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On the use of continuous wavelet analysis for modal identification

This paper reviews two different uses of the continuous wavelet transform for modal identification purposes. The properties of the wavelet transform, mainly energetic, allow to emphasize or filter the main information within measured signals and thus facilitate the modal parameter identification especially when mechanical systems exhibit modal coupling and/or relatively strong damping.

Introduction

The concept of wavelets in its present theoretical form was first introduced in the 1970s by Jean Morlet and the team of the Marseille Theoretical Physics Center in France working under the supervision of Alex Grossmann. Grossmann and Morlet [START_REF] Grossman | Decompositions of functions into wavelets of constant shape and related transforms[END_REF] developed then the geometrical formalism of the continuous wavelet transform. Wavelets analysis has since become a popular tool for engineers. It is today used by electrical engineers engaged for processing and analyzing non-stationary signals and it has also found applications in audio and video compression. Less than ten years ago, some researchers proposed the use of wavelet analysis for modal identification purposes. However, use of wavelet transforms in real world mechanical engineering applications remains limited certainly due to widespread ignorance of their properties. This paper presents two ways of using the continuous wavelet transform (CWT) for modal parameter identification according to the type of measured responses : free decay or frequency response functions (FRF). In 1997, Staszewski [START_REF] Staszewski | Identification of damping in MDOF systems using timescale decomposition[END_REF] and Ruzzene [START_REF] Ruzzene | Natural frequencies and dampings identification using wavelet transform: application to real data[END_REF] started to use wavelet analysis with the Morlet wavelet for the processing of free decay responses, but the identification of the mode shapes was not performed. Wavelet transform allows to reach the time variation of instantaneous amplitude and phase of each component within the signal and makes the identification procedure of modal parameters much easier. Compared to other mother wavelets, Morlet wavelet provides better energy localizing and higher frequency resolution but has a disadvantage: frequency-coordinate window shifts along frequency axis with scaling while other wavelet types only expands the window. To remedy it, Lardies et al. [START_REF] Lardies | Modal parameter estimation based on the wavelet transform of output data[END_REF] and Slavic et al. [START_REF] Slavic | Damping identification using a continuous wavelet transform: application to real data[END_REF] preferred the Gabor wavelet. Argoul et al. [START_REF] Argoul | Instantaneous indicators of structural behaviour based on continuous Cauchy wavelet transform[END_REF][START_REF] Argoul | Wavelet analysis of transient signals in civil engineering[END_REF] chose the Cauchy wavelet and Le et al. [START_REF] Le | Continuous wavelet transform for modal identification using free decay response[END_REF] established a complete modal identification procedure with improvements for numerical implementation, especially for a correct choice of the time-frequency localization. Edge effects are seen by all the authors and some attempts to reduce their negative influence on modal parameter identification are presented in [START_REF] Slavic | Damping identification using a continuous wavelet transform: application to real data[END_REF], [START_REF] Le | Continuous wavelet transform for modal identification using free decay response[END_REF] and [START_REF] Boltezar | Enhancements to the continuous wavelet transform for damping identifications on short signals[END_REF]. More recently, Staszewski [START_REF] Staszewski | Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform[END_REF], Bellizzi et al. [START_REF] Bellizzi | Identification of coupled non-linear modes from free vibration using time-frequency representations[END_REF] and Argoul et al. [START_REF] Argoul | Instantaneous indicators of structural behaviour based on continuous Cauchy wavelet transform[END_REF] adapted their identification procedure in order to process free responses of nonlinear systems. In [START_REF] Argoul | Instantaneous indicators of structural behaviour based on continuous Cauchy wavelet transform[END_REF], the authors proposed four instantaneous indicators, the discrepancy of which from linear case facilitates the detection and characterization of the non-linear behaviour of structures. In [START_REF] Bellizzi | Identification of coupled non-linear modes from free vibration using time-frequency representations[END_REF], an identification procedure of the coupled non-linear modes is proposed and tested on different types of non-linear elastic dynamic systems. Typically, CWT is applied to time or spatial signals. Processing frequency signals is unusual, but a first application was proposed in [START_REF] Argoul | Linear dynamical identification : an integral transform seen as a complex wavelet transform[END_REF] and [START_REF] Yin | Transformations intégrales et identification modale[END_REF]. Argoul showed in [START_REF] Argoul | Linear dynamical identification : an integral transform seen as a complex wavelet transform[END_REF] that the weighted integral transform (WIT) previously introduced by Jézéquel et al. [START_REF] Jézéquel | A new integral transform for linear systems identification[END_REF] for modal identification purposes can be expressed by means of a wavelet transform using a complex-valued mother wavelet close to the Cauchy wavelet. The WIT can be applied to either the ratio of the time derivative of the FRF over the FRF or the FRF itself. The representation with CWT provided a better understanding of the amplification effects of the WIT. When the FRF signal is strongly perturbed by noise, its derivative is hard to obtain; thus, Yin et al. [START_REF] Yin | Transformations intégrales et identification modale[END_REF] then proposed a slightly modified integral transform directly applied to the FRF and called the Singularities Analysis Function (SAF) of order n. It allows the influence of the FRF's poles to be emphasized and direct estimation of the eigen frequencies, eigen modes, and modal damping ratios is performed from the study of the extrema of the WIT.

