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Abstract: In some scientific fields, a scaling is able to modify the topology of an

observed object. Our goal in the present work is to introduce a new formalism adapted

to the mathematical representation of this kind of phenomenon. To this end, we

introduce a new metric structure - the galactic spaces - which depends on an ordered

field extension of R. Moreover, some natural transformations of the category of galactic

spaces, the contractions, are of particular interest: they generalize usual homotheties,

they have a ratio which may be an infinitesimal, they are able to modify the topology

and they satisfy a nice composition rule. With the help of nonstandard extensions we

can associate to any metric space an infinite family of galactic spaces; lastly, we study

some limit properties of this family.

Key words: Scaling, contraction, generalized distance, galactic space.

AMS classification: 03H05, 12J15, 26E35, 54E35.

1 Introduction: scaling and topology

It is well known that the notion of scale is fundamental in empirical sciences:
the properties of an object generally depend on a given scale and a change of
scale (a scaling) may deeply modify some of these properties. In some fields like
Image Processing, Geographical Information Systems and Spatial Analysis, one
of the major effects of a scaling is a possible modification of the topology. An
elementary example: a city A which is inside a geographical area B at some scale
may be located on the boundary of B when considered at a smaller scale. A
general question is to be able to take into account these topological deformation
phenomena [10, 11, 19]. For instance, it is a real problem to identify a given
object represented at different scales. Let us notice that the scalings for which
we hope a determinist law are the contractions, i.e. the scalings which decrease
the scale (and the size of the objects).

The mathematical transformation naturally related to a scaling is the notion of
homothety (for instance in an affine space). But an homothety is an homeo-
morphism; thus, it leaves invariant the topology. On the basis of this observa-
tion, many experts in Geographical Information Systems and Spatial Analysis
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concluded that a scaling is a natural transformation which cannot be exactly
represented by a mathematical transformation. Although this opinion is the
expression of a real difficulty, it underestimates the modeling capacity of math-
ematics.

In order to progress in our analysis, we must introduce a general mathematical
framework adapted to this kind of problem. For that purpose, we consider the
class E of all metric spaces. Given a real number λ > 0, the homothety of ratio λ
is the quit trivial transformation operating on E which maps each metric space
E := (E, d) to the new one λE := (E, λd). We notice that we have the nice
composition property λ(µE) = (λµ)E and more generally, that the homotheties
result from the left action(λ,E) 7→ λE of the multiplicative group R∗

+ on E .
Nevertheless, since the distance d and λd define the same topology on the set
E, we find again the invariance property of topology by an homothety. Thus,
it is still true that an homothety is not a good representative of a scaling.

On the other side, we can also agree that an empirical scaling is much more that
a simple change of size. In reality, a concrete scaling seems to be the union of
two distinct but dependent processes: (1) an homothety which changes, possibly
very strongly, the size of any object, (2) a simplification which allows to neglect
too small details. In order to build a convenient mathematical concept of scal-
ing, we have to translate simultaneously these two processes in an appropriate
mathematical notion. Actually, a major work was already done on this topic.
It is about the limit of a sequence (λnE) in E for the Gromov-Hausdorff dis-
tance where E is a given metric space and (λn) is a sequence in R∗

+ such that
λn → 0. Introduced by Gromov in his study on group of polynomial growth in
1981 [5, 6, 7], this concept collects the two main aspects of a concrete scaling:
the sequence (λn) corresponds to the strong homothety (actually a strong con-
traction) and the limit corresponds to the simplification process. Nevertheless,
it is not easy to handle with this kind of limit because there are few general
results of convergence for a sequence of the type (λnE). In 1984 [18], Van den
Dries and Wilkie defined a non standard alternative: the asymptotic cone of a
metric space E relative to a center x0 in a nonstandard extension ∗E of E and
for a similitude ratio λ which is now an infinitesimal hyperreal number. The
main advantage of this construction is that its existence is certain, whatever be
E, λ and x0; its strongest disadvantage is its transcendent character due to its
dependance to a non trivial ultrafilter. Since their introduction, these concepts
have been the subject of many deep and interesting works at the border of group
theory, topology and logic (for instance [2, 3, 12, 4]). Nevertheless, we notice
that, in the framework of this two approaches, it is difficult to formulate and
give a simple meaning to a composition rule of two scaling.

Our study is not strictly in the field of the preceding works on asymptotic cones.
Indeed, our main goal is to bring a positive answer to the following question.
Is it possible to generalize the notion of homothety so as to get a class S of
transformations operating on a class G of spaces with the properties set out
below?

1. Each space G ∈ G is provided with a kind of metric structure which is a
generalization of the structure of a metric space.

2. Each transformation s ∈ S modify (possibly very strongly) the size of any
object and the strength of this modification is measured by a ration λs.
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3. The underlying topological structure is possibly altered by such operations.

4. For each s, s′ ∈ S, there is the nice composition rule λs◦s′ = λs.λs′ .

The base of the present work is the observation that the construction of a non-
standard asymptotic cone actually produces an intermediary space which carries
a more general metric structure than the structure of metric space. We call this
new structure a galactic space. A remarkable feature is that the notion of galac-
tic space is not strictly dependent of the nonstandard framework: to define it,
we only need an ordered field extension of R. Moreover, some natural trans-
formations of the category of galactic spaces, the contractions, are of particular
interest: they generalize usual homotheties but they have a ratio which may be
an infinitesimal, they carry out a simplification process and they satisfy a nice
composition rule. Thus, at the level of galactic spaces, the contractions seem to
be good representatives of scalings.

It seems probable that partially similar structures have already been used in
other contexts. For instance, this is the case for the basic notion of distance
taking its values in a ordered quotient group. It is only at the time he was finish-
ing the final bibliography of this paper that the author found in [13] the notion
of ultracone which is almost an example of the general structure of galactic
space.

2 Infinitesimals in an extension field of R

2.1 In all this study, we consider a proper ordered field extension K of the field
R of real numbers. Thus, K is an ordered field, R ( K and the restriction to R

of the ordered field structure of K is the usual ordered field structure or R.

We may think to some algebraic examples such as the field R(X) of rational
fractions

R(X) :=

{
P (X)

Q(X)
; (P (X), Q(X)) ∈ R[X ]2 and Q(X) 6= 0

}

or the field R((X)) of Laurent power series

R((X)) :=

{
+∞∑

i=m

aiX
i ; m ∈ Z and ∀i ≥ m ai ∈ R

}

or the field of Puiseux series with real coefficients

R[[XQ]] :=
⋃

n≥1

R((X1/n))

both provided with the order relation for which 0 < X < 1/n for all n ∈ N∗.

Another intersting example arises from nonstandard analysis: a field ∗R or
hyperreal numbers [14, 16]. The simplest way to construct a field of hyperreal
numbers is to take an ultra-power of R. To this end, we choose a non principal
ultrafilter U on the set N of natural numbers (0 included). That means that U
is a family of subsets of N such that
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1. U 6= ∅ and ∅ 6∈ U ,

2. ∀(U, V ) ∈ P(N) (U ∈ U and U ⊂ V =⇒ V ∈ U),

3. ∀(U, V ) ∈ U U ∩ V ∈ U ,

4. ∀F ∈ P(N) (F finite =⇒ F 6∈ U).

