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Abstract 

We present a complete framework for vigour mapping in row crops by multispectral remote 

sensing. The main contribution consists in taking into account vegetation abundance in the 

computation of vigour indexes. Though developed in a viticulture context, the proposed 

algorithm is generic enough to be adapted to any row crop, especially in horticulture. It takes 

advantage of both spectral and spatial features extracted from image data. Spectral 

information is used at pixel level by an ICA-based algorithm to process vegetation abundance 
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maps. As for spatial information, deformable models are used to fit a network of rectangles to 

individual plants. Both spectral and spatial information are then combined to compute 

abundance-weighted vigour indexes which are assigned to specific plants. Resulting 

measurements are then used for within block vigour mapping. A validation procedure is 

carried out on experimental vine plots. It is shown that the use of vegetation abundance by 

itself or as a weight in the computation of vegetation indexes allows to improve the accuracy 

of vigour assessment in row crops. 

Keywords: Remote sensing, Multispectral data, Precision viticulture, Row crop, Vine, 

Vegetation index, Spectral unmixing, ICA, Deformable models. 

Résumé 

Nous présentons une approche globale pour la cartographie de la vigueur sur des cultures en 

rangs, basée sur l’étude d’images de télédétection multi spectrales en haute résolution. Notre 

principale contribution consiste à prendre en compte l’abondance de végétation pour le calcul 

d’indices de vigueur. Développée dans un contexte viticole, cette approche est transposable à 

toute culture en rang, notamment en arboriculture. Elle se fonde à la fois sur les propriétés 

spatiales et spectrales des images. L’information spectrale est exploitée à l’échelle du pixel 

par un algorithme d’ACI pour produire des cartes d’abondance de végétation. Concernant 

l’information spatiale, un algorithme de modèles déformables permet d’ajuster un réseau de 

rectangles aux différentes plantes. Les deux types d’information sont alors combinés pour 

calculer des indices de vigueur, pondérés par les mesures d’abondance, et d’affecter ces 

indices à des plants spécifiques de plantes. Les mesures ainsi établies sont finalement utilisées 

pour la cartographie intra-parcellaire de la vigueur. Une procédure de validation a été mise en 

place sur une parcelle viticole. Il est montré que la prise en compte de l’abondance – 

directement ou comme pondération dans le calcul d’indices de végétations – permet 
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d’améliorer la mesure de la vigueur sur des cultures en rang. 

Mots clés: Télédétection, Données multi spectrales, Viticulture de précision, cultures en 

rangs, Vigne, Indice de végétation, Séparation spectrale, ACI, Modèles déformables. 
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1 Introduction 

Estimation, evaluation and monitoring of biomass are key factors for the enhancement of 

productivity and profitability in agriculture. Vigour, defined as the biomass annually stored 

per area unit (Champagnol et al. 1984), is an objective measure of biomass. Biomass 

production concerns various parts of the plant including roots, woods (trunk and shoots), 

leaves and fruits. Leaves are of particular interest since they are the most visible part of the 

whole biomass production system, their characteristics being directly affected by the health, 

stress and diseases of the plants. Quantifying the amount of leaves can thus help in the 

monitoring of crops during the production season not only in quantity but also in quality. 

Indeed, in some cases such as viticulture, the highest quality potential is obtained when vine 

vigour is moderate. Vine vigour is highly variable among vineyard blocks as well as inside 

the blocks. The reasons for this variability are mainly soil type, soil depth and topography 

(Bramley et al. 1999). Excessive vigour induces high yield and shaded canopy, resulting in 

quality losses, whereas very weak vigour leads to yield decrease and financial losses. Reliable 

vigour monitoring is thus essential to the balanced management of vine production. 

Thanks to recent advances in remote sensing, there has been a growing interest in its 

application to precision agriculture (e.g. Brisco et al. 1998, Tisseyre et al. 1999, Bannari et al. 

2002, Hall et al. 2003). In viticulture, multi/hyper spectral airborne/satellite imagery has made 

possible a flexible mapping of yield, soil and diseases (e.g. Bramley et al. 1999, Lamb 1999, 

Carothers 2000, Dobrowski et al. 2003, Johnson et al. 2003, Hall et al. 2003, Zarco-Tejada et 

al. 2005). In particular, various indicators of vigour based on leaf reflectance are accessible by 

remote sensing imagery, e.g. Rouse et al. (1974), Richardson et al. (1977), Huete (1988). 

