1, we obtain the following Bernstein-type inequality. [START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF] holds for some δ > 0, then for some c = c(δ) > 0,

Corollary 1.2 (A Bernstein-type inequality) Assume that (X k ) are iid with E[X k ] = 0, 1 ≤ k ≤ n. If (1.
P ± S n n > x ≤ e -ncx 2 if x ∈]0, 1], e -ncx if x ∈]1, ∞[. (1.12)
Conversely, if for some n ≥ 1, c > 0, x 0 > 0 and all x > x 0 , P ± Sn n > x ≤ e -ncx , then (1.11) holds for each δ ∈]0, c[. When Q = 2, Theorem 1.1 extends the following well-known Hoeffding's inequality1 : if (X k ) is a sequence of martingale differences with |X k | ≤ a a.s. for some constant a ∈]0, ∞[, then for all n ≥ 1 and all x > 0,

P ± S n n > x ≤ e -ncx 2 , (1.13) 
where c = 1/(2a 2 ). In fact, by our result for Q = 2, we obtain:

Corollary 1.3 (Extension of Hoeffding's inequality) When (X k ) are iid, then there is a constant c > 0 such that (1.13) holds for all n ≥ 1 and all x > 0, if and only if for some δ > 0,

Ee δX 2 1 < ∞. (1.14)
Moreover, if (1.13) holds for some n ≥ 1 and all x > 0, with some constant c = c 1 , then it holds for all n ≥ 1 and x > 0, with some constant c = c 2 depending only on c 1 .

So our result is a complete extension of Hoeffding's inequality even in the iid case.

We then apply the preceding results to directed polymers in random environment that we describe as follows.

Let (ω n ) n∈N be the simple random walk on Z d starting at 0, defined on a probability space (Ω, F , P ). Let (η(n, x)) (n,x)∈N×Z d be a sequence of i.i.d. real random variables defined on another probability space (E, E, Q) (we use the letter E to refer the Environment). For real β (the inverse of temperature), define

λ(β) = ln Q[e βη(0,0) ]. (1.15) 
(If µ is a measure and f is a function, we write µ(f ) or µ[f ] for the integral of f with respect to µ.) We fix β > 0, and only suppose that

Q[e β|η(0,0)| ] < ∞ (1.16)
(we do not suppose that it holds for all β > 0). Of course this condition is equivalent to λ(±β) < ∞. We are interested in the normalized partition function

W n (β) = P   exp   β n j=1 η(j, ω j ) -nλ(β)     , (1.17) 
and the free energy 1 n ln W n (β). This model first appeared in physics literature [see Huse and Henley (1985, [23])] to modelize the phase boundary of Ising model subject to random impurities; the first mathematical study was undertaken by Imbrie and Spencer (1988, [24]) and Bolthausen (1989, [4]). For recent results, see e.g. Carmona and Hu (2004, [7]), Carmona, Guerra, Hu and Méjane (2006, [START_REF] Carmona | Strong disorder for a certain class of directed polymers in a random environment[END_REF]), Comets, Shiga and Yoshida (2004, [START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review[END_REF]), and Comets and Yoshida (2006, [14]).

Assuming Q[e β|η(0,0)| ] < ∞ for all β > 0, Comets, Shiga and Yoshida ( [START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF]) proved that ∀x > 0, there exists n 0 ∈ N * such that for any n ≥ n 0 ,

Q 1 n ln W n (β) - 1 n Q[ln W n (β)] > x ≤ exp - n 1 3 x 2 3 4 . (1.18)
In fact, in their proof of (1.18), they used the condition that Q[e 3β|η(0,0)| ] < ∞, due to the application of their Lemma 3.1 (p.711).

We first improve this result to an exponential inequality under the weaker condition that Q[e β|η(0,0)| ] < ∞ for the fixed β.

Theorem 1.4 (Exponential concentration inequality for the free energy) Let β > 0 be fixed such that

Q[e β|η(0,0)| ] < ∞. If for some Q ≥ 1 and R > 0, Q[e R|η(0,0)| Q ] < +∞, (1.19) then Q 1 n |ln W n (β) -Q[ln W n (β)]| > x ≤ 2e -ncx 2 if 0 ≤ x ≤ 1, 2e -ncx Q if x > 1, (1.20) 
where c > 0 is a constant depending only on Q, R, and the law of η(0, 0).

Notice that the condition (1.19) holds automatically for Q = 1 and R = β, so that (1.20) holds for Q = 1 under the only hypothesis Q[e β|η(0,0)| ] < ∞; when (1.19) holds for some Q > 1 and R > 0, (1.20) gives a sharper bound for large values of x. Theorem 1.4 is a consequence of Corollary 6.7. As shown in Carmona and Hu (2002, [6]) and Comets and Vargas (2006, [13]), when the environment is gaussian or bounded, the inequality can be obtained directly by a general concentration result on gaussian or bounded variables (see e.g. Ledoux (1999, [26])). But this method does not work for a general environment.

As applications we shall show the following properties about the free energy Carmona and Hu (2004, [7]) obtained for the gaussian environment case. Part (3) improves an inequality of Comets and Vargas (2006, [13]) to an equality.

(n -( 1 2 -ε) ) (ε > 0) of
The rest of the paper is organized as follows. In Section 2 we establish exponential inequalities for supermartingales, which extend Bernstein or Hoeffding's inequalities, according to E e δ|Xi| |F i-1 ≤ K or E e δ|Xi| 2 |F i-1 ≤ K, respectively. For large values of x, sharper inequalities are proven in Section 3 under the condition that E e δ|Xi| Q |F i-1 ≤ K (Q > 1). These results are extended in Section 4 to the more general case where E e δ|Xi| Q |F i-1 ≤ K i . As applications, we show in Section 5 the rate of convergences, a.s. and in L p . In the last 3 sections, we study the free energies of directed polymers in random environment, with the help of our results on martingales: we show exponential concentration inequalities for the free energies in Section 6, their convergence rates (in probability, a.s. and in L p ) in Section 7, and, in Section 8, an expression of their limit value in terms of some generalized multiplicative cascades.

Exponential inequalities for supermartingales

In this section we give an extension of Bernstein and Hoeffding's inequalities to supermartingales with unbounded differences. Our results are sharp even in the iid case. Let (X i ) 1≤i≤n be a sequence of real-valued supermartingale differences defined on a probability space (Ω, F , P ), adapted to a filtration (F i ), with F 0 = {∅, Ω}. This means that for each 1 ≤ i ≤ n, X i is F i -measurable, and E[X i |F i-1 ] ≤ 0 a.s.. We are interested in the growth rate of the Laplace transform E[e tSn ], and the convergence rate of the deviation probabilities P Sn n > x .

Theorem 2.1 Let (X i ) 1≤i≤n be a finite sequence of supermartingale differences. If for some constant

K > 0 and all i ∈ [[1, n]], E[e |Xi| |F i-1 ] ≤ K a.s., (2.1) 
then:

E[e tSn ] ≤ exp nKt 2 1 -t for all t ∈]0, 1[, (2.2) 
and

P S n n > x ≤ exp -n √ x + K - √ K 2 for all x > 0. (2.3)
Consequently,

P S n n > x ≤          exp - nx 2 K(1 + √ 2) 2 if x ∈]0, K], exp - nx (1 + √ 2) 2 if x ∈]K, ∞[. (2.4) 
Conversely, if (X k ) are iid, and if P Sn n > x ≤ e -ncx for some n > 1, c > 0, and all x ≥ x 1 > 0 large enough, then for all δ ∈]0, c[,

E[e δX + 1 ] ≤ K, where X + 1 = max(X 1 , 0), and K = e δx1 + δ c -δ e -(c-δ)x1 .
Corollary 2.2 Under the conditions of Theorem 2.1, ∀ε > 0, there exist 0 < x 0 < x 1 and K 1 > 0 depending only on K and ε, such that:

P S n n > x ≤                  exp - nx 2 4K(1 + ε) if x ∈]0, x 0 [, exp - nx K 1 if x ∈ [x 0 , x 1 ], exp - nx 1 + ε if x ∈]x 1 , +∞[. (2.5) 
We divide the proof into a series of lemmas.