Then, we consider the set RN of sequences of real numbers and the equivalence
relation ∼U on RN such that (xn) ∼U (yn) if and only if {n ∈ N ; xn = yn} ∈ U .
The set ∗R of hyperreal numbers is the quotient set RN/ ∼U . It is easy to check
directly (whithout using any special logical tool) that ∗R is an ordered field for
the natural operations and the order relation

[(xn)]U ≤ [(yn)]U ⇐⇒ {n ∈ N ; xn ≤ yn} ∈ U

where [(xn)]U and [(yn)]U are the equivalence classes of the sequences (xn)
and (yn). The map ∗ : R → ∗R such that the image of any x ∈ R is the
equivalence class of the sequence of constant value x is clearly a field morphism
which preserves order relations. Thus, ∗R is an ordered field extension of R.
Moreover, the class of the sequence (0, 1, 2, . . . , n, . . .) does not belong to the
image of R in ∗R. Consequently, this extension is proper.

Now, we consider the general case of a proper ordered extension K or R. Let s
an element of K; then s is infinitely small and we write s ≃ 0 if |s| < 1

n for each
n ∈ N∗; s is infinitely large if n < |s| for each n ∈ N (we write s ≃ +∞ if s > 0
and s ≃ −∞ if s < 0); s is limited if it is not infinitely large. We see that the
inverse of an infinitely large element is an infinitely small element.

Proposition 1. In K, there are infinitely large elements and non null infinitely
small elements. Moreover, for each s ∈ K which is not infinitely large, there
exists one and only one os ∈ R such that s ≃ os.

Proof. Let s ∈ K \R. If s is infinitely large, the first point is proven. If not, we
are under the assumptions of the second point. Then, we consider the cut (I, S)
of R defined by I = {x ∈ R ; x < s} and S = {x ∈ R ; x > s}. This cut defines
one and only one real number os such that os = sup I and os = inf S. Then it
is necessary that s ≃ os and we see that s − os is infinitely small and different
from 0.

2.2 The halo of 0 is the set Hal(0) whose elements are the infinitely small
elements of K. It is an additive subgroup of K to which is associated the
proximity relation ≃ defined by

∀(s, t) ∈ K2 (s ≃ t ⇐⇒ s− t ∈ Hal(0))

The halo of any x ∈ K is the equivalence class Hal(x) of x for ≃, that is to say
Hal(x) = x + Hal(0). The quotient group Hal(K) := K/Hal(0) is the set of all
Hal(x) for x ∈ K and the map Hal : x 7→ Hal(x) is the canonical projection of
K on Hal(K).

The galaxy of 0 is the set Gal(0) whose elements are the limited elements of K.

It is clear that Hal(0) ⊂ Gal(0) and that Gal(0) is also an additive subgroup of
K. From the preceding proposition, we deduce that Gal(0)/Hal(0) is isomorphic
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to R and Gal(0) is equal to the disjoint union
⋃

x∈R

Hal(x). Moreover, there exists

a principal value map pv : K → R ∪ {+∞,−∞} such that

∀s ∈ K pv(s) =





os if s ∈ Gal(0) (where os ∈ R and os ≃ s)
+∞ if s ≃ +∞
−∞ if s ≃ −∞

so that s ≃ pv(s) for every s ∈ K. If K is a field of nonstandard hyperreal
numbers ∗R, the map pv is usually called the standard part map and denoted
st. Due to the fact that the sum of two infinitesimals is an infinitesimal, we see
that pv(s+ t) = pv(s) + pv(t) for every t, s ∈ K such that s, t 6≃ ±∞.

Let us consider the quotient group Gal(K) := K/Gal(0) and the canonical pro-
jection Gal : K → Gal(K). For each t ∈ K, the equivalence class Gal(t) =
t+ Gal(0) is called the galaxie of t.

There is a natural total order relation ≤ on Gal(K) defined by

∀(s, t) ∈ K2 [Gal(s) ≤ Gal(t) ⇐⇒ (s ≤ t or s− t ∈ Gal(0))]

Moreover, this relation is compatible with the additive structure of Gal(K)

∀(s, t) ∈ K2 [(0 ≤ Gal(s) and 0 ≤ Gal(t)) =⇒ 0 ≤ Gal(s) + Gal(t)]

These properties mean that Gal(K) is an ordered additive group.

The terms of halo and galaxy are already used in some development of nonstan-
dard analysis; in this case, they denotes two important classes of external sets
[1, 17]. Our study is not directly in connection with these specific properties.
In addition, it is probable there are similar concepts in other contexts using
non-archimedean extensions.

3 Galactic space

Given any ordered additive group G, we denote by G+ and G∗
+ the following

sets G+ = {x ∈ G ; x ≥ 0} and G∗
+ = {x ∈ G ; x > 0}. The symbol +∞ is

supposed such that, for any x ∈ G, we have x < +∞ and x+(+∞) = +∞+x =
+∞. Given a map d defined on a product X ×X and taking its values in G+

or G+ ∪ {+∞}, we say that d satisfies the general metric rule if , for every
x, y, z ∈ X

1. d(x, x) = 0

2. d(x, y) = d(y, x) > 0 for x 6= y

3. d(x, z) ≤ d(x, y) + d(y, z)

Hence, a metric space is a structure (X, d) such that X is a set and d is a a map
d : X ×X → R+ which satisfies the general metric rule (i.e. d is a distance on
X).

Definition 1. Given a set F , a map δ : F × F → R+ ∪ {+∞} which satisfies
the general metric rule is called a generalized distance on F .
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If δ is a generalized distance on F , for each (x, r) ∈ F × (R+ ∪ {+∞}), we can
define the open ball of center x and radius r

Bδ(x, r) = {y ∈ F ; δ(x, y) < r}

The open balls of radius +∞ are also the equivalence class for the relation
δ(x, y) < +∞. Each large open ball is clearly a metric space for δ and is called
a metric component of F for δ. Let MF be the set of all metric components of
F for δ and, for each x ∈ F , let CF (x) the element E ∈ MF such that x ∈ E.

If δ is a generalized distance on a set F , then the family of open balls is a
basis of a topology on F . Furthermore, F is the disjoint union of its metric
components and each metric component is an open set of F . Reciprocally, if
(Ei, δi)i∈I is a family of disjoints metric spaces, then (Ei)i∈I is the family of
metric components of F =

⋃
i∈I Ei for the generalized distance δ defined by

∀(x, y) ∈ F 2 δ(x, y) =

{
δi(x, y) if ∃i ∈ I such that x, y ∈ Ei,
+∞ else.

Consequently, a set provided with a generalized distance is just the disjoint
union of a family of metric spaces. We want to improve this concept by the
consideration of a kind of metric on the set of metric components.

Let K be a fixed ordered extension field of R. Therefore, we have the ordered
group Gal(K) whose elements are the galaxies of K.

Definition 2. A galactic distance on a set E is a map ∆ : E × E → Gal(K)
which satisfies the general metric rule.

If ∆ is a galactic distance on a set E , there is a well defined topology on E so
that the family of open balls is a basis of this topology.

Definition 3. A galactic space is a structure (F, δ,∆) in which F is a set, δ
is a generalized distance on F and ∆ is a galactic distance on the set MF of
metric components of F for δ.

With the aim of simplifying the notations, we can also say that F is a galactic
space without mentioning δ and ∆. In some way, a galactic space is a set with
two levels of resolution: a fine resolution given by the generalized distance which
relates the topological relations between points inside each metric component,
a coarse resolution given by the galactic distance which relates the topological
relations between the metric components. In spite of the chosen terminology,
the reader must avoid to think that the structure of galactic space may have
any application in the science of universe.