Such indicators, called vegetation indexes (i.e. VI) are computed at the pixel level by 

combining various bands of the spectral reflectance. They make use of spectral information 
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only without taking into account any spatial information. Simple and fast to compute, they 

allow the evaluation of vigour while avoiding the direct labour-intensive measurement of 

biologic features such as the total leaf area. VI maps have been widely used especially for soil 

covering crops like wheat and corn. In contrast, for perennial woody species conducted in 

rows such as vines, the presence of a significant amount of bare soil (or cover crop) on 

remotely sensed images makes biomass quantification by means of VIs less obvious. 

Applied to crops such as vines, the precision agriculture concept implies that the plot can not 

be processed as a whole. Each row, or even each plant, has to be considered separately so that 

vegetation variability can be described at the plant level. Inter-rows, which often consist of 

bare soil or grass, should not interfere in the description of the canopy. For such a purpose, 

very high-resolution images, acquired with either multispectral or hyperspectral sensors, are 

necessary to attain accurate crop versus non-crop discrimination. Image classification 

algorithms, e.g. applied to vegetation indexes, can then make use of spatial or/and spectral 

information to discriminate between crop and non-crop pixels. For instance, in the case of 

vines, Hall et al. (2003) propose an algorithm (“Vinecrawler”) that labels image pixels as 

vine, if their NDVI values (Rouse et al., 1974) exceed a predefined threshold. They are 

aggregated into rows which are finally processed as a whole. Semi-automated frameworks 

have also been applied (Marguerit et al. 2006, Costa Ferreira et al. 2007) to extract vigour 

information and map it spatially in a row-column system. In these works, the pixels are 

considered as pure pixels. However, remotely sensed optical images are concerned by spectral 

mixing i.e. the mix of several contributions in a single pixel. In the particular case of row 

crops, the pixels can not be classified by basic algorithms into crop or non-crop pixels. The 

reason is that most pixels result from a mix of crop, inter-row soil, grass and even shadows. 

Therefore, soft classification techniques or unmixing approaches have to be considered to 
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discriminate between crop and non-crop, or at least to estimate, for each pixel, the abundance 

of vegetation. Most unmixing approaches are based on supervised or semi-supervised 

techniques where the spectra of the species or materials are known or are easily available 

from images (Pacheco et al. 2001, Bannari et al. 2006). Generally such methods deal with 

non-structured crops at the farm level. Previously, we proposed an unsupervised method for 

partial unmixing which aimed at evaluating the amount of canopy in each pixel (Homayouni 

et al. 2006). It was applied to viticulture, at the plot level. 

In this paper, a non supervised framework is proposed to transform high resolution 

multispectral images of row crops into vegetation vigour maps. Its main point is to take 

advantage of both spectral and spatial features to produce improved vigour indexes that take 

the row layout into consideration. Spectral information is used at pixel level to compute 

abundance coefficients which are used as weights in the computation of vegetation and leaf 

area indexes. Spatial information is used to bring back spectral measurements to specific row 

and plant positions. 

Section 2 is dedicated to the description of our framework. In section 2.1, we recall the main 

principles of the row detection algorithm presented in (Bobillet et al. 2003). It aims at an 

accurate positioning of rows and individual vines for further spatialization of spectral 

measurements. In section 2.2, we address the problem of spectral mixing. A method is 

proposed for the semi-automated production of abundance maps based on independent 

component analysis. Then, in section 2.3 a geometric procedure is proposed to combine 

spatial information about rows and spectral information from abundance maps and vegetation 

indexes. It results in plant by plant vigour estimations. In section 3, the whole procedure is 

applied and validated on multispectral images of vineyards. Plant scale measurements are 

used to produce vigour maps by interpolation. They are finally correlated to ground 
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measurements for global validation of the framework. 

2 A new framework for vigour analysis 

2.1 The row detection algorithm 

Most computer vision methods for detecting crop rows are implemented in real-time systems 

for automatic guidance of agricultural implements (e.g. Keicher and Seufert 2000, Hague and 

Tillet 2001). Images are taken by on-board cameras and show only a small number of rows. 

The Hough transform is often used to recover the linear structures (Marchant 1996, Keicher et 

al. 2000). Usually, the very high resolution of the considered images and the small number of 

rows lead to sufficiently accurate results. When lower computational time is required, 

tracking algorithms based on Kalman filtering (Hague et al., 2001) or linear regression 

approaches (Søgaard et al., 2003) are also implemented. 

Unlike the real-time context, computational time is not a critical issue for accurate location of 

rows in crop monitoring by remote sensing. On the other hand, row position and row angle 

estimations have to be very precise, due to the image size and to the length of the rows. The 

specific arrangement of individual crops suggests the use of the Hough transform. However, 

previous attempts, not reported in this paper, have shown that the Hough transform is not 

adapted to locate vine rows. The large number of linear structures and the presence of 

undesirable alignments make the row detection difficult. 