Lemma 2.3 Let (X i ) 1≤i≤n be a finite sequence of random variables adapted to a filtration (F i ) 1≤i≤n . Let (l i ) 1≤i≤n be a finite sequence of deterministic functions defined on a subinterval

I of ]0, ∞[, such that for each i and each t ∈ I, E[e tXi |F i-1 ] ≤ e li(t) a.s.. (2.6) 
Then for every t ∈ I,

E[e tSn ] ≤ exp n i=1 l i (t) , (2.7) 
and for every x > 0,

P S n n > x ≤ e -nL * n (x) , (2.8) 
where

L n (t) = 1 n n i=1 l i (t), and L * n (x) = sup t∈I (tx -L n (t)) .
(2.9)

Proof. (2.7) can be obtained by a simple induction argument on n. (2.8) is an immediate consequence of (2.7), since ∀x > 0, ∀t ∈ I,

P S n n > x = P [e tSn > e tnx ] ≤ e -ntx E[e tSn ] ≤ exp (-n(tx -L n (t))) .
Remark 2.4 The submultiplicativity (2.7) for an adapted sequence corresponds to the multiplicativity E[e tSn ] = n i=1 E[e tXi ] in the independent case. This explains why it is natural to consider the conditional Laplace transform E[e tXi |F i-1 ] in the supermartingale case, instead of the Laplace transform E[e tXi ] in the independent case. For example, using Lemma 2.3, we can obtain the following generalization of Petrov's inequality (p.54 of [START_REF] Valentin | Limit theorems of probability theory, volume 4 of Oxford Studies in Probability[END_REF]): Lemma 2.5 Let a i > 0 and T > 0 be constants such that for all 1 ≤ i ≤ n and all t ∈]0, T ], a.s.

E[e tXi |F i-1 ] ≤ e ait 2 . Then for each A ≥ 1 n n i=1 a i , we have P S n n > x ≤        exp - nx 2 4A if x ∈]0, 2AT [, exp - nT x 2 if x ∈ [2AT, +∞[. (2.10)
Proof. We apply Lemma 2.3 with I =]0, T ] and l i (t) = a i t 2 , L n (t) = At 2 , which gives:

E[e tSn ] ≤ exp(nAt 2 ) for every t ∈]0, T ],
and

P S n n > x ≤ e -nL * n (x) , with L * n (x) = sup t∈]0,T ] tx -At 2 .
We calculate this sup and find:

L * n (x) =      x 2 4A if x ∈]0, 2AT [, T x -AT 2 ≥ T x 2 if x ≥ 2AT,
which ends the proof.

Lemma 2.6 Let X be a real-valued random variable defined on some probability space (Ω, F , P), with EX ≤ 0 and E[e |X| ] ≤ K for some K > 0. Then for all t ∈]0, 1[,

E[e tX ] ≤ exp Kt 2 1 -t . (2.11)
Consequently,

E[e tX ] ≤ exp 2Kt 2 for every t ∈ 0, 1 2 . 
(2.12)

Proof. Let t ∈]0, 1[. Since EX ≤ 0, we have E[e tX ] = ∞ k=0 t k E X k k! ≤ 1 + ∞ k=2 t k E X k k! ≤ 1 + ∞ k=2 t k E[e |X| ] ≤ 1 + K t 2 1 -t ≤ exp Kt 2 1 -t . Lemma 2.7 For K > 0 and x > 0, sup t∈]0,1[ tx - Kt 2 1 -t = √ x + K - √ K 2 .
(2.13)

Proof. Let l K (t) = Kt 2 1-t . We first consider l 1 (t) = t 2 1-t (the case where K = 1). Let h(t) = xt -t 2 1-t , t ∈]0, 1[. Notice that h ′ (t) = 0 if and only if x = t(2-t) (1-t) 2 , that is, t = 1 -1 √ 1+x . Therefore l * 1 (x) = h 1 - 1 √ 1 + x = ( √ x + 1 -1) 2 .
In the general case, we have

l * K (x) = Kl * 1 x K = √ x + K - √ K 2 .
Proof of Theorem 2.1. By Lemma 2.6, we obtain that for every i and for every t ∈]0, 1[, a.s.

E[e tXi |F i-1 ] ≤ exp Kt 2 1 -t .
Therefore by Lemmas 2.3 and 2.7, we obtain immediately (2.2) and (2.3).

To show (2.4), we notice that the function g(x) = (

√ x+K- √ K) 2 x 2 is strictly decreasing on ]0, +∞[ with lim x→+∞ g(x) = 0 and lim x→0 g(x) = 1 4K , whereas the function f (x) = ( √ x+K- √ K) 2 x is strictly increasing on ]0, +∞[, with lim x→+∞ f (x) = 1 and lim x→0 f (x) = 0. Therefore for every x ∈]0, K], √ x + K - √ K 2 ≥ x 2 g(K) = x 2 K(1+ √ 
2) 2 , and for every x > K,

√ x + K - √ K 2 ≥ xf (K) = x (1+ √ 
2) 2 , which ends the proof of (2.4). Conversely, suppose that (X k ) are iid, and that P Sn n > x ≤ e -ncx for some n > 1, c > 0 and all x ≥ x 1 > 0 large enough. Let δ ∈]0, c[. Then for all x > 0,

(P [X 1 > x]) n = P [X i > x for all 1 ≤ i ≤ n] ≤ P S n n > x ≤ e -ncx , so that P [X + 1 > x] = P [X 1 > x] ≤ e -cx
, and

E[e δX + 1 ] = 1 + +∞ 0 P [X + 1 > x]δe δx dx ≤ 1 + x1 0 δe δx dx + +∞ x1 δe -(c-δ)x dx = e δx1 + δ c -δ e -(c-δ)x1 .
Remark 2.8 Notice that by Lemma 2.6, ∀t ∈]0, 1 2 ], a.s.

E[e tXi |F i-1 ] ≤ exp 2Kt 2 .
Therefore by Lemma 2.5, we obtain immediately,

P S n n > x ≤        exp - nx 2 8K if x ∈]0, 2K], exp - nx 4 if x > 2K.
(2.14)

But (2.
3) of Theorem 2.1 gives more precise information.

Proof of Corollary 2.2. For ε ∈]0, 1[, let x 0 > 0 and x 1 > 0 be such that g(x 0 ) = 1 4K(1+ε) and f (x 1 ) = 1 1+ε , where g and f are as in the proof of Theorem 2.1.

If x ∈]0, x 0 ], then √ x + K - √ K 2 ≥ x 2 g(x 0 ), hence P Sn n > x ≤ exp -nx 2 4K(1+ε) . If x ∈ [x 1 , +∞[, then √ x + K - √ K 2 ≥ xf (x 1 ), hence P Sn n > x ≤ exp -nx 1+ε . If x ∈ [x 0 , x 1 ], then √ x + K - √ K 2 ≥ xf (x 0 ) = xx 0 g(x 0 ) = xx0 4K(1+ε) . We set K 1 = 4K(1+ε) x0
, so that

P Sn n > x ≤ exp -nx K1 .
If we impose an exponential moment condition to X 2 i instead of X i , we get the following Hoeffding type inequality.

Theorem 2.9 Let (X i ) 1≤i≤n be a sequence of supermartingale differences adapted to (F i ). If there exist some constants R > 0 and K > 0 such that for all i,

E[e RX 2 i |F i-1 ] ≤ K a.s., (2.15) 
then there exists a constant c > 0 depending only on R and K such that:

E[e tSn ] ≤ e nct 2 for all t > 0, (2.16)

and

P S n n > x ≤ e -nx 2 4c
for all x > 0.