Definition 4. An isometry between two galactic spaces (F, δ,∆) and (F ′, δ′,∆′)
is a bijective map φ : F → F ′ such that

1. ∀(x, y) ∈ F 2 δ′(φ(x), φ(y)) = δ(x, y)

2. ∀(G,H) ∈ M2
F ∆′(φ(G), φ(H)) = ∆(G,H)
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(It is clear that, if φ is bijective and satisfies the point (1.), then, for each metric
component G of F for δ , the set φ(G) is a metric component of F ′ for δ′.)

Example 1 A metric space (E, d) is a particular case of galactic space, that is
to say the galactic space (E, d,D) where D is the trivial galactic distance on the
set {E}. This trivial example shows that the notion of galactic space is really a
generalization of that of metric space.

Example 2 Let (E1, d1) and (E2, d2) two metric spaces such that E1 ∩E2 = ∅.
We choose a galaxy ∆1,2 ∈ Gal(K) which is not trivial (∆1,2 6= 0 ∈ Gal(K)).
Then, it is easy to verify that there is a galactic space (E, d,D) such that

• E = E1 ∪ E2 ;

• d(x, y) =





d1(x, y) if (x, y) ∈ E1
2

d2(x, y) if (x, y) ∈ E2
2

+∞ else
;

• the metric components of E for d are E1 and E2 and D(E1, E2) = ∆1,2.

Example 3 Let (G, d) be a K-metric space: that means that G is a set and d is
a map from G×G to K+ which satisfies the general metric rule. The simplest
example of a K-metric space is G = K and d(x, y) = |x−y| for each (x, y) ∈ K2.
Another example is G = ∗E and d = ∗d where (E, d) is a metric space, (∗E, ∗d)
is a nonstandard extension of (E, d) and K = ∗R.

Then, we consider the equivalence relation ≈ on G defined by

∀(x, y) ∈ G2 (x ≈ y ⇔ d(x, y) ≃ 0)

and the quotient set F = G/ ≈. For every x ∈ G, we denote [x] the equivalence
class of x for ≈. On F we have a generalized distance δ defined by

∀(x, y) ∈ G2 δ([x], [y]) = pv(d(x, y))

Finally, we define a galactic distance ∆ on the set MF of metric components of
F for δ such that

∀(x, y) ∈ G2 ∆(CF (x), CF (y)) = Gal(d(x, y))

where CF (t) denotes the metric component of t ∈ F . Then (F, δ,∆) is a galactic
space. We say that (F, δ,∆) is the galactic projection of the K-metric space
(G, d).

The following result shows that the preceding example is universal.

Theorem 1. Every galactic space is the galactic projection of a K-metric space.

Proof. We consider a galactic space (F, δ,∆) and let MF be the set of metric
components of this space. For each (Ei, Ej) ∈ M2

F such that Ei 6= Ej , we
choose an element dij in the galaxy ∆(Ei, Ej) in such a way that dij = dji.
Thus, we have dij ≃ +∞ in K and Gal(dij) = ∆(Ei, Ej). In the same way,
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we choose an element xi in each metric component Ei. Then, we define a map
d : F 2 → K+ such that, for each (x, y) ∈ F 2

d(x, y) =

{
δ(x, y) if δ(x, y) < +∞
δ(x, xi) + dij + δ(xj , y) if ∃(Ei, Ej) ∈ M2

F Ei 6= Ej (x, y) ∈ Ei × Ej .

We see at once that d is symmetrical. Since d(x, y) ≃ +∞ for every (x, y) ∈
Ei × Ej such that Ei 6= Ej , we have

∀(x, y) ∈ F 2 (d(x, y) = 0 ⇐⇒ x = y)

It remains to prove the triangular inequality d(x, z) ≤ d(x, y) + d(y, z) for each
(x, y, z) dans F 3. If x, y, z belong to the same metric component, there is no
problem. Thus, we have to consider four cases.

Case 1 : x ∈ Ei and y, z ∈ Ej with Ei 6= Ej in MF .

Then, d(x, z) = δ(x, xi) + dij + δ(xj , z), d(x, y) = δ(x, xi) + dij + δ(xj , y) and
d(y, z) = δ(y, z). Hence, the result come from δ(xj , z) ≤ δ(xj), y) + δ(y, z).

Case 2 : x, y ∈ Ei and z ∈ Ej with Ei 6= Ej in MF .

Then, d(x, z) = δ(x, xi)+dij +δ(xj , z), d(x, y) = δ(x, y) and d(y, z) = δ(y, xi)+
dij + δ(xj , z). Hence, the result comes from δ(x, xi) ≤ δ(x, y) + δ(y, xi).

Case 3 : x, z ∈ Ei and y ∈ Ej with Ei 6= Ej in MF .

Then, d(x, z) = δ(x, z), d(x, y) = δ(x, xi)+dij +δ(xj , y) and d(y, z) = δ(y, xj)+
dji + δ(xi, z). Since δ(x, z) ∈ R+, d(x, y) ≃ +∞ and d(y, z) ≃ +∞, we get the
result.

Case 4 : x ∈ Ei, y ∈ Ej and z ∈ Ek with Ei 6= Ej , Ei 6= Ek and Ej 6= Ek in
MF .

Then, d(x, z) = δ(x, xi) + dik + δ(xk, z), d(x, y) = δ(x, xi) + dij + δ(xj , y) and
d(y, z) = δ(y, xj) + djk + δ(xk, z). Since ∆(Ei, Ek) ≤ ∆(Ei, Ej) + ∆(Ej , Ek)
in Gal(K) = K/Gal(0), we have rik ≤ rij + rj,k for every rik ∈ ∆(Ei, Ek),
rij ∈ ∆(Ei, Ej) and rjk ∈ ∆(Ej , Ek). Hence, the result comes from d(x, z) ∈
∆(Ei, Ek), d(x, y) ∈ ∆(Ei, Ej) and d(y, z) ∈ ∆(Ej , Ek).

Now, we know that (F, d) is a K-metric space. It is easy to check that the
galactic projection of (F, d) is isomorphic to (F, δ,∆).

From the preceding result, we could hastily conclude that the study of galactic
spaces may be advantageously replaced by the study of K-metric spaces. On the
contrary, we think that galactic spaces are interesting because they have a rich
metric structure which is a suitable framework for scaling. In the next section,
we will introduce a notion of contraction which naturally operates on the class
of galactic spaces.

Example 4 Let us call galactic continuous line the galactic space Dc,K which
is the galactic projection of K view as a K-metric space. Thus, the set Dc,K is
equal to Hal(K) = K/Hal(0), the generalized distance is given by

∀(x, y) ∈ K δ(Hal(x),Hal(y)) = vp(|x− y|),
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for each x ∈ K the metric component of Hal(x) isG(x) := {Hal(y) ; y ∈ Gal(x)},
the set of metric components is the quotient group of Hal(K) by the subgroup
Gal(0)/Hal(0) (quotient which is canonically isomorphic to Gal(K)) and the
galactic distance is given by

∀(x, y) ∈ K2 ∆(G(x), G(y)) = Gal(|x− y|).

Since the principal value map is bijective if considered as a map from Gal(0)/Hal(0)
to R and since G(x) = Hal(x) + G(0), we see that each metric component of
Dc,K is a metric space isometric to R and Dc,K is the disjoint union of a family
(RC)C∈Gal(K) of copies of R.