In order to retrieve the rows with high accuracy, we have chosen an algorithm based on active 

contour models, i.e. snakes (Kass et al. 1988), previously described in (Bobillet et al. 2003). 

This algorithm implements an active contour network which aims at fitting a line to each row 

through a global convergence process. Prior segmentation of the parcel is needed so that 

peripheral vegetation, buildings, roads etc. do not interfere in the row detection process. 
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Figure 1 shows an example of segmentation obtained on a vine parcel using the algorithm 

described in (Da Costa et al., 2007). This prior segmentation step can be manual or automatic.  

Figure 1. Left: typical high-resolution remote sensing image of a vineyard in the visible spectrum. Right: 

segmented version. 

Both the segmentation and the row detection algorithms operate on greyscale images. The 

multispectral image under consideration has thus to be transformed into a grey scale image 

which discriminates the crop rows from their background. This is done easily by computing 

any vegetation index, e.g. NDVI (Rouse et al., 1974) using the red and infra-red spectral 

bands. 

In spite of their apparent regularity, row crop images may show some particularities that make 

the detection process difficult. Rough measurements of average row spacing and orientation 

are not sufficient for a fine detection. Indeed, row spacing and orientation are only 

approximately constant over the field. For instance, perspective distortion effects can explain 

a gradual variation of row orientation across the image.  

The active contour model is designed according both to ideal row properties and to the 

particularities that may occur. Rows are considered as roughly parallel segments. The model 

chosen in (Bobillet et al. 2003) is a network of quasi-parallel segments.  

The geometry of the segment network is controlled by the minimization of a pre-defined 

energy E: 

 int (1 ) extE E Eµ µ= + − ,  (1)  

where Eint and Eext are respectively the internal and the external energies. Eint reflects the 

internal constraints that the snake undergoes. The external energy Eext takes into account the 

effect of the image. It enables the attraction of the snake towards the desired state. µ  is a 



Homayouni et al. Abundance weighting for improved vegetation mapping in row crops. 

Application to vineyard vigour monitoring. 

  9 

weighting parameter. Formulations of Eint and Eext and details of implementation can be found 

in (Bobillet et al. 2003). Figure 2 shows an example of row detection results obtained on the 

parcel of figure 1 using this method. The lines appear to fit almost perfectly the central axis of 

each vine row overcoming the irregularity of foliage and the absence of some vine plants. 

Figure 2. Left: Row detection result. Middle: detail #1. Right: detail #2. 

The network of lines obtained by the active contour algorithm allows to go beyond the simple 

detection of crop rows. Indeed, as many perennial crops, vine is usually planted regularly i.e. 

with constant distance between rows and between vine stocks. Such information can be used 

to place a regular network of rectangles along the detected rows (see Figure 3). The length of 

the rectangles corresponds to the distance between two consecutive stocks. Their width 

corresponds to the trimming width.  These features depend on the agricultural practices used 

in the region or even in the agricultural estate. They can be provided to the algorithm by the 

end-user. 

Figure 3. Left: Row detection result. Middle: detail #1. Right: detail #2. 

Once the exact positions and occupation areas of individual plants are determined, the 

quantification of crop vigour can be carried out at the scale of the plant by taking spectral 

information into account. This process is described below. 

2.2 Estimation of vegetation abundance maps by partial spectral unmixing 

2.2.1 Modelling the remotely sensed data 

A VNIR (Visible and Near Infrared) remote sensing system is an electro-optical system 

designed to observe the radiations reflected by ground objects at wavelengths generally 

comprised between 0.4 and 2.5 µm. In such a system, the outputs, i.e. the image pixel data or 

digital numbers (DNs), are assumed to be linear combinations of the inputs, i.e. the spectral 
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reflectances or radiances (Schowengerdt 2006). This assumption, usually valid at a 

macroscopic level, implies that various effects (e.g. topographic variations, atmospheric 

effects, specular reflectance, etc.) are negligible. Several physical models have been proposed 

to represent such observation systems and to analyze their effects on observed spectra 

(Schowengerdt 2006). Let ( , , )DN x y λ  be the digital number recorded by the sensor at pixel 

( , )x y  and wavelength λ . It can be expressed as follows: 

( , , ) ( ( , , ), )iDN x y f R x y Pλ λ= ,  (2) 

where R is the spectral reflectance of the ground sampling unit corresponding to (x,y) at 

wavelength λ . The iP  are the physical parameters involved in the whole remote sensing 

system: the atmosphere, the scene geometry and the sensor features. If a linear model is 

considered, the DNs are linearly related to the reflectance or at-sensor radiance. A 

multispectral image can thus be expressed in matrix form by:  

n m n p p m n mX R A N× × × ×= × + .  (3) 

n pR × contains the reflectance (signature or end-member) of p materials in n spectral bands. 

p mA ×  is a combination matrix: in the case of remote sensing applications, it contains the 

abundances ija  of the p materials on each of the m pixels. n mN ×  is a residual matrix. Finally, 

n mX ×  contains the recorded pixel data (DNs). If the elements of p mA ×  satisfy the constraints 

of additivity (
1

, 1
p

iji
j a

=
∀ =∑ ) and positivity ( , , 0iji j a∀ ≥ ), this model is similar to the 

Linear Spectral Random Mixture model proposed in (Chang 2003). 