(2.17)

Conversely, if (X i ) are iid and if (2.16) or (2.17) holds for some n ≥ 1 and c > 0, then for each R ∈ 0, 1 4c ,

E[e RX +2 1 ] ≤ K, where X + 1 = max(X 1 , 0) and K = 1 + R 1 4c -R .
Its proof will be based on the following Lemma.

Lemma 2.10 Let X be a random variable defined on a probability space (Ω, F , P). If for some constants K and R > 0, E[e RX 2 ] ≤ K, then for all t > 0,

E[e t|X| ] ≤ 1 + K √ π 2 √ R t exp t 2 4R . ( 2 

.18)

If additionally E[X] ≤ 0, then there exists a > 0 depending only on K and R such that for all t > 0,

E[e tX ] ≤ exp at 2 2 . (2.19) Proof. By hypothesis P [|X| > x] ≤ e -Rx 2 E[e RX 2 ] ≤ Ke -Rx 2 .
Hence for all t > 0,

E[e t|X| ] = +∞ 0 P [e t|X| > x]dx = +∞ -∞ P [|X| > u]d(e tu ) = 1 + t +∞ 0 P [|X| > u]e tu du ≤ 1 + Kt +∞ 0 e -Ru 2 e tu du ≤ 1 + K √ π 2 √ R t exp t 2 4R .
Let c > 1 4R . Then there exists t 1 > 0 such that

∀t ≥ t 1 , E[e t|X| ] ≤ exp ct 2 . (2.20)
On the other hand,

E[e R|X| ] ≤ E[e R ; |X| ≤ 1] + E[e RX 2 ; |X| > 1] ≤ e R + K,
so by Lemma 2.6, when E[X] ≤ 0, we have

E[e tX ] ≤ exp 2K 1 R 2 t 2 ∀t ∈ 0, R 2 , (2.21) 
where K 1 = e R + K. From (2.20) and (2.21) we deduce that there exists a > 0 depending only on K and R, such that

∀t ≥ 0, E[e tX ] ≤ exp at 2 2 .
Proof of Theorem 2.9.

Write E i-1 [.] = E[.|F i-1 ]
. By Lemma 2.10 there exists a = a(R, K) > 0 such that

E i-1 [e tXi ] ≤ exp at 2 2 ∀t > 0.
So by Lemmas 2.3 and 2.5, we get (2.16) and (2.17). Conversely, suppose that (X i ) are iid and that (2.17) holds for some n ≥ 1 and c > 0 (notice that (2.16) implies (2.17

)). Let R ∈]0, 1 4c [. Then ∀x > 0, (P [X 1 > x]) n = P [X i > x for all 1 ≤ i ≤ n] ≤ P S n n > x ≤ e -nx 2 4c , so that P [X 1 > x] ≤ e -x 2 4c
, and

E[e RX +2 1 ] = 1 + +∞ 0 P [X + 1 > x]2xRe Rx 2 dx = 1 + +∞ 0 P [X 1 > x]2xRe Rx 2 dx ≤ K, where K = 1 + +∞ 0 2xRe -( 1 4c -R)x 2 dx = 1 + R 1 4c -R .
3 Exponential bounds of P(S n > nx) for large values of x

Notice that in the exponential inequality P (S n ≥ nx) ≤ e -nc(x) of the preceding section, for large x, we can take c(x) = cx or cx 2 according to an exponential moment condition on X or on X 2 , respectively. In this section we shall see that this property remains true for c(x) = cx Q with any Q ≥ 1.

Theorem 3.1 Let (X i ) 1≤i≤n be any adapted sequence with respect to a filtration (F i ) 1≤i≤n . Assume that there exist some constants

Q > 1, R > 0 and K > 0 such that for all i ∈ [[1, n]], E[e R|Xi| Q |F i-1 ] ≤ K a.s.. (3.1) 
Let ρ > 1 and τ > 0 be such that

1 Q + 1 ρ = 1 and (ρτ ) 1 ρ (QR) 1 Q = 1. (3.2)
Then for any τ 1 > τ , there exists t 1 > 0 depending only on K, Q, R and τ 1 , such that:

E[e t|Sn| ] ≤ exp (nτ 1 t ρ ) for all t ≥ t 1 , (3.3) 
P |S n | n > x ≤ exp -nR 1 x Q for all x ≥ x 1 := ρτ 1 t ρ-1 1 , (3.4) 
where R 1 > 0 is such that (ρτ 1 )

1 ρ (QR 1 ) 1 Q = 1. Conversely, if (X i ) are iid and if (3.4) holds for some n ≥ 1, R 1 > 0, Q > 1 and x 1 > 0, then for all R ∈]0, R 1 [, E[e R|X1| Q ] ≤ 2K, where K = e Rx Q 1 + R R 1 -R e -(R1-R)x Q 1 . (3.5)
When (X i ) are supermartingale differences, we can complete Theorem 3.1 with an information for small values of x > 0 and t > 0, as shown in the following theorem. The conclusion follows from Theorem 2.1 for small values of x, t > 0, and from Theorem 3.1 for large values of x, t > 0. The proof of (3.8) will be seen in the proof of (3.5). Notice that for large values of x, t > 0, the conclusion of Theorem 3.2 is sharper than that of Theorem 2.1.

Theorem 3.2 Under the hypothesis of Theorem 3.1, if moreover (X i ) 1≤i≤n is a sequence of supermartingale differences adapted to the filtration (F i ), then for any τ 1 > τ , there exist t 1 > 0, x 1 > 0, and A, B > 0, depending only on K, Q, R, and τ 1 , such that:

E[e tSn ] ≤ exp (nτ 1 t ρ ) if t ≥ t 1 , exp nAt 2 if 0 ≤ t ≤ t 1 , (3.6) 
and

P S n n > x ≤ exp -nR 1 x Q if x ≥ x 1 , exp -nBx 2 if 0 ≤ x ≤ x 1 . (3.7)
Conversely, if (X i ) are iid and if the first inequality in (3.7) holds for some n ≥ 1, R 1 > 0, Q > 1 and

x 1 > 0, then for all R ∈]0, R 1 [, E[e RX +Q 1 ] ≤ K, where X + 1 = max(X 1 , 0) and K = e Rx Q 1 + R R 1 -R e -(R1-R)x Q 1 . (3.8)
Before proving the theorems, we first give, for a positive random variable X, relations among the growth rate of the Laplace transform E[e tX ] (as t → ∞), the decay rate of the tail probability P [X > x] (as x → ∞), and the exponential moments of the form

E[e RX Q ] (Q > 1). Lemma 3.3 (Relation between E[e tX ] and P [X > x])
Let X be a positive real random variable. Let Q, ρ, τ , and R ∈]0, +∞[ be such that 1 < Q < +∞ and

1 Q + 1 ρ = 1, (ρτ ) 1 ρ (QR) 1 Q = 1.
Let K > 0 be a constant. Consider the following assertions:

(1) ∀t > 0, E[e tX ] ≤ Ke τ t ρ ;

(2) ∀x > 0, P [X > x] ≤ Ke -Rx Q ;

(3) For a = K 2 R 1 Q-1 and all t > 0, E[e tX ] ≤ 1 + K + at ρ e τ t ρ . Then we have the following implications: (1) ⇒ (2) ⇒ (3). Lemma 3.3 is closely related to the following Legendre duality between the functions t → τ t ρ and x → Rx Q .

Lemma 3.4 Let ρ > 1, τ > 0 and t 0 ≥ 0. Then ∀x ≥ ρτ t ρ-1 0 , sup t≥t0 (tx -τ t ρ ) = Rx Q , where 1 Q + 1 ρ = 1, (ρτ ) 1 ρ (QR) 1 Q = 1.
Proof. The fonction h(t) = txτ t ρ attains its supremum on ]0, +∞[ for t ⋆ = ( x τ ρ )

1 ρ-1
, and the supremum is h(t * ) = Rx Q . As t ⋆ ≥ t 0 if and only if x ≥ ρτ t ρ-1 0 , we get the result.