In the same way, we define a galactic discrete line Dd,K to be the disjoint union
of a family (ZC)C∈Gal(K) where each ZC is a copy of the set Z of integers. On
Dd,K, we consider a generalized distance δ such that

∀x, y ∈ Dd,K δ(x, y) =

{
|x− y| if ∃C ∈ Gal(K) such that (x, y) ∈ C2

+∞ else

The metric components of Dd,K for δ are the sets ZC for C ∈ Gal(K) and the
galactic distance is simply defined by

∀C,C′ ∈ Gal(K) ∆(ZC ,ZC′) = |C − C′|.

The discrete galactic line is the galactic space (Dd,K, δ,∆).

4 Contraction of a galactic space

4.1 Before going further, we need some considerations on the multiplication of
a galaxy by a number. Let γ ∈ K∗

+ be a limited number, τ ∈ Gal(K) and t ∈ K

such that τ = Gal(t). As usual, we define the set γ.τ = {γs ; s ∈ τ} so that
γ.τ = γt+ γGal(0).

Thus, γ.τ = Gal(γt) if γ is appreciable and γ.τ ⊂ Hal(γt) ⊂ Gal(γt) if γ ≃ 0.
Then, we define γ • τ in Gal(K) by γ • τ := Gal(γt); hence, we always have
γ.τ ⊂ γ • τ .

Moreover, if τ ∈ Gal(K)∗+, the principal value map is constant on the set γ.τ and
this constant value is named pv(γ.τ). Indeed, such a τ can be written Gal(t)
for some t ∈ K+ such that t ≃ +∞; therefore every element of γ.τ is infinitely
large if γ 6≃ 0 and γ.τ ⊂ Hal(γt) if γ ≃ 0.

4.2 Let (F, δ,∆) and (F ′, δ′,∆′) be two galactic spaces and let f be a map
F → F ′. We suppose that f satisfies a Lipschitz condition for (δ, δ′), that is to
say, there is a limited element γ > 0 of K such that

∀(x1, x2) ∈ F 2 δ′(f(x1), f(x2)) ≤ γ δ(x1, x2)

When one of its members is +∞, this inequality must be interpreted according
to the following usual rule: ∀α ∈ K α ≤ +∞ and α(+∞) = +∞, . If f
satisfies such a condition, then

∀(x1, x2) ∈ F 2 (δ(x1, x2) < +∞ =⇒ δ′(f(x1), f(x2)) < +∞)
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Thus, for every metric component E of F for δ, the direct image f(E) is a
subset of a metric component of F ′ for δ′ which we denote f [E]. Hence, we get
a map between the sets of metric components

f̃ : MF −→ MF ′

E 7−→ f [E]

Definition 5. Given two galactic spaces (F, δ,∆) and (F ′, δ′,∆′), a morphism
from (F, δ,∆) to (F ′, δ′,∆′) is a map f : F → F ′ such that there is a limited
element γ > 0 in K so that the following Lipschitz conditions are satisfied

1. ∀(x1, x2) ∈ F 2 δ′(f(x1), f(x2)) ≤ γ δ(x1, x2);

2. ∀(E1, E2) ∈ (MF )2 ∆′(f̃(E1), f̃(E2)) ≤ γ • ∆(E1, E2);

The element γ is called the Lipschitz constant of f . An isomorphism from
(F, δ,∆) to (F ′, δ′,∆′) is a morphism f : (F, δ,∆) → (F ′, δ′,∆′) such that
f : F → F ′ is bijective and f−1 is a morphism from (F ′, δ′,∆′) to (F, δ,∆).

We remark that if f : (F, δ,∆) → (F ′, δ′,∆′) is an isomorphism, then f [E] =
f(E) for eachE ∈ MF . An isometry is a particular case of isomorphism between
two galactic spaces.

Hence, we have defined a category GK whose objects are the galactic spaces
provided with the morphisms defined just above. There is a class of morphisms
which is particularly interesting for the study of scalings.

Definition 6. Given a limited element γ > 0 in K, a γ-contraction of (F, δ,∆)
is a morphism of galactic spaces f : (F, δ,∆) → (F ′, δ′,∆′) such that f is a
surjective map from F to F ′ and, ∀(x1, x2) ∈ F 2 ∀(E1, E2) ∈ M2

F

δ′(f(x1), f(x2)) =

{
pv(γ δ(x1, x2)) if δ(x1, x2) < +∞
pv(γ.∆(CF (x1), CF (x2))) if δ(x1, x2) = +∞

∆′(f [E1], f [E2]) = γ • ∆(E1, E2)

The element γ is called the coefficient of the contraction f .

We also say that a galactic space (F ′, δ′,∆′) is a γ-contraction of (F, δ,∆) if
there exists a morphism f : (F, δ,∆) → (F ′, δ′,∆′) which is a γ-contraction.
We notice that a 1-contraction is an isometry. It is easy to check that, if a
surjective map f : F → F ′ satisfies the two last conditions of the preceding
definition, then f is necessary a morphism from (F, δ,∆) to (F ′, δ′,∆′). We
point out that the coefficient γ of a contraction may be greater that 1, but not
to much.

4.3 Let us consider the first properties of contractions.

Proposition 2. Let us consider a limited element γ > 0 in K and a γ-
contraction fγ : (F, δ,∆) → (Fγ , δγ ,∆γ).

1. If γ 6≃ 0, then the map fγ : F → Fγ is a bijection and, for every x, y ∈ F

δγ(fγ(x), fγ(y)) = pv(γ) δ(x, y)

∆γ(CFγ
(fγ(x)), CFγ

(fγ(y))) = γ • ∆(CF (x), CF (y))
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2. If γ ≃ 0, then the map fγ is a surjective map such that, for every u ∈ F , we
have f−1

γ (fγ(u)) = {v ∈ F ; γ.∆(CF (u), CF (v)) ⊂ Hal(0)}; furthermore,
for every x, y ∈ F

δγ(fγ(x), fγ(y)) = pv(γ.∆(CF (x), CF (y)))

∆γ(CFγ
(fγ(x)), CFγ

(fγ(y))) = γ • ∆(CF (x), CF (y))

Proof. Straightforward.

Theorem 2. Let (F, δ,∆) be a galactic space and a limited element γ > 0 in
K. Then, there is a γ-contraction fγ : (F, δ,∆) → (Fγ , δγ ,∆γ) of (F, δ,∆).

Proof. Let us consider the equivalence relation ∼γ on F such that, for all (x, y) ∈
F 2

x ∼γ y ⇐⇒

{
γ δ(x, y) ≃ 0 if δ(x, y) < +∞
γ.∆(CF (x)), CF (y)) ⊂ Hal(0) if δ(x, y) = +∞

Let Fγ be the quotient set F/ ∼γ and fγ : F → Fγ be the canonical projection.
Then, we define a map δγ : Fγ × Fγ → R so that, for all (x, y) ∈ F 2

δγ(fγ(x), fγ(y)) =

{
pv(γ δ(x, y)) if δ(x, y) < +∞
pv(γ.∆(CF (x), CF (y))) if δ(x, y) = +∞

which is clearly a generalized distance on Fγ . In a similar way, we define a
galactic distance ∆γ on the set MFγ

of metric components of Fγ for δγ such
that

∀(x, y) ∈ F 2 ∆γ(CFγ
(fγ(x)), CFγ

(fγ(y))) = γ • ∆(CF (x), CF (y))

Then fγ : (F, δ,∆) → (Fγ , δγ ,∆γ) is clearly a γ-contraction of (F, δ,∆).