In the contexts of detection and classification of spectral classes, p mA ×  has to be estimated. 

This estimation can be viewed as an inverse problem for which Blind Sources Separation 

techniques (BSS), including Independent Component Analysis (ICA), are appropriate 
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solutions. 

2.2.2 Independent Component Analysis 

ICA brings a solution for BSS under the assumption of linear mixing i.e. when the 

multivariate observations are assumed to be unknown linear mixtures of some unknown latent 

variables, the independent components (i.e. sources or factors): 

X M S N= × + .  (4) 

X is the observation matrix and S the sources. M is called the mixing matrix and N represents 

additive noise. The aim of ICA is to estimate S using an inverse model: 

Ŝ W X= × ,  (5) 

where W, the separating matrix is an estimate of 1M − . In this regard, ICA is similar to 

Principal Component Analysis (PCA). However, while PCA minimizes the correlation 

between estimated components, ICA aims at the independence of the components. The 

estimation of independent components is possible under the following assumptions 

(Hyvarinen and Oja, 2000): 

- the mixture is actually linear, 

- the sources are mutually independent, 

- the number of Gaussian sources is at most one, 

- the number of sources is less than the number of observations. 

ICA algorithms are based on the optimization of a criterion quantifying the independence of 

components. This criterion is usually based on higher order statistical moments. The 

optimization of this function will lead to maximize the independence of components, i.e. to 

minimize their mutual information. In this regard, several algorithms for ICA are available in 
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literature including Jade (Cardoso and Souloumiac, 1993) which is based on the joint 

probability function, FastICA (Hyvarinen and Oja, 2000) relying on the minimization of 

contrast functions (typically kurtosis), or the method proposed by Robila and Varshney 

(2002) which minimizes mutual information. 

Regarding multispectral images, ICA is generally used according to two strategies. The first 

one, (Bayliss et al. 1998, Kosaka and Kosugi 2003) considers as sources the spectral 

signatures of the various classes (the end-members). In contrast, in the second one, the 

sources are class abundances (e.g. Robila and Varshney 2002, Shah 2004). Abundance values 

range continuously from low values to high values corresponding respectively to the absence 

and to the presence of an individual class within a specific pixel. 

In the present work, we chose the second strategy. For vigour analysis in row crops, the 

source of interest is the one related to crop abundance, e.g. vine abundance in the case of 

viticulture. Other sources are related to soil, other types of vegetation, etc. The assumption of 

mutual independence of the sources entails that the vine class abundance does not depend on 

other possible sources as for instance bare soil or grass. Although this assumption does not 

hold – abundances sum to 1 – ICA usually provides relevant sources from which meaningful 

information about vegetation abundance can be extracted. Concerning non-Gaussianity, the 

useful source, i.e. the one related to vegetation, is usually non-Gaussian. Indeed, in practice, 

the crop abundance source is coarsely bi-modal as it is composed of rather crop-like pixels 

with high crop abundance values and rather non crop-like pixels with low crop abundance 

values. Other possible sources depend on the image content. They may be related to non-crop 

vegetation species (e.g. grass, trees), to ground targets or to soil variations. Gaussian-like 

sources usually correspond to residual noise and bear no information about vegetation 

abundance. 



Homayouni et al. Abundance weighting for improved vegetation mapping in row crops. 

Application to vineyard vigour monitoring. 

  13 

2.2.3 Component selection 

In general, ICA implementations are unsupervised and do not allow any component ranking. 

Neither the rank nor the energy of the components makes any sense in ICA. Consequently, 

even if the ICA algorithm provides a “crop-like” source, the latter must be retrieved among all 

the sources. Although this task seems straightforward if done manually, making it automatic 

is not so easy. The selection of meaningful components is often carried out using statistical 

criteria (e.g. higher order moments, entropy). However, it seems difficult in our case to select 

the crop component by using the statistical characteristics of its distribution. For this reason, 

we tackled the problem of component selection from a biological point of view. Indeed, in the 

agricultural context of vigour mapping, we can benefit from additional information provided 

by vegetation indices. If the available spectral data comprise sufficient information to 

compute a vegetation index I, then the crop component V can easily be selected by choosing, 

between all extracted sources � iS , the one which is the most correlated to I: 

� �

�

1 , ,

arg max ( , )
p

i

S S

V Corr S I=
…

.  (6) 

Though efficient in most of cases, this criterion may not work in the presence of grass 

between the rows as it could result in an independent component by itself. However, such a 

case has not occurred in practice since grass, when present, is usually associated with vine, 

composing together a vegetation component. Indeed, spectral information extracted from 

multi-spectral data, is not sufficient to separate vegetation species such as grass and vine. 