Theoretical background for the continuous wavelet analysis

A wavelet expansion uses translations and dilations of an analyzing function called the mother wavelet ψ ∈ L 1 (R)∩L 2 (R). For a continuous wavelet transform (CWT), the translation and dilation parameters: b and a respectively, vary continuously. In other words, the CWT uses shifted and scaled copies of ψ(x) : ψ b,a (x) = 1 a ψ( x-b a ) whose L 1 (R) norms ( . 1 ) are independent of a. In the following, ψ(x) is assumed to be a smooth function, whose modulus of Fourier transform is peaked at a particular frequency Ω 0 called the "central" frequency. The variable x may represent either time or frequency; when necessary, the time and circular frequency variables will be referred to t and to ω respectively. The CWT of a function u(x) ∈ L 2 (R) can then be defined by the inner product between u(x) and ψ b,a (x)

T ψ [u](b, a) = u, ψ b,a = 1 a +∞ -∞ u(x) ψ x -b a dx (1.1)
where ψ(.) is the complex conjugate of ψ(.). Using Parseval's identity, Eq.

(1.1) becomes

T ψ [u](b, a) = 1 2π u, ψ b,a = 1 2π +∞ -∞ u(Ω) ψ(aΩ) e iΩb dΩ (1.2)
where u(Ω), ψ b,a (Ω) and ψ(Ω) are respectively the Fourier transform (FT) of u(x), ψ b,a (x) and ψ(x); for instance for u(x) : u(Ω) = +∞ -∞ u(x) e -iΩx dx. Moreover, when ψ and u are continuous and piece-wise differentiable, and ψ is square and absolutely integrable, and u is of finite energy, the CWT of u with ψ is linked to the CWT of u with ψ :

T ψ [ u](b, a) = - 1 a T ψ[u](b, a)
From [START_REF] Chui | An introduction to Wavelets[END_REF], it can be seen that the CWT at point (b, Ω = 

D(b, Ω = Ω ψ a ) = [b+ax ψ -a∆x ψ , b+ax ψ +a∆x ψ ]×[ Ω ψ a - ∆Ω ψ a , Ω ψ a + ∆Ω ψ a ] (1.3)
where x ψ and ∆x ψ are called centre and radius of ψ, stated in terms of root mean squares :

x ψ = 1 ψ 2 2 +∞ -∞ x |ψ(x)| 2 dx and ∆x ψ = 1 ψ 2 +∞ -∞ (x -x ψ ) 2 |ψ(x)| 2 dx
, and similar definitions hold on for the frequency centre Ω ψ and the radius ∆Ω ψ of ψ. The area of D is constant and equal to four times the uncertainty : 4∆x ψ ∆Ω ψ = 4µ(ψ). The Heisenberg uncertainty principle states that this area has to be greater than 2.