This proof shows that, given a galactic space F and γ, the construction of a
γ-contraction of F is obtained by a relatively explicit procedure of quotient.

4.4 Example: contraction of the continuous and the discret galactic lines. Given
the continuous galactic line Dc,K = (Hal(K), δ,∆) and an infinitesimal γ such
that 0 < γ, we want to construct a γ-contraction of Dc,K. To this end, we
consider the additive subgroup γ−1.Hal(0) := {γ−1x ; x ∈ Hal(0)} of K,
the quotient group γ−1-Hal(K) := K/γ−1.Hal(0) whose elements are the sets
γ−1-Hal(x) := x + γ−1.Hal(0) for x ∈ K. On γ−1-Hal(K), we define the gener-
alized distance δ′ by

∀x, y ∈ K δ′(γ−1-Hal(x), γ−1-Hal(y)) = pv(γ|x− y|).

Each metric component is of the form γ−1-Gal(x) := x + γ−1.Gal(0) for x ∈
K and the set of metric components is the quotient group γ−1-Gal(K) :=
K/γ−1.Gal(0). Then, we consider the galactic distance ∆′ defined on γ−1-Gal(K)
by

∀x, y ∈ K ∆′(γ−1-Gal(x), γ−1-Gal(y)) = Gal(γ|x− y|).

Hence, the map
f ′ : Hal(K) −→ γ−1-Hal(K)

Hal(x) 7−→ γ−1-Hal(x)
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is clearly a γ-contraction of Dc,K. Since f ′ is not injective (for instance f ′(0) =
f ′(1)), this map is not an isometry. Nevertheless, the map

Hal(K) −→ γ−1-Hal(K)
Hal(x) 7−→ γ−1-Hal(γx)

is an isometry of the galactic space Dc,K to its γ-contraction. Thus, a γ-
contraction of a continuous galactic line is isometric to itself.

Let us now consider the case of the discrete galactic line Dd,K . To this end, for
each C ∈ Gal(K) we arbitrarily choose an element xC ∈ C and we define the
map f ′′ : Dd,K → γ−1-Hal(K) such that, for each x ∈ Dd,K, we have f ′′(x) =
γ−1-Hal(xC) where x ∈ ZC . Then, it is clear that f ′′ is a γ-contraction from
(Dd,K, δ,∆) to (γ−1-Hal(K), δ′,∆′). Since this last galactic space is isometric to
Dc,K, we see that for γ ≃ 0, a γ-scaling of the discrete galactic line is isometric
to the continuous galactic line.

4.5 Now, we want to understand the relations between the different contractions
of a given galactic space.

Proposition 3. We consider two limited elements α, β ∈ K such that 0 <
β ≤ α and two morphisms of galactic spaces fα : (F, δ,∆) → (Fα, δα,∆α)
and fβ : (F, δ,∆) → (Fβ , δβ,∆β) defined on the same space such that fα is
an α-contraction and fβ is a β-contraction. Then, there is an unique map
fβ,α : Fα → Fβ such that fβ = fβ,α ◦ fα. Moreover, fβ,α is a β/α-contraction
(Fα, δα,∆α) → (Fβ , δβ ,∆β).

We say that fβ,α is the transition between the two contractions (Fα, δα,∆α)
and (Fβ , δβ,∆β) of (F, δ,∆).

Proof. For all (x1, x2) ∈ F , if δα(fα(x1), fα(x2)) = 0 then δβ(fβ(x1), fβ(x2)) =
0; since fα is surjective, we deduce that there exists an unique map fβ,α : Fα →
Fβ such that fβ = fβ,α◦fα. It is easy to check that fβ,α is a β/α contraction.

Corollary 1. For each limited element γ > 0 in K, two γ-contractions of a
same galactic space are isometric.

If a galactic space (F0, δ0,∆0) is such that the F0 has only one element, then δ0
and ∆0 are trivial and we say that (F0, δ0,∆0) is a trivial galactic space. We
notice that, for each galactic space (F, δ,∆), there is an unique morphism from
(F, δ,∆) to (F0, δ0,∆0). The next result shows that the limit when γ → 0 of
the γ-contractions of a galactic space is a trivial galactic space.

Proposition 4. Let us consider a galactic space (F, δ,∆) and a family of galac-
tic spaces {(Fγ , δγ ,∆γ)}0<γ≤1 such that, for each 0 < γ ≤ 1 in K, (Fγ , δγ ,∆γ)
is a γ-contraction of (F, δ,∆). For every α, β ∈ K∗

+ such that 0 < β ≤ α ≤ 1, let
fβ,α be the transition between the two contractions (Fα, δα,∆α) and (Fβ , δβ,∆β)
of (F, δ,∆). Then, in the category GK, the family {fβ,α}0<β<α≤1 has a direct
limit which is a trivial galactic space.

Proof. From the preceding proposition, we know that the product of two transi-
tions is a transition. Now, we choose a trivial galactic space (F0, δ0,∆0) and for
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each 0 < γ ≤ 1 in K, let f0,γ : (Fγ , δγ ,∆γ) → (F0, δ0,∆0) be a trivial morphism.
Then, for any α, β ∈ K such that 0 < β ≤ α ≤ 1, we have f0,α = f0,β ◦ fβ,α.

Now, we consider a galactic space (G, d,D) and we suppose that, for each α ∈ K

such that 0 < α ≤ 1 and for each α-contraction (Fα, δα,∆α) of (F, δ,∆), we
have a morphism gα : (Fα, δα,∆α) → (G, d,D) such that gα = gβ◦fβ,α for every
element β of K such that 0 < β ≤ α and for every β-contraction (Fβ , δβ,∆β) of
(F, δ,∆) with transition fβ,α. Given two points x1 and x2 in Fα we can find a
sufficiently small β0 < α such that δβ(fβ,α(x1), fβ,α(x2)) = 0 for every β ≤ β0.
Hence, we see that there is a single element y0 ∈ G such that gα(Fα) = {y0}
for each α. Consequently, the constant map g0 : F0 → G with value y0 is the
unique morphism such that gα = g0 ◦ f0,α for each α.

4.6 In the following result, for each galactic space (F, δ,∆), the set F is provided
with the topology defined by the generalized distance δ and the set MF of its
metric components is provided with the topology defined by the galactic distance
∆.

Proposition 5. Let us consider a limited element γ > 0 in K and a γ-
contraction fγ : (F, δ,∆) → (Fγ , δγ ,∆γ).

1. The maps fγ : F → Fγ and f̃γ : MF → MFγ
are continuous.

2. If γ 6≃ 0, fγ and f̃γ are homeomorphisms.

3. If γ ≃ 0, then for every z ∈ Fγ , fγ
−1({z}) is an open set of F .

4. If γ ≃ 0 and if we can find η ∈ K∗
+ such that η ≃ 0 and γ/η ≃ 0, then,

for every Z ∈ MFγ
the set f̃−1

γ ({Z}) is an open set of MF .

Proof. 1. Let V be an open set of Fγ and z ∈ (fγ)−1(V ). Let z′ ∈ V such
that fγ(z) = z′ and r ∈ R∗

+ such that the open ball Bδγ
(z′, r) is a subset of V .

Then, from the condition γ ≤ 1 we deduce that Bδ(z, r) ⊂ (fγ)−1(Bδγ
(z′, r)).