Proof of Lemma 3.3. We first prove the implication (1) ⇒ (2). If E[e tX ] ≤ Ke τ t ρ then for every x > 0 and t > 0,

P [X > x] = P [e tX > e tx ] ≤ e -tx E[e tX ] ≤ Ke τ t ρ -tx .
Therefore by Lemma 3.4, P [X > x] ≤ Ke -Rx Q . We then prove the implication (2) ⇒ (3). If (2) holds, then for every t > 0,

E[e tX ] = 1 + t +∞ 0 P [X > x]e tx dx ≤ 1 + tK +∞ 0 e -Rx Q +tx dx.
We choose

x 1 = ( 2t R ) 1 Q-1 so that -Rx Q +tx ≤ -xt for x ≥ x 1 ; by Lemma 3.4 (with t 0 = 0), -Rx Q +tx ≤ τ t ρ for any x > 0. Therefore +∞ 0 e -Rx Q +tx dx ≤ x1 0 e τ t ρ dx + +∞ x1 e -xt dx ≤ x 1 e τ t ρ + 1 t , hence for a = K( 2 R ) 1 Q-1 and t > 0, E[e tX ] ≤ 1 + K + at ρ e τ t ρ .
Lemma 3.5 Let X be a positive real random variable. Let Q ∈ [1, +∞[, and K, R ∈]0, +∞[. Consider the following assertions:

(

1) E[e RX Q ] ≤ K; (2) ∀x > 0, P [X > x] ≤ Ke -Rx Q ; (3) For any R 1 ∈]0, R[, E[e R1X Q ] ≤ R+R1(K-1) R-R1
.

Then we have the following implications: (1) ⇒ (2) ⇒ (3).

Proof of Lemma 3.5. The implication (1)

⇒ (2) is easy: if E[e RX Q ] ≤ K, then P [X > x] = P [e RX Q > e Rx Q ] ≤ Ke -Rx Q . Let us now prove the implication (2) ⇒ (3). If P [X > x] ≤ Ke -Rx Q , then for any R 1 ∈]0, R[, E[e R1X Q ] = +∞ 0 P [e R1X Q > x]dx = 1 + R 1 Q +∞ 0 P [X > u]e R1u Q u Q-1 du ≤ 1 + KR 1 Q +∞ 0 e (R1-R)u Q u Q-1 du = R + R 1 (K -1) R -R 1 . Remark 3.6 Let Q, ρ ∈]0, +∞[ be such that 1 < Q < +∞ and 1 Q + 1 ρ = 1.
As a consequence of Lemma 3.3, we can easily see that writing

τ = inf{a > 0 : E[e rX ] = O(exp(ar ρ ))}, R = sup{a > 0 : P [X > x] = O(exp(-ax Q ))}, we have (ρτ ) 1 ρ (QR) 1 Q = 1.
This was proved in a different way by Liu in [START_REF] Liu | The growth of an entire characteristic function and the tail probabilities of the limit of a tree martingale[END_REF]. It unifies Theorems 6. 

= K 2 R 1 Q-1 , E[e t|Xi| |F i-1 ] ≤ 1 + K + at ρ e τ t ρ ∀t > 0.
Let τ 1 > τ . Then there exists t 1 > 0 sufficiently large such that ∀t ≥ t 1 , E[e t|Xi| |F i-1 ] ≤ e τ1t ρ . Applying Lemmas 2.3 and 3.4, we obtain that

E[e t|Sn| ] ≤ E[e t(|X1|+•••+|Xn|) ] ≤ exp (nτ 1 t ρ ) if t ≥ t 1 , P |S n | n > x ≤ P |X 1 | + • • • + |X n | n > x ≤ e -nR1x Q if x ≥ x 1 = ρτ 1 t ρ-1 1 .
Conversely, suppose that (X k ) are iid, and that

P |Sn| n > x ≤ exp -nR 1 x Q for all x ≥ x 1 . Let R ∈ ]0, R 1 [. Then for all x ≥ x 1 , (P [X 1 > x]) n = P [X i > x for all 1 ≤ i ≤ n] ≤ P S n n > x ≤ P |S n | n > x ≤ exp -nR 1 x Q , so that X + 1 = max(0, X 1 ) satisfies P [X + 1 > x] = P [X 1 > x] ≤ e -R1x Q , and E[e R(X + 1 ) Q ] = 1 + +∞ 0 P [X + 1 > x]RQx Q-1 e Rx Q dx ≤ 1 + x1 0 RQx Q-1 e Rx Q dx + +∞ x1 RQx Q-1 e -(R1-R)x Q dx = e Rx Q 1 + R R 1 -R e -(R1-R)x Q 1 .
By considering (-S n ) instead of (S n ), we see that the same result holds for X - 1 = max(0, -X 1 ):

E[e R(X - 1 ) Q ] ≤ K := e Rx Q 1 + R R 1 -R e -(R1-R)x Q 1 . Therefore E[e R|X1| Q ] ≤ E[e R(X + 1 ) Q ] + E[e R(X - 1 ) Q ] ≤ 2K.
Proof of Theorem 3.2. By Theorem 3.1, there exists

t 1 > R 2 such that E[e tSn ] ≤ E[e t|Sn| ] ≤ exp (nτ 1 t ρ ) for all t ≥ t 1 ,
and

P S n n > x ≤ P |S n | n > x ≤ exp -nR 1 x Q for all x ≥ x 1 := ρτ 1 t ρ-1 1 .
On the other hand, notice that E[e R|Xi| |F i-1 ] ≤ K 1 := e R + K, so that by Theorem 2.1,

E[e tSn ] ≤ exp 2nK 1 t 2 R 2 for all t ∈ 0, R 2 . If t ∈ R 2 , t 1 , then E[e tSn ] ≤ E[e t1|Sn| ] ≤ exp (nτ 1 t ρ 1 ) ≤ e n 4τ 1 t ρ 1 R 2 t 2 . Set A = max( 2K1 R 2 , 4τ1t ρ 1 R 2 ). Then E[e tSn ] ≤ e nAt 2 ∀t ∈]0, t 1 ].
Again by Theorem 2.1, we can choose B > 0 small enough such that

P S n n > x ≤ exp -nBx 2 if x ∈]0, x 1 ]. 4 Extension to the case E[e |X i | |F i-1 ] ≤ K i
The following theorems are immediate generalizations of Theorems 2.1, 2.9, 3.1 and 3.2. The proofs of the first two theorems remain the same; the proof of the third needs a short argument for the concerned constants to be independent of n. The first theorem is an extension of Bernstein's inequality.

Theorem 4.1 Let (X i ) 1≤i≤n be a finite sequence of supermartingale differences. If for some constants

K i > 0 and all i ∈ [[1, n]], a.s. E[e |Xi| |F i-1 ] ≤ K i , (4.1 
)

then for each K ≥ K1+•••+Kn n , E[e tSn ] ≤ exp nKt 2 1 -t for all t ∈]0, 1[, (4.2) 
and

P S n n > x ≤ exp -n √ x + K - √ K 2 for all x > 0. (4.3)
Consequently,

P S n n > x ≤          exp - nx 2 K(1 + √ 2) 2 if x ∈]0, K], exp - nx (1 + √ 2) 2 if x > K. (4.4)
The second theorem is an extension of Hoeffding's inequality.

Theorem 4.2 Let (X i ) 1≤i≤n be a sequence of supermartingale differences adapted to (F i ). If there exist some constants K i > 0 and R > 0 such that for all i ∈ [[1, n]], a.s.

E[e RX 2 i |F i-1 ] ≤ K i , (4.5 
)

then for each K ≥ K1+•••+Kn n
, there exists a constant c > 0 depending only on R and K such that:

E[e tSn ] ≤ e nct 2 for all t > 0, (

and

P S n n > x ≤ e -nx 2 4c
for all x > 0.