Such discrimination requires enhanced spectral information. The presence of grass will not be 

addressed here. 

2.2.4 Component normalization 

As mentioned previously, there are constraints imposed by the spectral mixing model that 
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ICA can not account for. The signs and the magnitudes of the components can not be directly 

determined and the additivity property mentioned earlier is not verified. The components can 

not be directly considered as abundances. In particular, the vine component identified by 

maximizing its correlation to the vegetation index is not necessarily positive nor bounded to 

[ ]0,1 . 

Some authors propose to take the constraints of the mixing model into account in the source 

separation algorithm itself (Chang 2003, Nascimento and Dias 2003), the outputs of which 

can be directly considered as abundances. In our case, the crop abundance is obtained a 

posteriori using a soft classification scheme. The classification is performed by a Fuzzy C-

Means technique (FCM) (Bezdek et al. 1984). Compared to classical clustering techniques 

(e.g. K-means), FCM is more robust to outliers and has the advantage of providing for each 

pixel a membership degree to each class. The only requirement is to set the number of clusters 

a priori. Regarding the vine component, the values of the pixels relate to the presence or the 

absence of vine. In the best case, the histogram of this component may be bi-modal (vine and 

non-vine pixels). Applied to this vine component, the FCM technique is thus expected to 

provide a measure of the abundance of vine i.e. an estimation of the percentage of the pixel 

area covered by vine. From now on, this vine abundance will be denoted A. Figure 4 gives a 

schematic illustration of vine abundance estimation. 

Figure 4. From multispectral images to the vine abundance map 

2.3 Precise vigour estimation along rows 

The use of the active contour model described above makes it possible to take measurements 

along crop rows and to assign the measured feature to a precise locus on the row. The feature 

to be measured will depend on the type of crop, on the agricultural practices, and on the type 
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of information needed by the end-user. The width of the canopy, though an intuitive feature, 

does not always bear meaningful information about crop vigour since, in horticulture, the 

canopy is sometimes controlled by lateral trimming. Such an agricultural practice is quite 

common in viticulture, for instance in the region of Bordeaux. In such cases, vegetation 

vigour must be assessed by other means, for example by measuring a vegetation index (VI) 

related to the biological status of the plant or by estimating vegetation thickness through a leaf 

area index (LAI). Below, we describe the method we chose to compute these indexes and to 

average them at the scale of the plant, combining both spatial information about plant layout 

and spectral information about crop abundance. 

2.3.1 About vegetation indexes 

A Vegetation Index (VI) is a measure without dimension which is usually a non linear 

combination of spectral bands of multispectral data. The formulations of VIs are based on the 

reflection properties of leaves (Gates et al. 1965). Advantages are their simplicity of 

implementation and their low computational cost. However, their use is limited by some 

important drawbacks: they are non linear and saturated for highly vigorous vegetation, and are 

hindered by atmospheric and soil effects. There are two main categories of VIs: ratio based 

and orthogonal based (see Table 1). Ratio based VIs have long been studied in agricultural 

and environmental applications. The various formulations attempt to reduce the sensitivity to 

exterior conditions (Zarco-Tejada et al. 2005). They can also be used to discriminate 

vegetation from its environment or as measures of plant vigour (Rouse et al. 1974, Hall et al. 

2003). Orthogonal indexes, such as PVI (Richardson et al. 1977) or SAVI (Huete 1988), take 

the spectral reflection of soil into account but need prior calibration. They are particularly 

relevant in the case of leaf area measurements. 

Table 1. Some ratio-based and orthogonal-based vegetation indexes. R and IR respectively denote the reflectance 
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magnitudes in the Red and Infra-Red channels. L, a and b are constants used to compute orthogonal indexes.  