Hence, the set fγ
−1(V ) is an open set of Fγ . Thus fγ is continuous. A similar

argument shows that f̃γ is also continuous.

2. We suppose that γ 6≃ 0. Then, we know that fγ is invertible and, for every
x′, y′ ∈ Fγ

δ(f−1
γ (x′), f−1

γ (y′)) = pv(γ)−1 δγ(x′, y′)

∆(CF (f−1
γ (x′)), CF (f−1

γ (y′))) = γ−1 • ∆γ(CFγ
(x′), CFγ

(y′))

From this, we deduce that f−1
γ and (f̃γ)−1 are continuous.

3. We suppose now that γ ≃ 0. Given z′ ∈ Fγ , we consider any z ∈ F such
that fγ(z) = z′. Let E ∈ MF such that z ∈ E and let t an arbitrary point of
E. Since δ(z, t) is limited we see that δγ(fγ(z), fγ(t)) = 0. Thus E ⊂ f−1

γ ({z′})
and since E is a neighborhood of z in F , we get that f−1

γ ({z′})) is open.

4. We suppose that γ ≃ 0 and that we can find η ∈ K∗
+ such that η ≃ 0 and

γ/η ≃ 0 . We consider Z ∈ MFγ
and let E ∈ MF such that f̃γ(E) = Z.

Then, ρ = Gal(η−1) is strictly greater than 0 := Gal(0) in the ordered group
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Gal(K). We consider an element H of the ’open ball’ B∆(E, ρ) of MF . Thus,

∆(E,H) < ρ ; consequently, H ∈ f̃−1
γ ({Z} since ∆γ(f̃γ(E), f̃γ(H)) = 0 because

γ • ∆(E,H) ≤ γ • ρ = Gal(γ/η) = Gal(0) = 0 . Hence, B∆(E, ρ) ⊂ f̃−1
γ ({Z})

and this last set is open.

If γ ≃ 0, we notice that the property

∃η ∈ K∗
+ tel que η ≃ 0 et γ/η ≃ 0

is not satisfied in every ordered field extension of R: for instance, if we choose
γ := X , we cannot find such a η in the field or rational functions R(X) or in
the field or Laurent series R((X)). In the field R[[XQ]] of Puiseux series or in a
field ∗R of hyperreal numbers, this property is true for every γ ≃ 0.

5 Nonstandard scaling of a metric space

In all this section, we consider a metric space (X, d). We need some nonstandard
extensions of R, X and d. To this end, we can use the method of ultra-powers
as in section 2. More generally [8, 14], we can consider a superstructure V (S)
over a set S such that (X ∪ R) ⊂ S and a nonstandard model of V (S)

V (S) −→ V (∗S)
Y 7−→ ∗Y

with a large enough saturation property (our study does not require any partic-
ular refinement in the choice of the nonstandard model). Equivalently, we can
used the axiomatic approach of Hrbaček [9]. Notice that Nelson’s internal set
theory IST [15] is not adapted to this work since it does not allow a convenient
treatment of external sets.

Then we get at the same time the nonstandard extensions ∗R or R, ∗X of X
and ∗d : ∗X × ∗X → ∗R+ of d provided by the given nonstandard model.

5.1 Each element of the multiplicative group ∗R∗
+ := {γ ∈ ∗R ; 0 < γ} of

strictly positive hyperreal numbers is called a scale.

Given a scale α ∈ ∗R∗
+, we define the equivalence relation ≃α on ∗X defined by

∀(x, y) ∈ ∗X2 (x ≃α y ⇐⇒ α ∗d(x, y) ≃ 0)

Then, we introduce the quotient set Xα = ∗X/ ≃α and the canonical projection

πα : ∗X −→ Xα

x 7−→ πα(x)

where πα(x) denotes the equivalence class of x ∈ ∗X, i.e the set of y ∈ ∗X such
that x ≃α y.

Associated to the hyper-distance ∗d, there is a natural map

δα : Xα ×Xα −→ R+ ∪ {+∞}
(ξ, η) 7−→ δα(ξ, η)
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such that, if ξ = πα(x) and η = πα(y), then δα(ξ, η) = st(α ∗d(x, y)).

It is clear that δα is a generalized distance on Xα. Let Mα be the set of metric
components of Xα for δα. Thus each E ∈ Mα is of the following form

E = Cone(X,xE , α) := {x ∈ ∗X ; α ∗d(x, xE) 6≃ +∞} / ≃α

where xE is any point in ∗X such that πα(xE) ∈ E. When α ≃ 0, the set
Cone(X,xE , α) is exactly the so-called asymptotic cone of (X, d) with respect
to xE and α.

We recall that Gal is the canonical projection ∗R → Gal(∗R) = ∗R/Gal(0).
For every E1 and E2 in Mα, we choose xE1

and xE2
in ∗X such that E1 =

Cone(X,xE1
, α) and E2 = Cone(X,xE2

, α); then we define

∆α(E1, E2) = Gal(α ∗d(xE1
, xE2

))

Thus, we get a map ∆α : M2
α → Gal(∗R) which is a galactic distance and we

can consider the galactic space (Xα, δα,∆α).

Definition 7. Given a scale α ∈ ∗R∗
+, the (nonstandard) α-scaling of the metric

space (X, d) is the galactic space (Xα, δα,∆α).

Hence, starting from a usual metric space (X, d), we get a family (Xα, δα,∆α)α∈∗R∗

+

of galactic spaces which are the different scaling of (X, d).

5.2 Let us now consider two scales α, β ∈ ∗R∗
+ such that β < α. Now, we want

to compare the α-scaling and the β-scaling of our metric space (X, d).

If (x, y) ∈ ∗X2 is such that α ∗d(x, y) ≃ 0, then β ∗d(x, y) ≃ 0. Therefore, there
exists a natural surjective map πβ,α : Xα → Xβ such that πβ = πβ,α ◦ πα. In
the same way, if γ ∈ ∗R∗

+ is such that γ ≤ β ≤ α, then πγ,α = πγ,β ◦ πβ,α.

Theorem 3. The map πβ,α is a (β/α)-contraction from the α-scaling (Xα, δα,∆α)
of (X, d) onto its β-scaling (Xβ , δβ,∆β).

In other words, the β-scaling of (X, d) is a (β/α)-contraction of its α-scaling.
Consequently, insofar as we are only concerned by the structure of galactic space,
we can define the β-scaling of (X, d) using only its α-scaling.

Proof. It is clear that πβ,α is a surjective map from Xα to Xβ . Furthermore, if
ξ = πα(x) and η = πα(y), then

δα(ξ, η) = st(α ∗d(x, y)) and δβ(πβ,α(ξ), πβ,α(η)) = st(β ∗d(x, y))

Therefore
δβ(πβ,α(ξ), πβ,α(η)) = st((β/α)α∗d(x, y))

hence δβ(πβ,α(ξ), πβ,α(η)) =

{
st((β/α) δα(ξ, η)) if δα(ξ, η) < +∞
st(γ.∆(CXα

(ξ), CXα
(η))) if δα(ξ, η) = +∞

.

In the same way, if E = Cone(X,x, α) and F = Cone(X, y, α), then

∆β(πβ,α[E], πβ,α[F ]) = Gal(β ∗d(x, y)) = (β/α) • ∆α(E,F )
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From this, it results that the maps πβ,α have all the properties of transitions
stated in the preceding section. For instance, the limit of (Xα, δα,∆α) when
α→ 0 in K∗

+ is a trivial galactic space.