(4.7)

The third theorem shows a close relation between P [|X i | > x] and P |Sn| n > x for large values of x > 0. Notice that this result is valid for any adapted sequence. Theorem 4.3 Let (X i ) 1≤i≤n be any adapted sequence with respect to a filtration (F i ) 1≤i≤n . Assume that there exist some constants Q > 1, R > 0 and

K i > 0 such that for all i ∈ [[1, n]], E[e R|Xi| Q |F i-1 ] ≤ K i a.s.. (4.8) 
Let ρ > 1 and τ > 0 be such that

1 Q + 1 ρ = 1 and (ρτ ) 1 ρ (QR) 1 Q = 1. (4.9) Let K ≥ K1+•••+Kn n
. Then for any τ 1 > τ , there exists t 1 > 0 depending only on K, Q, R and τ 1 , such that:

E[e t|Sn| ] ≤ exp (nτ 1 t ρ ) for all t ≥ t 1 , (4.10) 
and

P |S n | n > x ≤ exp -nR 1 x Q for all x ≥ x 1 := ρτ 1 t ρ-1 1 , (4.11) 
where R 1 is such that (ρτ 1 )

1 ρ (QR 1 ) 1 Q = 1.
Proof. By Lemmas 3.5 and 3.3, we see that for a = 2

R 1 Q-1 , E[e t|Xi| |F i-1 ] ≤ 1 + K i (1 + at ρ e τ t ρ ) ∀t > 0.
By Lemma 2.3,

E[e t|Sn| ] ≤ E[e t(|X1|+•••+|Xn|) ] ≤ n i=1 1 + K i (1 + at ρ e τ t ρ ) .
It is easy to see that 1 + K i (1 + at ρ e τ t ρ ) ≤ e Ki (1 + at ρ e τ t ρ ), so we have

E[e t|Sn| ] ≤ e K (1 + at ρ e τ t ρ ) n .
Let τ 1 > τ . Then there exists t 1 > 0 sufficiently large such that ∀t ≥ t 1 , e K (1 + at ρ e τ t ρ ) ≤ e τ1t ρ , which gives (4.10). As

P |S n | n > x = P [e t|Sn| > e tnx ] ≤ e -ntx E[e t|Sn| ] ≤ exp (-n(tx -τ 1 t ρ )) ,
we deduce (4.11) from Lemma 3.4.

As in section 3, when (X i ) are supermartingale differences, using Theorem 4.1 we can complete Theorem 4.3 with an information for small values of x > 0 and t > 0, as shown in the following theorem. For large values of x, t > 0, it gives inequalities sharper than those of Theorem 4.1.

Theorem 4.4 Under the same hypothesis as in Theorem 4.3, if moreover (X i ) 1≤i≤n is a sequence of supermartingale differences adapted to the filtration (F i ), then for any τ 1 > τ , there exist t 1 > 0, x 1 > 0, and A, B > 0, depending only on K, Q, R and τ 1 , such that:

E[e tSn ] ≤ exp (nτ 1 t ρ ) if t ≥ t 1 , exp nAt 2 if 0 ≤ t ≤ t 1 , (4.12) 
and

P S n n > x ≤ exp -nR 1 x Q if x ≥ x 1 , exp -nBx 2 if 0 ≤ x ≤ x 1 . (4.13)
5 Rate of convergence with probability 1 and in L p Theorem 5.1 Let (X i ) 1≤i≤n be a sequence of supermartingale differences. If for some constants

K i > 0 and for all i ∈ [[1, n]], E[e |Xi| |F i-1 ] ≤ K i a.s., (5.1 
)

then writing K = lim sup n→+∞ K1+•••+Kn n
and S + n = max(0, S n ), we have:

lim sup n→+∞ S + n √ n ln n ≤ 2 √ K a.s., (5.2) 
and for every p > 0, lim sup

n→+∞ n p 2 E S + n n p ≤ p2 p-1 K p 2 Γ p 2 .
(5.3)

Proof. For the proof of (5.2), by Borel-Cantelli's Lemma, it suffices to show that for every a > 2 √ K,

+∞ n=0 P S + n √ n ln n > a < +∞.
Let us fix a > 2 √ K. Let ε > 0 be such that a > 2 √ K + ε and let n 1 > 0 be such that for every n ≥ n 1 ,

K1+•••+Kn n < K + ε.
Then we deduce from Theorem 4.1 that for every n ≥ n 1 ,

P S + n √ n ln n > a = P S n n > ln n n a ≤ exp -n x n + K + ε - √ K + ε 2 , with x n = ln n n a. When n tends to ∞, n √ x n + K + ε - √ K + ε 2 ∼ a 2 ln n 4(K+ε) . As a 2 > 4(K + ε), it follows that +∞ n=0 P S + n √ n ln n > a < +∞.
This ends the proof of (5.2). We now come to the proof of (5.3). Let n 1 > 0 be as in the proof of (5.2). We deduce from Theorem 4.1 that for every n ≥ n 1 ,

E S + n n p = p ∞ 0 P S n n > x x p-1 dx ≤ p ∞ 0 exp -n √ x + K + ε - √ K + ε 2 x p-1 dx. Set y = n √ x + K + ε - √ K + ε 2 . Then y n = √ x + K + ε - √ K + ε, x = y n y n + 2 √ K + ε , dx = √ y n + √ K+ε √ n √ y dy, so that E S + n n p ≤ c n (p) n p 2 , ( 5.4) 
where

c n (p) = p ∞ 0 e -y y p 2 -1 y n + 2 √ K + ε p-1 y n + √ K + ε dy satisfies lim n→∞ c n (p) = p ∞ 0 e -y y p 2 -1 2 √ K + ε p-1 √ K + ε dy = p2 p-1 (K + ε) p 2 Γ p 2 .
In the case of a sequence of martingale differences, replacing S + n by |S n | in the proof above, we obtain immediately:

Corollary 5.2 Let (X i ) 1≤i≤n be a sequence of martingale differences. If for some constants

K i > 0 and for all i ∈ [[1, n]], E[e |Xi| |F i-1 ] ≤ K i a.s., (5.5 
)

then for K = lim sup n→+∞ K1+•••+Kn n , lim sup n→+∞ |S n | √ n ln n ≤ 2 √ K a.s., (5.6) 
and for every p > 0, lim sup

n→+∞ n p 2 E |S n | n p ≤ p2 p K p 2 Γ p 2 .
(5.7)

Remark 5.3 The exponential moment condition (5.5) can certainly be relaxed for a result of the form

E |Sn| n p = O n -p 2 .
For example, as shown in [START_REF] Lesigne | Large deviations for martingales[END_REF], p.150, by Burkholder's inequality, we can obtain the following result: if p ≥ 2 and

E[|X i | p ] ≤ K for some K > 0 and all i ∈ [[1, n]], then E[|S n | p ] ≤ n p 2 (18pq 1/2 ) p K, (5.8) 
where 1 p + 1 q = 1.

Free energy of directed polymers: concentration inequalities

We now consider the model of a directed polymer in a random environment, already described in the introduction. For convenience, let us recall it briefly as follows. Let ω = (ω n ) n∈N be the simple random walk on the d-dimensional integer lattice Z d starting at 0, defined on a probability space (Ω, F , P ). Let η = (η(n, x)) (n,x)∈N×Z d be a sequence of real valued, non constant and i.i.d. random variables defined on another probability space (E, E, Q). The path ω represents the directed polymer and η the random environment. For any n > 0, define the random polymer measure µ n on the path space (Ω, F ) by

µ n = 1 Z n (β) exp(βH n (ω))P (dω), (6.1) 
where β ∈ R is the inverse temperature,

H n (ω) = n j=1 η(j, ω j ), and Z n (β) = P [exp(βH n (ω))]. (6.2) 
Let λ(β) = ln Q[e βη(0,0) ] be the logarithmic moment generating function of η(0, 0). We fix β > 0 (otherwise we consider -η), and assume only λ(±β) < ∞, which is equivalent to Q[e β|η(0,0)| ] < ∞. We are interested in the asymptotic behaviour of the normalized partition function

W n (β) = Z n (β) Q[Z n (β)] = P [exp(βH n -nλ(β))], (6.3) 
and the free energy 1 n ln W n (β). For simplicity, we shall write W n for W n (β), Z n for Z n (β), and η for η(0, 0). We use the same letter η to denote the environment sequence (η(n, x)) (n,x)∈N×Z d and the random variable η(0, 0); there will be no confusion according to the context. In this section, we shall prove exponential concentration inequalities for the free energies ln Wn n , and convergence results of the centered energies ln Wn n -Q[ln Wn] n : cf. Theorems 6.1, 6.5, 6.6, and their corollaries.