 Formula References 

Difference Vegetation Index DVI = IR – R Tucker (1979) 

Simple Ratio Index SRI = IR / R Pearson & Miller (1972) 

Normalized Difference Vegetation Index NDVI = (IR – R) / (IR + R) Rouse et al. (1974) 

Infrared Percentage Vegetation Index IPVI = IR / (IR+R) Crippen (1990) 

Perpendicular Vegetation Index PVI = (IR-a.R-b)/√(1+a²) Richardson et al. (1977) 

Soil Adjusted ratio Vegetation Index 1 SAVI1 = (1+ L).(IR-R)/(IR+R+L) Huete (1988) 

Soil Adjusted ratio Vegetation Index 2 SAVI2  = IR /(R + b/a) Major et al. (1990) 

Transformed Soil-Adjusted Vegetation Index TSAVI=a*(IR-a*R-b)/(a*IR+R-a*b) Baret et al. (1989) 

 

2.3.2 An estimated leaf area index. 

The Leaf Area Index, i.e. LAI, defined as half the green leaf area per area unit (Welles et al. 

1991), is known to be a realistic indicator of vigour. As its direct measurement potentially 

affects the health of the leaves, it can not be carried out over the whole parcel. Pruning weight 

or PW, i.e. the weight of the shoots pruned after harvest, is another vigour related feature. Its 

measurement is delayed in winter and can thus be exhaustive. However, both LAI and PW are 

labour intensive and time consuming and cannot be used as a routine for crop monitoring. 

Instead, indirect estimation of LAI is possible, as described in (Ross 1981). The estimation 

eLAI is obtained as follows: 

ln( ).cos( ) / ( )eLAI P Gα α= − ,  (7) 

where P is the probability that a beam of radiation with incidence angle α passes through the 

canopy, supposed uniform and composed of leaves with random angular and spatial 

distributions. ( )G α  is the mean projection coefficient of unit foliage area on a plane 

perpendicular to α.  

To estimate eLAI from spectral data, cos( ) / ( )Gα α  can be determined at 0.5 for plants which 
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have randomly distributed leaf angles such as agricultural crops (Norman 1979). The 

incidence angle α corresponds to the sensor viewing zenith angle. Airborne optical remote 

sensors are usually pointed at a view angle of 0 (nadir looking). P represents the gap (non-

vegetation) fraction, which is determined by spectral unmixing as follows:  

1P A= − , where A  is the vine abundance. eLAI is then derived according to the following 

formula:  

2 ln(1 )eLAI A= − − .  (8) 

This leaf area index, together with the abundance-weighted vegetation indexes, will now be 

evaluated and compared within the experimental framework described hereafter.    

2.3.3 Enhancing vegetation and leaf area indexes by abundance weighting 

Any vigour indicator, i.e. vegetation or leaf area index, is all the more interesting as it can be 

computed at the scale of the plant and assigned to a specific plant position. A straightforward 

way to do this is to make use of the rectangle networks extracted through the active contour 

algorithm (see section 2.1). The vigour indicator is averaged over the pixels comprised in the 

rectangle and assigned to the centre of the rectangle. 

In practice, for vegetation indexes, the presence of other classes inside the rectangles (i.e. soil, 

shadows, etc.), together with the mixing phenomenon, hinder the correct assessment of 

vigour. However, the effect of these non-vegetation pixels is easily reduced by weighting the 

vegetation index by the vine abundance: 

rectangle rectangle

/
th th

k i i i

i k i k

VI a VI a
∈ ∈

= ∑ ∑   (9) 

where kVI  is the vigour associated with the th
k  stock, iVI  is the vegetation index value on 

pixel i and ia  is the abundance of vegetation on pixel i. Finally, the vine vigour values kVI  
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are assigned to the rectangle centroids so as to constitute a regular grid of pointwise values for 

mapping purposes.  

Concerning eLAI, a simple average computed over the pixels comprised in the rectangles is 

sufficient, making the assessment of vigour even more straightforward. 

Fig. 4. Left: segment network obtained through the row detection algorithm. Middle: rectangle network 

corresponding to the vine stocks. Right: the rectangle centroids. 

3 Experimental evaluation  

The measurements carried out using the methods described above are point scale information. 

Herein, they can be used directly when information about individual plants is needed. On the 

contrary, they are not adapted for a global representation of the parcel vigour variability. In 

order to make such data easy to interpret and to use by experts and even by farmers, maps are 

necessary. This is done by interpolation of the plant-scale measurements. 

After a brief presentation of the vineyard parcel and of the data we used for experimental 

validation, we will show some vigour maps obtained from plant-scale vigour measurements. 

These maps will help in the qualitative comparison between the various vigour indexes 

produced by our global framework and the ground truth data collected on the parcel. Finally, 

statistical correlation results between ground truth and image-based measurements will 

provide a quantitative evaluation of the global framework. 

3.1 Images and ground truth data 

The evaluation is carried out on vineyards of the Bordeaux area. The image analysis 

framework developed in this work, is applied to multi spectral aerial silver photographs 

acquired in July 2006 and digitized at a resolution of 4800 dpi. These images are composed of 

green, red and infrared spectral bands. The camera was taken on board a light airplane. Flying 
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altitude was low to allow very high spatial resolution i.e. 7-10 cm/pixel. An example of such 

data is shown in figure 5, in the form of a false colour image.   