5.3 A new feature about the family of nonstandard scalings of a metric space
(X, d) is that the galactic spaces (Xα, δα,∆α) are defined for arbitrary large
scale α ∈ ∗R∗

+. Then, a natural question is related to the existence of the limit
of (Xα, δα,∆α) when α→ +∞ in ∗R∗

+.

Let us call a chain any family ξ = (ξα)α∈∗R∗

+
such that, for each α ∈ ∗R∗

+ the

element ξα belongs to Xα and πβ,α(ξα) = ξβ for each β ≤ α ∈ ∗R∗
+.

Proposition 6. Let us consider two chains ξ = (ξα)α∈∗R∗

+
and ξ′ = (ξ′α)α∈∗R∗

+

such that ξ 6= ξ′. For every α ∈ ∗R∗
+, let Eα and E′

α be the metric components
of respectively ξα and ξ′α in Xα. Then, there is α0 ∈ ∗R∗

+ such that, for every
α ≥ α0, we have δα(ξα, ξ

′
α) = +∞. Furthermore, lim

α→+∞
∆α(Eα, E

′
α) = +∞ for

the order topology on ∗R∗
+ and Gal(∗R).

Proof. For each α ∈ ∗R∗
+, we choose xα, x

′
α ∈ ∗X such that πα(xα) = ξα

and πα(x′α) = ξ′α. Since ξ 6= ξ′, there is β ∈ ∗R∗
+ such that ξβ 6= ξ′β . Thus

β ∗d(xβ , x
′
β) 6≃ 0. Let α a scale such that α > β; since πβ(xα) = πβ,α ◦πα(xα) =

πβ(xβ) and πβ(x′α) = πβ,α ◦ πα(x′α) = πβ(x′β), we have β ∗d(xα, xβ) ≃ 0 and
β ∗d(x′α, x

′
β) ≃ 0 and thus β ∗d(xα, x

′
α) 6≃ 0. Hence, if we choose α0 such that

α0/β ≃ +∞, we have for every α ≥ α0

δα(ξα, ξ
′
α) = st(α ∗d(xα, x

′
α)) = st((α/β)β ∗d(xα, x

′
α)) = +∞

Moreover, since lim
α→+∞

∆α(Eα, E
′
α) = Gal(α ∗d(xα, x

′
α)) = Gal((α/β)β ∗d(xα, x

′
α))

we see that ∆α(Eα, E
′
α) converges towards +∞ in Gal(∗R) when α → +∞ in

∗R∗
+.

The last result suggests that, if we want to find a limit for (Xα, δα,∆α) when
α → +∞, we have to widen the category G∗R of galactic spaces. To this end,
we introduce the category G′

∗R of generalized galactic spaces. The objects of this
category are structures (X, δ,∆) where X is a set, δ is a generalized distance on
X and ∆ is a generalized galactic distance on the set MX of metric components
of X for δ. This last condition means that ∆ is a map MX ×MX → Gal(∗R)∗+∪
{+∞} which satisfies the general metric rule. In G′

∗R, a morphism from (X, δ,∆)
to (X ′, δ′,∆′) is a map f : X → X ′ such that there is a limited element γ > 0
in K so that the following conditions are satisfied

1. ∀(x1, x2) ∈ X2 δ′(f(x1), f(x2)) ≤ γ δ(x1, x2)

(thus, f induces a map f̃ from the set MX of metric components of X for
δ to the set MX′ of metric components of X ′ for δ′);

2. ∀(E1, E2) ∈ MX
2 ∆′(f̃(E1), f̃(E2)) ≤ γ • ∆(E1, E2).

We denote by lim
α→+∞

(Xα, δα,∆α) the inverse (or projective) limit of the fam-

ily (πβ,α)β ≤ α ∈ ∗R∗

+
of morphisms πβ,α : (Xα, δα,∆α) → (Xβ, δβ ,∆β) in the

category G′
∗R. If this limit exists, it is well defined up to an isomorphism.
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Proposition 7. For each metric space (X, d), the limit lim
α→+∞

(Xα, δα,∆α) ex-

ists and is equal to the pair
(
(X∞, δ∞,∆∞), (πα,∞)α∈∗R+

)
where (X∞, δ∞,∆∞)

is a generalized galactic space and (πα,∞)α∈∗R+
is a family of morphisms from

(X∞, δ∞,∆∞) to (Xα, δα,∆α) such that

• X∞ is the set of chains (families ξ = (ξα)α∈∗R∗

+
such that ξα ∈ Xα for all

α ∈ ∗R+ and πβ,α(ξα) = ξβ for all β ≤ α ∈ ∗R+).

• ∀(ξ, η) ∈ X2
∞ δ∞(ξ, η) =

{
0 if ξ = η

+∞ if ξ 6= η

• ∀(ξ, η) ∈ X2
∞ ∆∞({ξ}, {η}) =

{
0 if ξ = η

+∞ if ξ 6= η

• ∀ξ = (ξα)α∈∗R∗

+
∈ X∞ ∀α ∈ ∗R∗

+ πα,∞(ξ) = ξα

This result says that the limit of the α-scaling of (X, d) when α approaches +∞
is a huge generalized galactic space in which the distance between two different
points is +∞ and the galactic distance between two different metric components
is +∞. If ∗X denotes the nonstandard extension of X used in the construction
of the scaling of (X, d), we see that there is a natural map

∗X −→ X∞

x 7−→ (πα(x))α∈∗R∗

+

which is clearly injective but we do not know if it is surjective.

Proof of the proposition. We remark that the set of metric components of X∞

is
MX∞

= {{ξ} ; ξ ∈ X∞}

It is clear that each πα,∞ is a map X∞ → Xα such that πβ,∞ = πβ,α ◦ πα,∞

whenever β ≤ α ∈ ∗R+. In an obvious way, πα,∞ is a morphism of gener-
alized galactic space (with a Lipschitz constant equal to 1 for instance) from
(X∞, δ∞,∆∞) to (Xα, δα,∆α).

Let (Y, d,D) be a generalized galactic space and (ψα)α∈∗R+
be a family of mor-

phisms ψα from (Y, d,D) to (Xα, δα,∆α) such that ψβ = πβ,α ◦ ψβ for all
β ≤ α ∈ ∗R∗