Theorem 6.1 Assume that Q[e β|η| ] < +∞, and set K = 2 exp (λ(-β)) + λ(β)). Then for all n ≥ 1,

Q[e ±t(ln Wn-Q[ln Wn]) ] ≤ exp nKt 2 1 -t for all t ∈]0, 1[, (6.4) 
and

Q ± 1 n (ln W n -Q[ln W n ]) > x ≤ exp -n √ x + K - √ K 2 for all x > 0. (6.5) 
Consequently, ∀n ≥ 1,

Q ± 1 n (ln W n -Q[ln W n ]) > x ≤          exp - nx 2 K(1 + √ 2) 2 if x ∈]0, K], exp - nx (1 + √ 2) 2 if x > K. (6.6) 
Corollary 6.2 Under the conditions of Theorem 6.1, ∀ε > 0, there exist 0 < x 0 < x 1 and K 1 > 0 depending only on K and ε, such that:

Q ± 1 n (ln W n -Q[ln W n ]) > x ≤                  exp - nx 2 4K(1 + ε) if x ∈]0, x 0 [, exp - nx K 1 if x ∈ [x 0 , x 1 ], exp - nx 1 + ε if x ∈]x 1 , +∞[. (6.7) 
Remark 6.3 Using Lesigne and Volny's martingale inequality (1.5), Comets, Shiga and Yoshida (2003, [START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF]) proved that if Q[e β|η| ] < +∞ for all β > 0, then ∀x > 0, there exists n 0 ∈ N * such that for any n ≥ n 0 ,

Q 1 n ln W n - 1 n Q[ln W n ] > x ≤ exp - n 1 3 x 2 3 4 . (6.8) 
Our result is sharper as n 1/3 is replaced by n. Another advantage is that our conclusion holds for all n, not only for n large enough; thanks to this advantage, we can use our inequalities to study the convergence rate for the a.s. and L p convergence: cf. Theorem 6.5. The third advantage is that we assume Q[e β|η| ] < +∞ only for the fixed β, not for all β > 0. The first two advantages are due to the application of our exponential martingale inequality (Theorem 2.1); the third one comes from a direct estimation of the conditional exponential moment (Lemma 6.4) by use of convex inequalities, without using Lemma 3.1 of [START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF].

For the proof, as in [START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF], we write ln W n -Q[ln W n ] as a sum of (E j ) 1≤j≤n martingale differences:

ln W n -Q[ln W n ] = n j=1 V n,j , with V n,j = Q j [ln W n ] -Q j-1 [ln W n ],
where Q j denotes the conditional expectation with respect to

Q given E j , E j = σ[η(i, x) : 1 ≤ i ≤ j, x ∈ Z d ]. Lemma 6.4 We have Q j-1 [exp(tV n,j )] ≤ exp (L(t)) for every t ∈ R, (6.9) 
where

L(t) = λ(tβ) + λ(-tβ) if |t| > 1, λ(-|t| β) + |t| λ(β) if |t| ≤ 1. (6.10) 
Consequently,

Q j-1 [exp(|V n,j |)] ≤ K := 2 exp (λ(β) + λ(-β)) . (6.11) 
Proof. We fix t ∈ R * and assume L(t) < ∞ (otherwise there is nothing to prove). Set

e n,j = exp   1≤k≤n,k =j (βη(k, ω k ) -λ(β))   , W n,j = P [e n,j ]. Since Q j-1 [ln W n,j ] = Q j [ln W n,j ], we have V n,j = Q j ln W n W n,j -Q j-1 ln W n W n,j . (6.12) 
For j ∈ N and x ∈ Z d , define

η x = η(j, x) = exp(βη(j, x) -λ(β)), α x = P [e n,j ; ω j = x] W n,j . 
(Throughout the paper, for a measure µ, a function f , and a set A, we use the notation µ[f ; A] = f 1 A dµ, where 1 A is the indicator function of A). Then

x∈Z d α x = 1 and W n W n,j = x∈Z d α x η x .
By (6.12),

Q j-1 [exp(tV n,j )] = exp -tQ j-1 ln W n W n,j Q j-1 exp tQ j ln W n W n,j .
Since the function x → e tx is convex, using Jensen's inequality and the fact that E j-1 ⊂ E j , we get:

Q j-1 [exp(tV n,j )] ≤ Q j-1 W n W n,j -t Q j-1 W n W n,j t . (6.13) 
If t < 0 or t ≥ 1 then the function x → x t is convex, therefore by Jensen's inequality we have

W n W n,j t =   x∈Z d α x η x   t ≤ x∈Z d α x (η x ) t .
We consider the σ-algebra

E n,j = σ[η(k, x); 1 ≤ k ≤ n, k = j, x ∈ Z d ]
. Then E j-1 ⊂ E n,j , the α x are E n,j -measurable, and the η x are independent of E n,j , so that

Q j-1 [α x (η x ) t ] = Q j-1 [Q[α x (η x ) t |E n,j ]] = Q j-1 [α x Q[(η x ) t ]] = exp (λ(tβ) -tλ(β)) Q j-1 [α x ].
Hence for t < 0 or t ≥ 1,

Q j-1 W n W n,j t ≤ exp (λ(tβ) -tλ(β)) . (6.14)
It is easily seen that the equality holds for t = 1: Q j-1

Wn

Wn,j = 1. Again by Jensen's inequality, we have, for t ∈]0, 1],

Q j-1 W n W n,j t ≤ Q j-1 W n W n,j t = 1. (6.15)
The inequality (6.9) is then just a combination of (6.13), (6.14), and (6.15). In particular,

Q j-1 [exp(±V n,j )] ≤ exp (λ(β) + λ(-β)) , so that Q j-1 [exp(|V n,j |)] ≤ K := 2 exp (λ(β) + λ(-β)) .
Proof of Theorem 6.1. From Lemma 6.4 and Theorem 2.1, we deduce:

Q[e t(ln Wn-Q[ln Wn]) ] ≤ exp nKt 2 1t for all t ∈]0, 1[, (6.16) and

Q 1 n (ln W n -Q[ln W n ]) > x ≤ exp -n √ x + K - √ K 2
for all x > 0. (6.17)

Applying Theorem 2.1 to the sequence (-V n,j ), we find that

Q[e -t(ln Wn-Q[ln Wn]) ] ≤ exp nKt 2 1 -t for every t ∈]0, 1[, (6.18) 
and

Q - 1 n (ln W n -Q[ln W n ]) > x ≤ exp -n √ x + K - √ K 2 for all x > 0. (6.19)
The inequalities (6.16) and (6.18) give (6.4), (6.17) and (6. [START_REF] Guivarc | Sur une extension de la notion de loi semi-stable[END_REF]) give (6.5).

Proof of Corollary 6.2. The proof is the same as the proof of Corollary 2.2.