Referring to the conventional frequency analysis of constant-Q filters, the parameter Q defined as the ratio of the frequency centre Ω ψ to the frequency bandwidth (2∆Ω ψ ):

Q = Ω ψ a 2 ∆Ω ψ a = Ω ψ 2∆Ω ψ , (1.4) 
is introduced in [START_REF] Le | Continuous wavelet transform for modal identification using free decay response[END_REF] to compare different mother wavelets and to characterize the quality of the CWT. Q is independent of a.

The notion of spectral density can be easily extended to the CWT (see [START_REF] Carmona | Practical Time-Frequency Analysis[END_REF] for others properties such as linearity, admissibility and signal reconstruction, etc.). From the Parseval theorem applied to Eq. 1.2, it follows that

+∞ -∞ |T ψ [u](b, a)| 2 db = 1 2π +∞ -∞ | u(k)| 2 ψ(ak) 2 dk
and it leads to the "energy conservation" property of the CWT expressing

that if u ∈ L 2 (R), then T ψ ∈ L 2 (R × R * + , db da a ), and T ψ [u] 2 = C ψ u 2 = C ψ 2 π u 2 .
Finally, after changing the integration variable: a = Ω0 Ω and because u(Ω) is hermitian (u(x) being real valued), one gets

+∞ 0 +∞ -∞ T ψ [u](b, Ω o Ω ) 2 db dΩ Ω = C ψ π +∞ 0 | u(Ω)| 2 dΩ (1.5)
where

C ψ = +∞ -∞ | b ψ(ω)| 2 ω dω < ∞.
This allows to define a local wavelet spectrum:

E u,CW T (Ω, b) = 1 2C ψ Ω T ψ [u](b, Ωo Ω )
2 and a mean wavelet spectrum:

E u,CW T (Ω) = +∞ -∞ E u,CW T (Ω, b
)db; and Eq. 1.5 can be rewritten:

+∞ 0 E u,CW T (Ω) -1 2π | u(Ω)| 2 dΩ = 0.
When the mother wavelet ψ is progressive (i.e. it belongs to the complex Hardy space ψ(Ω) = 0 : for : Ω ≤ 0), the CWT of a real-valued signal u is related to the CWT of its analytical signal Z u (see. [START_REF] Carmona | Practical Time-Frequency Analysis[END_REF])

T ψ [u](b, a) = 1 2 T ψ [Z u ](b, a) (1.6)
From 1.3, the CWT has sharp frequency localization at low frequencies, and sharp time localization at high frequencies. Thanks to a set of mother wavelets depending on one(two) parameter(s), the desired time or frequency localization can be yet obtained by modifying its(their) value(s). In [START_REF] Le | Continuous wavelet transform for modal identification using free decay response[END_REF], two complex valued mother wavelets were analyzed : Gabor and Cauchy. Morlet wavelet is a complex sine wave localized with a Gaussian envelope and the Gabor wavelet function is a modified Morlet wavelet with a parameter controlling its shape. Cauchy wavelet ψ n of n order for n ≥ 1, is defined by:

ψn(x) = " i x + i « n+1 = " 1 1 -ix « n+1 = » 1 √ x 2 + 1 -n+1 e i (n+1)Arctg(x) . (1.7)
The main characteristics of ψ n (x) follow: its FT:

ψ n (Ω) = 2πΩ n e -Ω n!
Θ(Ω) where Θ(Ω) is the Heaviside function (ψ n is progressive), its central frequency: Ω 0n = n, its L2 norm: ψ n 2 2 = (2n)! 2 2n (n!) 2 π, its x-and frequency centres: x ψ = 0 and Ω ψ = n + 1 2 , its radius:

∆x ψ = 1 2n-1 , its frequency radius: ∆Ω ψ = √ 2n+1 2
, its uncertainty:

µ ψ = 1 2 1 + 2 2n-1 , its quality factor: Q = n+ 1 2 √
2n+1 and its admissibility factor:

C ψ = 4π 2 1 2 2n (2n-1)! (n!) 2 = 2π n ψ n 2 2
. The use of the Cauchy wavelet is legitimate when Q is less than 5/ √ 2; as Q increases, both wavelets give close results, a little better with Morlet wavelet due to its excellent time-frequency localization, and behave similarly in the both time and frequency domains when Q tends toward infinity. Some numerical and practical aspects for the computation of the CWT are detailed in [START_REF] Le | Continuous wavelet transform for modal identification using free decay response[END_REF] where

Ω = Ω ψ a )
, is then proposed to take into account the decreasing properties of ψ and ψ by introducing two real positive coefficients c x and c Ω : . Let us consider a frequency Ω j for which u(Ω) exhibits a peak and introduce a frequency discrepancy dΩ j (for example, the distance between two successive peaks of u(Ω)). From the intersection of the two hyperbolae at the point (b = L 2 , Ω = Ω j ) and by imposing the frequency localization along the straight line: a = Ω0 Ωj , to be included into [Ω j -dΩ j , Ω j + dΩ j ], some upper and lower bounds are found for

D ext (b, Ω = Ω ψ a ) = [b + ax ψ -a c x ∆x ψ , b + ax ψ + ac x ∆x ψ ] × [ Ω ψ a -c Ω ∆Ω ψ a , Ω ψ a + c Ω ∆Ω ψ a ].
Q: c Ω Ωj 2dΩj ≤ Q ≤ L Ωj
2cx and finally, the authors proposed c x = c Ω ≃ 5.

Modal analysis and modal identification with CWT

Experimental identification of structural dynamics models is usually based on the modal analysis approach. One basic assumption underlying modal analysis is that the behaviour of the structure is linear and time invariant during the test. Modal analysis and identification involve the theory of linear time-invariant conservative and non-conservative dynamical systems. In this theory, the normal modes are of fundamental importance because they allow to uncouple the governing equations of motion. Also, they can be used to evaluate the free or forced dynamic responses for arbitrary sets of initial conditions. Modal analysis of a structure is performed by making use of the principle of linear superposition that expresses the system response as a sum of modal responses. For linear MDOF systems with N degrees of freedom, the transfer function H ij (p) of receptance type is defined as the Laplace transform of the displacement at point j to the impulse unit applied at point i and it can be expressed as a sum of simple rational fractions

H ij (p) = N r=1 (A r ) ij p -p r + A r ij p -p r (1.8)
where A r ij and p r are respectively the conjugate of the residues (A r ) ij and of the poles p r of H ij (p). When the system is stable, p r = -ξ r ω r + i ω r where ω r , ω r are the undamped and the damped vibration angular frequencies and ξ r is the damping ratio for the mode r. (A r ) ij can also be expressed from the complex modes χ r by (A r ) ij = (χr ) i (χr ) j γr

where γ r = χ T r Cχ r +2p r χ T r M χ r , M and C being respectively the mass and viscous damping matrices. Moreover, the FRF of receptance type H ij (ω) can be usually related to H ij (p) by:

H ij (ω) = H ij (p = iω), leading to H ij (ω) = N r=1 -i (A r ) ij (ω -ω r ) -iξ r ω r + -i A r ij (ω + ω r ) -iξ r ω r (1.9)
The free responses at point j in terms of displacements u (f ree) j (t) can be expressed according to the modal basis of complex modes: χ jr = η jr + i κ jr (r being the mode number, 1 ≤ r ≤ N )

u (f ree) j (t) = N r=1 A rj (t) cos (Φ rj (t)) (1.10)
where A rj (t) = |χ jr | ρ r e -ξrωr t and Φ rj (t) = ω r tϕ r + arctan κjr ηjr . ρ r and ϕ r are defined from initial displacement and velocity of mode r (cf. [START_REF] Geradin | Théorie des vibrations Application à la dynamique des structures[END_REF]). In the case of proportional viscous damping (Basile assumption), introducing the real eigenvectors Ψ r of mode r for the associated conservative system, and replacing the residues (A r ) ij with (Ψr) i (Ψr) j 2i e ωr mr in Eq. 1.9 lead to