Figure 5. False colour image of an experimental plot with radiometric/geometric targets. 

Besides remotely sensed images, ground truth data were collected for validation. These data 

were collected in an experimental parcel under a specific protocol. The parcel consisted of 19 

rows, each composed of 82 vine plants, with no grass between rows. A network of 

experimental plots was designed. Each plot was 0.5m wide, 3m long and includes three vine 

plants. The whole network was composed of 96 plots, i.e. a total of 288 vine plants on which 

Pruning Weight measurements were carried out in November 2006. 

Radiometric and geometric targets, which appear as white spots in the image, are ground 

control points meant for the geo-referencing of images. The precision of the geo-referencing 

is related to the accuracy of the GPS, typically 5m or 1m at best with post-treatment, which is 

sufficient for standard vigour cartography. In contrast, the geo-positioning of ground 

measurements and image data requires a much better accuracy since both image resolution 

(less than 10cm/pixel) and plant size (0.5m × 1m) are smaller than the accuracy of standard 

GPS. In our case, we chose not to use GPS-based positioning but rather to take advantage of 

the strict regularity of plant layout. Indeed, the exact geometry of the parcel is known, 

including the number, positions and lengths of the rows and the distances of the plants from 

the beginning of the row. It is thus possible to perform geo-referencing of ground 

measurements and image data, within a local coordinate system with no reference to 

terrestrial coordinates.  As the beginning of the rows can be determined on images with a 

resolution of about 2 to 3 pixels because of foliage irregularity, geo-positioning accuracy falls 

down to 20 or 30 cm, out-performing standard GPS resolution. 
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3.2 Vegetation vigour maps 

Various vigour-related indexes were extracted. Both ratio-based and orthogonal vegetation 

indexes (section 1.2) were computed. The eLAI, estimated Leaf Area Index, was deduced 

from abundance maps. Three indexes, NDVI, PVI and eLAI are illustrated in figure 6. 

These indexes were combined with geometric information to produce plant-scale vigour 

measurements according to the geometric framework described in section 2.3. These 

measurements were inserted into a GIS (ArcGIS) and manipulated as vector data for mapping. 

Within block vigour maps were created by inverse distance interpolation. The three 

corresponding vigour maps are shown in figure 6. 

Figure 6. The three vigour-related indexes and corresponding vigour maps obtained by inverse distance 

interpolation. From top to bottom: NDVI, PVI and eLAI. Low vigour is represented in white, high vigour in dark 

green. 

Though we will not comment further the interest of such maps for agricultural monitoring, it 

is worthwhile mentioning some properties of these maps. First, they allow enhancing the 

variability of vigour, difficult to observe in the original index images. Secondly, the global 

structures of the three maps are similar with particularly strong resemblance between PVI and 

eLAI. 

Figure 7. Scatter plots. Left: between NDVI and eLAI. Right: between PVI and eLAI. 

Figure 7 shows the scatter plots between the two vegetation indexes, NDVI and PVI, and the 

leaf area index eLAI. The data are the measurements carried out on the experimental plots 

described above. Less than 10% outliers were excluded which corresponded to missing 

canopy (missing plants or deviated canopy). While the relation between NDVI and eLAI is 

rather loose, the linearity of the correlation between PVI and eLAI is clear, with a high 

correlation coefficient.  
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3.3 Correlation between vigour maps and ground truth data 

An experimental validation of the framework was carried out by statistical analysis. eLAI 

measurements and ground truth pruning weights were compared, at the scale of the 

experimental plots described in section 3.1. The scatter plot between the two statistical series 

is shown in Figure 8.  

Figure 8. Scatter plot between eLAI and Pruning Weight, with the linear regression trend. 

The relation is more or less linear. After omission of the outliers corresponding to missing 

plants, the determination coefficient is R²=0.48, i.e. a coefficient of correlation R=0.69, which 

is reasonably good ( 310p −
�  with sample size N=90). Remaining variability can be 

explained in part by inaccurate positioning of field data and probably by soil irregularity, in 

spite of abundance weighting. Luminosity variations due to reflection effects and shades can 

also be incriminated. 

Similar analyses were conducted on vegetation indexes including ratio-based and orthogonal 

vegetation indexes. Table 2 groups the correlation coefficients obtained in two cases, 

depending on whether the vegetation indexes are uniformly weighted or weighted by the vine 

abundance-values. The results show that the use of abundance values as weights allows 

enhancing the correlation between image-based and ground measurements. In other words, 

the abundance values seem to reduce the effect of non-vegetation pixels and thus to refine 

vegetation indexes. Besides, it can be noted that DVI, a very simple vegetation index, appears 

to outperform other indexes after abundance weighting, even orthogonal ones, in spite of the 

relative complexity of their computation. Finally, it appears that eLAI, directly computed 

from the abundance values, is as correlated to pruning weights as the best vegetation indexes.  