Theorem 6.5 Assume that Q[e β|η| ] < +∞, and set K = 2 exp (λ(-β)) + λ(β)). Then

1 n ln W n - 1 n Q[ln W n ] → 0 a.s. and in L p , (6.20) 
with

lim sup n→+∞ n ln n ln W n n - Q[ln W n ] n ≤ 2 √ K a.s., (6.21) 
and for every p > 0, lim sup

n→+∞ n p 2 Q ln W n -Q[ln W n ] n p ≤ p2 p K p 2 Γ p 2 . (6.22) 
Proof. Recall that with the notations of the proof of Theorem 6.1, we have

Q j-1 [exp(|V n,j |)] ≤ K.
Then the inequalities (6.21) and (6.22) are consequences of the inequalities (5.6) and (5.7) of Corollary 5.2.

Theorem 6.6 Assume that K 0 := Q[e R|η| Q ] < +∞ for some Q > 1 and R > 0. Let ρ > 1 and τ > 0 be determined by

1 Q + 1 ρ = 1 and (ρτ ) 1 ρ (QR) 1 Q = 1. (6.23)
Then for each τ 1 > τ , there exist constants t 0 , A, B > 0, depending only on β, K 0 , Q, R, τ and τ 1 , such that, for all n ≥ 1,

Q[e ±t(ln Wn-Q[ln Wn]) ] ≤        exp (2nτ 1 β ρ t ρ ) if t > t 0 β , exp(nAt 2 ) if 0 < t ≤ t 0 β , (6.24) 
and

Q ± 1 n (ln W n -Q[ln W n ]) > x ≤ exp -nR 1 x Q if x > 2ρβτ 1 t ρ-1 0 , exp -nBx 2 if 0 < x ≤ 2ρβτ 1 t ρ-1 0 , (6.25) 
where R 1 > 0 is such that β(2ρτ 1 )

1 ρ (QR 1 ) 1 Q = 1.
If we are not interested in the values of constants, then we have Corollary 6.7 Under the conditions of Theorem 6.6, there exist constants c 1 , c 2 > 0, depending only on β, K 0 , Q and R, such that:

Q[e ±t(ln Wn-Q[ln Wn]) ] ≤ exp (nc 1 t ρ ) if t > 1, exp(nc 1 t 2 ) if 0 < t ≤ 1, (6.26) 
and

Q ± 1 n (ln W n -Q[ln W n ]) > x ≤ exp -nc 2 x Q if x > 1, exp -nc 2 x 2 if 0 < x ≤ 1. (6.27)
In particular, if K 0 := Q[e R|η| 2 ] < +∞ for some R > 0, then for some constants c 1 , c 2 > 0 depending only on β, K 0 and R, Q[e ±t(ln Wn-Q[ln Wn]) ] ≤ exp nc 1 t 2 for all t ∈ R, (6.28)

and 

Q ± 1 n (ln W n -Q[ln W n ]) > x ≤ exp -
= K 0 ( 2 R ) 1 Q-1 , we have Q[e t|η| ] ≤ 1 + K 0 + at ρ e τ tρ ≤ e τ1t ρ ∀t ≥ t 0 ,
for some t 0 = t 0 (K 0 , ρ, τ, τ 1 ) > 1. Hence λ(±t) ≤ τ 1 t ρ ∀t ≥ t 0 , so by Lemma 6.4,

Q j-1 [exp(±tV n,j )] ≤ exp (L(±t)) ≤ exp (2τ 1 β ρ t ρ ) for all t ≥ t 0 β . (6.30) 
We apply Lemma 2.3 with I =] t0 β , +∞[, and with the aid of Lemma 3.4, we conclude that

Q[e ±t(ln Wn-Q[ln Wn]) ] ≤ exp (2nτ 1 β ρ t ρ ) if t > t 0 β , (6.31) 
and

Q ± 1 n (ln W n -Q[ln W n ]) > x ≤ exp -nR 1 x Q if x > 2ρτ 1 βt ρ-1 0 . (6.32) Clearly, the condition Q[e R|η| Q ] < ∞ implies Q[e β|η| ] < ∞. Let K = 2 exp (λ(β) + λ(-β))
. By Theorem 6.1, (6.4), and Corollary 6.2, (6.7), ∀ε > 0,

Q[e ±t(ln Wn-Q[ln Wn]) ] ≤ exp nKt 2 1 -t ≤ exp nKt 2 1 -ε if 0 < t ≤ ε, (6.33) 
and

Q ± 1 n (ln W n -Q[ln W n ]) > x ≤ exp - nx 2 4K(1 + ε) if 0 < x < δ(K, ε), (6.34) 
for some δ(K, ε) small enough. In the following, we take ε = 1 2 and δ 

= δ(K, 1 2 ). If 1 2 ≤ t ≤ t0 β , then Q[e ±t(ln Wn-Q[ln Wn]) ] ≤ Q e t 0 β |ln Wn-Q[ln Wn]| ≤ 2 exp (2nτ 1 t ρ 0 ) ≤ exp n(4 ln 2 + 8τ 1 t ρ 0 )t 2 . ( 6 
). If δ ≤ x ≤ x 0 := 2ρτ 1 βt ρ-1 0 , then by (6.5), Q ± 1 n (ln W n -Q[ln W n ]) > x ≤ exp -n( √ δ + K - √ K) 2 ≤ exp -n ( √ δ + K - √ K) 2 x 2 x 2 0
. (6.36) Combining (6.32), (6.34) and (6.36) gives (6.25), with B = min 1 6K , (

√ δ+K- √ K) 2 x 2 0 .
We next consider the rate of convergence in mean. To this end, we first introduce some notations. We note P x the law of the simple random walk on Z d starting at x, and L m = {x ∈ Z d , P (ω m = x) > 0}. In addition to the partition function W n , we define the partition function starting from x:

W n (x) = W n (x; η) = P x   exp   β n j=1 η(j, ω j ) -nλ(β     , (7.6) 
and the point to point partition function

W n (x, y) = W n (x, y; η) = P x   exp   β n j=1 η(j, ω j ) -nλ(β)   1 ωn=y   . (7.7) 
Let τ n be the time shift of ordre n on the environment:

(τ n η)(k, x) = η(k + n, x) (x ∈ Z d , k ≥ 1).
Then we have

W n+k = x∈Ln W n (0, x; η)W k (x; τ n η). (7.8) Lemma 7.3 (Rate of convergence in mean) If K := 2 exp (λ(-β)) + λ(β)) < ∞, then for each n ∈ N * , 0 ≤ p -(β) - 1 n Q[ln(W n (β))] ≤ 2 √ K d ln(2n) n + d ln(2n) n . (7.9) 
Proof. We adapt the proof of Proposition 2.4 of [START_REF] Carmona | Fluctuation exponents and large deviations for directed polymers in a random environment[END_REF]. Let ε ∈]0, 1[. Using (7.8) and the subadditivity of the function u → u ε , we get

W ε n+k ≤ x∈Ln W ε n (0, x; η)W ε k (x; τ n η).
Integrating with respect to the environment we have

Q[W ε n+k ] ≤ |L n | Q[W ε n ]Q[W ε k ] ≤ (2n) d Q[W ε n ]Q[W ε k ]. Therefore h ε (n) := ln Q[W ε n ] (≥ εQ[ln W n ]) satisfies h ε (n + k) ≤ h ε (n) + h ε (k) + d ln(2n) ∀n, k ≥ 1. Set h(ε) = lim sup n→+∞ hε(n) n
(in fact by Hammersley's (1962, [20]) theorem on sub-additive functions, the limit exists, although we shall not use it). By the preceding recurrence relation, we have

h ε (nm) ≤ mh ε (n) + (m -1)d ln(2n), n, m ≥ 1.
Dividing this inequality by nm and letting m → ∞, we see that

h(ε) ≤ h ε (n) + d ln(2n) n , ∀n ≥ 1.
By Theorem 6.1,

h ε (n) = ln Q[exp (ε(ln W n -Q[ln W n ]))] + εQ[ln W n ] ≤ nKε 2 1 -ε + εQ[ln W n ]. As p -(β) ≤ h(ε) ε , it follows that p -(β) ≤ Kε 1 -ε + Q[ln W n ] n + d ln(2n) nε ∀ε ∈]0, 1[. (7.10) Let g(ε) = Kε 1-ε + dn ε , where d n = d ln(2n) n , ε ∈]0, 1[. Then g ′ (ε) = K (1-ε) 2 -dn ε 2 = 0 if and only if ε = √ dn √ K+ √ dn . For ε = √ dn √ K+ √ dn , g(ε) = 2 √ Kd n + d n ; therefore taking ε = √ dn √ K+ √
dn in (7.10), we obtain

p -(β) ≤ 2 Kd n + d n + Q[ln W n ] n , that is, p -(β) ≤ 2 √ K d ln(2n) n + d ln(2n) n + Q[ln W n ] n .
As an immediate consequence of the preceding lemma, we have: 