H ij (ω) = N r=1 (Ψ r ) i (Ψ r ) j m r (ω 2 r -ω 2 + 2i ξ r ω r ω) (1.11)
Moreover, in Eq. 1.10, κ jr = 0; thus |χ jr | can be replaced by (Ψ r ) j and the term arctan κjr ηjr can be equal to 0 or π according to the sign of the real part η jr .

Modal identification using free decay responses

The processed signals u (f ree) j (t), whose expression is given in Eq. 1.10, can be considered under the assumption of weak damping (ξ r ≪ 1 √ 2 ), as a sum of N modal components: A rj (t) cos(Φ rj (t)) consisting in asymptotic signals. The approximation of asymptotic signal means that the oscillations resulting from the phase term: Φ rj (t) are much faster than the variation coming from the amplitude term: A rj (t); it entails that the analytical signal associated with A rj (t) e iΦrj (t) can be approximated by: A rj (t) e iΦrj (t) . Therefore, Eq. (1.6) and the linearity of the CWT entail that:

T ψ [u (f ree) j ](b, a) = 1 2 N r=1 T ψ [A rj (t) e iΦrj (t)
](b, a). Taking the Taylor expansion of each amplitude term of this sum, it follows that

T ψ [u (f ree) j ](b, a) = 1 2 N r=1 A rj (b) e iΦrj (b) ψ(a ω r ) + R rj (b, a) .
(1.12) When each modal pseudo-pulsation ω r is far enough from the others, this straight line's equation easily provides an approximation of ω r . Eq. 1.12 implies that the CWT of asymptotic signals has a tendency to concentrate near a series of curves in the time-frequency plane called ridges, which are directly linked to the amplitude and phase of each component of the measured signal. In [START_REF] Le | Continuous wavelet transform for modal identification using free decay response[END_REF], a complete modal identification procedure for natural frequencies, viscous damping ratios and mode shapes, is given in the case of viscous proportional damping and applied to a numerical case consisting in the free decay responses of a mass-spring-damper system with four degrees of freedom (4-DoF). The procedure is applied here to the free responses of a 4-DoF system whose natural frequencies are: f 1 = 0.0984 Hz, f 2 = 0.1871 Hz, f 3 = 0.2575 Hz and f 4 = 0.3027 Hz and modal damping ratios: ξ 1 = 0.0124, ξ 2 = 0.0235, ξ 3 = 0.0324, ξ 4 = 0.0380. Fig. 1.1 shows the FT and the CWT of the displacement of the second mass for which the four eigenfrequencies are clearly visible. Fig. 1.2 presents for the third mode and for the four masses, the modulus of the CWT and its logarithm that will allow to estimate the value of the damping ratio ξ 3 (cf. [START_REF] Le | Continuous wavelet transform for modal identification using free decay response[END_REF]). The edge effect is delimited by two hyperbolae in the time frequency plane; Q being chosen to 20 (15.3 ≤ Q ≤ 43.1). Identified values are very close to the exact ones and identification errors are negligible inside the domain D ext . This procedure was also applied in [START_REF] Argoul | Wavelet analysis of transient signals in civil engineering[END_REF] to a set of accelerometric responses of modern buildings submitted to non destructive shocks. From the CWT of measured responses, the ridge and the corresponding amplitude and phase terms for the two first modes were extracted. For the first instantaneous frequency ω 1 , the processing revealed a slight increase of ω 1 just after the shock. The origin of this non linear effect was attributed to the non-linear behaviour of the soil-structure interaction. Other preliminary results can be found in [START_REF] Argoul | Instantaneous indicators of structural behaviour based on continuous Cauchy wavelet transform[END_REF] where instantaneous indicators based on CWT are computed from the accelerometric responses of a non-linear beam to an impact force. A Duffing non-linearity effect was then identified thanks to the first and the super-harmonic components. 