Table 2. Correlations between Vegetation Indexes and Pruning Weight. 
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  Uniform weighting Abundance-based weighting 

DVI Difference Vegetation Index 0.56 0.68 

SRI Simple Ratio Index 0.60 0.63 

NDVI Normalized Difference Vegetation Index 0.55 0.63 

IPVI Infrared Percentage Vegetation Index 0.55 0.63 

PVI Perpendicular Vegetation Index 0.55 0.67 

SAVI1 Soil Adjusted ratio Vegetation Index 1 0.55 0.63 

SAVI2 Soil Adjusted ratio Vegetation Index 2 0.57 0.58 

TSAVI Transformed Soil-Adjusted Vegetation Index 0.56 0.63 

 

4 Conclusions and prospects 

A semi-automated framework is proposed to transform high resolution multispectral images 

of row crops into vegetation vigour maps. Though developed in a viticulture context, this 

method is generic enough to be adapted to any row crop, especially in arboriculture. It takes 

advantage of both spectral and spatial features extracted from image data. Spectral 

information is used at pixel level to process partial unmixing and to compute enhanced 

vegetation and leaf area indexes. Spatial information is used to bring back spectral 

measurement to specific row and plant positions. Resulting measurements are finally used for 

within block vigour mapping or plant scale characterization of crops. 

A validation procedure was carried out on experimental vine plots where ground pruning 

weight measurements were available. Various image-based vigour indicators were computed 

and showed comparable performances. For all indicators, enhanced results were obtained 

using vegetation abundance as a weight for vigour computation. Besides, the estimated Leaf 

Area Index, eLAI, directly computed from the abundance values, proved to be as correlated to 

pruning weights as the best vegetation indexes, including orthogonal vegetation indexes. This 

result is noteworthy, considering that such indexes are quite difficult to compute, for they 

require to calibrate the image according to local soil characteristics. This makes of eLAI, 
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computed using the unsupervised algorithm proposed in this paper, an interesting alternative 

to standard indexes, especially for large commercial applications where calibration is not 

systematic.  

Finally, this work showed very promising results. The degree of correlation between ground 

data and image-based measurements confirms, in the case of row crops, the potential of multi-

spectral imagery for canopy characterization. Furthermore, the significant improvement 

obtained using abundance information suggests to take into account abundance based 

weighting to improve the accuracy of vigour assessment. 

Future works will concern the refinement of the approach. Particularly, we intend to test and 

improve the whole framework on enhanced image data. Actually, the poor spectral resolution 

of the multispectral images used in this work certainly hinders the quality of vegetation index 

estimation, thus penalizing vigour estimation. With such spectral resolution, discrimination 

between different kinds of vegetation, e.g. grass and vine, is not possible either, which makes 

the present approach of limited use when inter-rows are covered by grass. The use of 

hyperspectral data, with both numerous and narrow spectral channels, should surely open up 

new horizons in future. Modern hyperspectral sensors, beyond being both technically and 

economically competitive, are also much less bulky than previous heavy acquisition systems 

thus allowing easy and cheap airborne acquisitions. Not only enhanced vigour 

characterization and mapping but also species discrimination should then be attainable, 

provided that sufficient spatial resolution is available.  
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Figure 1. Left: Typical high-resolution remote sensing image of a vineyard in the visible spectrum. Right: 

segmented version. 

 

 

 

   

 

Figure 2. Left: Row detection result. Middle: detail #1. Right: detail #2. 

 

 



Homayouni et al. Abundance weighting for improved vegetation mapping in row crops. 

Application to vineyard vigour monitoring. 

  31 

   

 

Figure 3. Positioning individual plants along crop rows. Left: segment network obtained through the row 

detection algorithm on an experimental plot. Middle: rectangle network corresponding to the vine stocks. Right: 

the rectangle centroids. 

 

  

 

Figure 4. From multispectral images to the vine abundance map 
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Figure 5. False colour image of an experimental plot with radiometric/geometric targets. 
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Figure 6. The three vigour-related indexes and corresponding vigour maps obtained by inverse distance 

interpolation. From top to bottom: NDVI, PVI and eLAI. Low vigour is represented in white, high vigour in dark 

green. 

 

  

 

Figure 7. Scatter plots. Left: between NDVI and eLAI. Right: between PVI and eLAI. 
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Figure 8. Scatter plot between eLAI and Pruning Weight, with the linear regression trend. 

 

 