Corollary 7.4 If K := 2 exp (λ(-β)) + λ(β)) < ∞, then lim sup n→+∞ n ln n Q[ln W n ] n -p -(β) ≤ 2 √ Kd. ( 7 

Expression of the free energy by multiplicative cascades

In this section we shall prove that the free energy p -(β) can be expressed in terms of the free energies of some generalized multiplicative cascades. The expression is interesting because we know more information on the free energies of multiplicative cascades. The model of multiplicative cascades was first introduced by Mandelbrot (1974, [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire: quelques extensions[END_REF]); it has been well studied in the literature: see for example Kahane and Peyrière (1976, [25]), Durrett and Liggett (1981,[17]), Guivarc'h (1990, [19]), Franchi (1993, [18] ); for a generalized version and closely related topics, see Liu (2000, [29]).

In [START_REF] Comets | Majorizing multiplicative cascades for directed polymers in random media[END_REF], Comets and Vargas introduced a generalized multiplicative cascade (cf. [START_REF] Liu | On generalized multiplicative cascades[END_REF]) (W tree m,n ) n≥1 associated to the random vector (W m (0, x)) x∈Lm , where we recall that and that the equality holds if the environment is gaussian or bounded. Here we prove that the equality holds for general environment. This gives the desired result as θ ∈]0, 1[ is arbitrary.

W

  m (0, x) = P [exp(βH m (ω)mλ(β)); ω m = x]. (8.1)The associated free energy isp tree m (β) = inf θ∈]0,1] v m (θ), with v m (θ) = 1 θ ln Q[ x∈Lm W m (0, x) θ ] .

Theorem 8 . 1 2 1

 812 Assume that Q[e β|η| ] < +∞. Then p -For the sake of completeness, we recall the argument of Comets-Vargas for the inequality(8.3). Using the point to point partition functions defined by (7.7), we haveW mn = x1,••• ,xn∈Z d W m (0, x 1 )W m (x 1 , x 2 ; τ m η) • • • W m (x n-1 , x n ; τ (n-1)m η).(8.5)Let θ ∈]0, 1[ and m ∈ N * . By the subadditivity of the function u → u θ and Jensen's inequality, we obtain:x 1 )W θ m (x 1 , x 2 ; τ m η) • • • W θ m (x n-1 , x n ; τ (n-1)m η) x 1 )W θ m (x 1 , x 2 ; τ m η) • • • W θ m (x n-1 , x n ; τ (n-1)m η)   .By induction on n it is easy to see thatQ   x1,••• ,xn∈Z d W θ m (0, x 1 )W θ m (x 1 , x 2 ; τ m η) • • • W θ m (x n-1 , x n ; τ (n-1)m η) the reverse inequality. As W m (0, x) ≤ W m for every x, we have, for θ ∈]0, 1[, v m (θ) ≤ 1 θ ln Q[|L m | W θ m ] ,where|L m | is the cardinality of L m . Writing Q[W θ m ] = e θQ[ln Wm] Q[exp (θ(ln W m -Q[ln W m ]))],we getv m (θ) ≤ 1 θ ln |L m | + Q[ln W m ] + 1 θ ln (Q[exp (θ(ln W m -Q[ln W m ]))]) .Recall that by Theorem 6.1, for every θ ∈]0, 1[,Q[exp(θ(ln W m -Q[ln W m ]))] ≤ e mKθ -θ ,with K = 2 exp (λ(-β)) + λ(β)). Therefore for any m ≥ 1Letting m → ∞ and using the fact that |L m | ≤ (2m) d , we obtain that inf

  nc 2 x 2 for all x > 0. (6.29) Remark 6.8 If the environment is bounded or gaussian, the inequality (6.28) was proved in[START_REF] Comets | Majorizing multiplicative cascades for directed polymers in random media[END_REF], Corollary 2.5, as a corollary of a general concentration result.Proof of Theorem 6.6. Let τ 1 > τ . By Lemmas 3.5 and 3.3, writing a

  .11) We finally consider the rate of convergence, with probability 1 and in L p . As usual, . p denotes the L p norm.Theorem 7.5 (Rate of convergence, a.s. and inL p ) If K := 2 exp (λ(-β)) + λ(β)) < ∞, thenThen combining (6.21) of Theorem 6.5 and (7.11) of Corollary 7.4, we get (7.12). Again by Theorem 6.5, we know that for every p ≥ 1,ln W n -Q[ln W n ] n p = O(n -1/2 ) = oCarmona and Hu have proved in[START_REF] Carmona | Fluctuation exponents and large deviations for directed polymers in a random environment[END_REF] that if the environment is gaussian, then for any ε > 0,ln W n n p -(β) ≤ n -( 1 2 -ε) for n big enough.Our estimation is sharper since n ( 1 2 -ε) is replaced by ln n n .

	lim sup n→+∞	n ln n		ln W n n	-p -(β) ≤ 2	√ K(1 +	√ d) a.s.,	(7.12)
	and	lim sup n→+∞	n ln n	ln W n n		-p -(β) p ≤ 2	√ Kd, ∀p ≥ 1.	(7.13)
	Proof. We write							
	ln W n n	-p -(β) =	ln W n n	-	Q[ln W n ] n	+	Q[ln W ln n n	,
	so that (7.13) is a consequence of Corollary 7.4.		
	Remark 7.6							

n ] n p -(β) .

The inequality (1.13) is often called Hoeffding's inequality when (X k ) are iid, and Azuma's inequality when (X k ) are martingale differences. This is rather strange, as it was[START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] who first obtained it for martingales, although he mainly treated the iid case, and only mentioned the martingale case as a remark [see[START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], p.18]. To respect the history, we call it Hoeffding's inequality, althoughAzuma (1967, [1]) refound it four years later. We think that what happened would be that, the first author who called it Azuma's inequality did not know the existence of the remark of Hoeffding, the second followed the first without verification, and so on.

7 Free energy of directed polymers: convergence rates It is well known that the sequence Q[ln W n (β)] is superadditive, hence the limit

exists 2 . As an immediate consequence of (7.1) and (6.20), we have:

2)

The inequality p -(β) ≤ 0 was already indicated in (7.1); it follows from the fact that

The inequality p -(β) ≥ βQ[η]λ(β) also comes directly from the definition, as

The a.s. convergence was proved in [START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF], under the stronger condition that Q[e β|η| ] < +∞ for all β > 0; actually their proof is valid under the condition that Q[e 3β|η| ] < +∞. We shall give an estimation of the rate of convergence, for each of the convergences in probability, a.s., and in L p (p ≥ 1): cf. Theorems 7.2 and 7.5. We first consider the rate of convergence in probability. Recall that the condition

Consequently,

In particular (take δ = 1 2 ), ∀x ∈]0, 2K], there exists n 0 = n 0 (x) > 0 such that ∀n ≥ n 0 ,

Proof. Let δ ∈]0, 1[, and x > 0. Let n 0 = n 0 (δ, x) be large enough such that for any n ≥ n 0 ,

Therefore the conclusion follows from Theorem 6.1.

2 In the literature, p(β) is often used to denote the limit of the un-normalized free energy: p(β) = lim