+. For each y ∈ Y , the family ψ∞(y) = (ψα(y))α∈∗R+
belongs

to X∞. Thus, we get a map ψ∞ : Y → X∞ which is the unique map which
satisfies ψα = πα,∞ ◦ ψ∞ for all α ∈ ∗R+. Let y and y′ two points of Y such
that ψ∞(y) 6= ψ∞(y′). Hence, there is α0 ∈ ∗R+ such that ψα(y) 6= ψα(y′) for
every α ≥ α0. For sufficiently large α, we see that δα(ψα(y), ψα(y′) = +∞ and

thus d(y, y′) = +∞. Consequently, ψ∞ induces a map ψ̃∞ : MY → MX∞
. Let

E,E′ ∈ MY such that ψ̃∞(E) 6= ψ̃∞(E′). There are ξ 6= ξ′ ∈ X∞ such that

ψ̃∞(E) = {ξ} and ψ̃∞(E′) = {ξ′}. For each α ∈ ∗R∗
+, there is a real number

kα > 0 such that
∆α(ψ̃α(E), ψ̃α(E′)) ≤ kαD(E,E′)

and ∆α(ψ̃α(E), ψ̃α(E′)) = Gal(α ∗d(xα, x
′
α)) where xα, x

′
α are elements of ∗X

such that πα(xα) = πα,∞(ξ) and πα(x′α) = πα,∞(ξ′). Since Gal(α ∗d(xα, x
′
α))

is arbitrarily large in the ordered group Gal(∗R) when α → +∞ and since kα

is a real number, we deduce that D(E,E′) = +∞. Thus, ψ∞ is a morphism
(Y, d,D) → (X∞, δ∞,∆∞) in the category of generalized galactic spaces.
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5.4 We may think there is a link between the concept of Gromov-Hausdorff
convergence and our notion on nonstandard scaling of a metric space. Firstly,
let us recall what is the Gromov-Hausdorff distance [6]. Given two subsets A
and B of a metric space (Z, δ), the Hausdorff distance between A and B in Z is

dZ
H(A,B) := inf{ε ∈ R∗

+ ; A ⊂ Vε(B) and B ⊂ Vε(A)}

where, for each subset C ⊂ Z, the set Vε(C) is the ε-neighbourhood {x ∈
Z ; δ(x,C) < ε} of C. Then, the Gromov-Hausdorff distance dGH(E,F ) of
two metric spaces E and F is the infimum of numbers dZ

H(i(E), j(F )) for any
(Z, i, j) such that Z is a metric space, i : E → Z and j : F → Z are isometric
embeddings.

The Gromov-Hausdorff distance is not really a distance, mainly because there
are non isometric metric spaces E and F such that dGH(E,F ) = 0 (for instance
R and Q). This problem disappears in the collection of isometric classes of
compact metric spaces. Nevertheless, we say that a sequence (En) of metric
spaces (compact or not compact) converges toward a metric space F for the
Gromov-Hausdorff distance if dGH(En, F ) converges to 0 in R+ when n→ +∞.

Theorem 4. Let (λn) be a standard sequence of strictly positive real numbers
such that limn→+∞ λn = 0. If the sequence (X,λnd) converges to a metric
space (F, dF ) for the Gromov-Hausdorff distance, then, for each infinitely large
ν ∈ ∗N, the λν-scaling Xλν

of X is a galactic space isometric to the 1-scaling
F1 of (F, dF ).

Proof. Firstly, we give a more convenient formulation of the Gromov-Hausdorff
distance dGH(E,F ) of two metric spaces (E, dE) and (F, dF ): it is the infimum
of the set of real numbers ε > 0 such that there exists a map δ : E × F → R+

checking the two following properties:

1. the map d : (E ∐ F )2 → R+ defined by

d(x, y) =





dE(x, y) if (x, y) ∈ E2

dF (x, y) if (x, y) ∈ F 2

δ(x, y) if (x, y) ∈ E × F
δ(y, x) if (x, y) ∈ F × E

is such that d(x, z) ≤ d(x, y) + d(y, z) for every x, y and z in the disjoint
union E ∐ F of E and F ,

2. (∀x ∈ E ∃y ∈ F δ(x, y) < ε) and (∀x ∈ F ∃y ∈ E δ(y, x) < ε).

Now we return to the proof of the theorem. From the convergence hypothesis, we
deduce that, there is a sequence (εn) of real numbers such that limn→+∞εn = 0
and there is a sequence (δn) of maps from X×F to R+ such that, for all n ∈ N:

1. the map dn : (X ∐ F )2 → R+ defined by

dn(x, y) =





λnd(x, y) si (x, y) ∈ X2

dF (x, y) si (x, y) ∈ F 2

δn(x, y) si (x, y) ∈ X × F
δn(y, x) si (x, y) ∈ F ×X

is such that dn(x, z) ≤ dn(x, y) + dn(y, z) for every x, y and z in the
disjoint union X ∐ F of X and F ,
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2. (∀x ∈ X ∃y ∈ F δn(x, y) < εn) and (∀x ∈ F ∃y ∈ X δn(y, x) < εn).

Let ν be an infinitely large element of ∗N. Thus, we get a map δν : ∗X×∗F → ∗R

and a map dν : (∗X ∐ ∗F )2 → ∗R such that

1. ∀(x, y) ∈ (∗X ∐ ∗F )2 dν(x, y) =





λνd(x, y) si (x, y) ∈ ∗X2

dF (x, y) si (x, y) ∈ ∗F 2

δν(x, y) si (x, y) ∈ ∗X × ∗F
δν(y, x) si (x, y) ∈ ∗F × ∗X

2. ∀x, y, z ∈ ∗X ∐ ∗F dν(x, z) ≤ dν(x, y) + dν(y, z),

3. (∀x ∈ ∗X ∃y ∈ ∗F δν(x, y) ≃ 0) and (∀x ∈ ∗F ∃y ∈ ∗X δν(y, x) ≃ 0).

Then, we consider the quotient set G := ∗X∐∗F/ ∼ for the equivalence relation

∀x, y ∈ ∗X ∐ ∗F (x ∼ y ⇐⇒ dν(x, y) ≃ 0).

If, for each x ∈ ∗X ∐ ∗F , we denote by [x] the equivalence class of x, we can
define a generalized distance δ on G such that

∀(x, y) ∈ (∗X ∐ ∗F )2 δ([x], [y]) = st(dν(x, y))

and a galactic distance ∆ on the set MG of metric components of G for δ such
that

∀(C,D) ∈ M2
G ∆(C,D) = Gal(dν(xC , xD))

where xC , xD are any points in ∗X∐∗F verifying [xC ] ∈ C and [xD] ∈ D. Then,
(G, δ,∆) is a galactic space and the map

{
∗X −→ G
x 7−→ [x]

induces an isometry between the λν -scaling of (X, d) and (G, δ,∆). In the same
way, the map {

∗F −→ G
x 7−→ [x]

induces an isometry between the 1-scaling of (F, dF ) and (G, δ,∆).
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[9] K. Hrbaček. Nonstandard set theory. Amer. Math. Monthly, 86:659–677,
1979.

[10] T.Y. Jen. Formalisation des relations spatiales topologiques et applications
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spatiales topologiques à différentes échelles. In Secondes Journées de la
Recherche CASSINI’95, Marseille, France, 1995.

[12] L. Kramer, S. Shelah, K. Tent, and S. Thomas. Asymptotic cones of
finitely presented groups. Advances in Math, 193:142–173, 2005.

[13] L. Kramer and K. Tent. Asymptotic cones and ultrapowers of lie groups.
Bull. Symbolic Logic, 10:175–185, 2004.

[14] P.A. Loeb. An introduction to nonstandard analysis. In P.A. Loeb and
M. Wolff, editors, Nonstandard Analysis for the working mathematician,
Mathematics and its applications. Kluwer, Dorderecht, 2000.

[15] E. Nelson. Internal set theory: a new approach to nonstandard analysis.
Bull. Amer. Math. Soc., 83(6):1165–1198, 1977.

[16] A. Robinson. Non Standard Analysis. North-Holland, 1966. Reimpression
: Princeton University Press, 1996.

[17] I. van den Berg. Nonstandard Asymptotic Analysis. Number 1249 in
Lecture Notes in Mathematics. Springer-Verlag, 1987.

[18] L. van den Dries and A.J. Wilkie. On Gromov’s theorem concerning
groups of polynomial growth and elementary logic. J. Algebra, 89:349–374,
1984.
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