Modal identification using FRF functions

The first definition of the SAF of order n (n ∈ N) uses the derivative of a transfer function H(p) of the linear mechanical system, where p = a + ib :

H n (b, a) = (-1) n 2 π a n+1 2 d n dp n {H(p)} (1.13) 
H n (b, a) can also be expressed as the FT of the impulse response function h(t) filtered by: 2πa :

H n (b, a) = n! a n+1 2 T ψ n [H](b, a) = n! a n+1 2 R H(ω)ψ n ω -b a dω (1.15) 
Let us now consider a transfer function restricted to only one term F λ,ω0 (ω) of the sum given in (1.9) and perturbed by a Gaussian white noise n(ω) so that :

H(ω) = F λ,ω0 (ω) + n(ω) = -B i (ω-ω0)-iλ + n(ω).
Let us introduce the coefficient ρ 2 defined as the ratio of the square absolute value of the CWT of the pure signal upon the common variance of the CWT of the noise itself:

ρ 2 = |T ψ [H](b,a)| 2 E{|T ψ [n](b,a)| 2 } = | F λ,ω 0 , ψ b,a | 2 E{| n , ψ b,a | 2 }
, it looks like a signal to noise ratio.

The use of the Cauchy-Schwarz inequality gives that : ρ 2 ≤ F λ,ω0 2 and the maximum of ρ 2 is reached for (b, a) = (ω 0 , λ) when ψ b,a (ω) = K F a,b (ω) = K -B i (ω-b)-ia where K is a constant. In conclusion, ψ(ω) = K B -i ω-i = K B ψ 0 (ω); the analyzing functions ψ(ω) which allow the minimization of the noise effect on the peaks of |T ψ [H](b, a)| are proportional to ψ 0 (s) defined in Eq. 1.7. The above definitions of the SAF of order n (n ∈ N * ) allow to better understand its effect when applied to discrete causal linear mechanical systems. In Eq. 1.13, the successive derivatives of a rational fraction make the degree of the denominator increase and cause an amplification of the pole's effect. So, when Eq. 1.8 is introduced in Eq. 1.13, the SAF of order n becomes The absolute value of H n (b, a) exhibits 2N maxima located symmetrically from the vertical axis in the phase plane. The effect of parameter n is to facilitate the modal identification, especially when the structure has neighboring poles. As soon as n is large enough, the coordinates (b max , a max ) of these 2N maxima allow the estimation of the real and imaginary parts, respectively ℜ {p r } and ℑ {p r }, of each of the 2N conjugate poles of the system :

ℜ {p r } = -ξ r ω r ≈ -a max r and ℑ {p r } = ω r ≈ b max r (1.17)

The residue A r can be then estimated from the complex valued amplitude of the extremum called H maxr As n increases, the estimation of the extrema is better for signals without noise; but for noisy signals, noise effects are also increased. Recently, Yin et al. [START_REF] Yin | Natural frequencies and damping estimation using wavelet transform of a frequency response function[END_REF] proposed the use of analyzing wavelets which are the conjugate of Cauchy wavelets in which n is replaced by a positive real number. Applications both to numerical and experimental data showed the efficiency of this technique using SAF [START_REF] Argoul | Integral transforms and modal identification in[END_REF]. It was applied to the FRFs obtained with H1 estimators, of a test structure designed and build by ONERA for the GARTEUR-SM-AG19 Group. This structure was made of two aluminum sub-structures simulating wings/drum and fuselage/tail. Finally, the results obtained with SAF were very similar to those obtained with the broadband MIMO modal identification techniques provided by the MATLAB toolbox IDRC.

In conclusion, the pre-processing of measured signals (free decay responses or FRFs) with CWT proved to be an efficient tool for modal identification.
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