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Abstract

A new description of Endochronic and Mróz model is discussed. It is based on
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1 Introduction

A thermodynamically well-posed formulation of plasticity models can be based

on the definition of the Helmholtz free energy and of the so-called pseudo-

potential, from which the flow rules are derived from the generalized normality

assumption (orthogonality principle) [1], [2], [3]. It has been proven in [4] that

the use of pseudo-potentials with an additional dependence on state variables

allows to describe classical plasticity models like Prandtl-Reuss, Non-Linear

Kinematic hardening models [5] as well as generalized plasticity [6] and en-

dochronic theory [7]. In this paper, the results concerning endochronic theory

are recalled in order to expose the proposed approach and then a new descrip-

tion of the model of Mróz [8] is suggested.

2 Thermodynamic framework

Under the assumption of infinitesimal and isothermal transformations, the

second principle of thermodynamics states that the intrinsic or mechanical

dissipation Φ1 must be non-negative:

Φ1 (t) := σ : ε̇ − Ψ̇ ≥ 0 (1)

σ is the Cauchy stress tensor (belonging to the set S2 of symmetric and

second-order tensors), Ψ (v) is the Helmholtz free energy density, function

of v =( ε, χ1, ..., χn), the vector containing all the state variables, namely the

total strain tensor and the tensorial and/or scalar internal variables χ1, ..., χn,

related to the non-elastic evolution. The non-dissipative thermodynamic forces
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are defined as:

σnd : =
∂Ψ

∂ε
, τ nd

i :=
∂Ψ

∂χi
(2)

Let qnd =
(

σnd
1 , τ nd

1 , ..., τ nd
n

)

be the non-dissipative forces vector and v̇ be the

vector of the fluxes, belonging to a vector space V. Then, let us introduce the

dissipative thermodynamic forces vector qd =
(

σd, τ d
1, ..., τ

d
n

)

belonging to

the dual space V∗, with σd := σ−σnd and τ d
i := −τ nd

i . Hence, the inequality

(1) can be written as follows

Φ1 (t) = σ : ε̇ − qnd · v̇ = qd · v̇ ≥ 0 (3)

where the symbol · indicates the scalar product of two objects having the

same structure [9, pg. 428]. A classical manner to ensure that (3) is fulfilled,

is to assume the existence of a pseudo-potential φ (v̇) and to impose that

qd ∈ ∂φ (v̇). In this article, the pseudo-potential φ is allowed to vary with

the state variables v. Hence, the corresponding assumption called generalized

normality, or orthogonality principle, reads

qd ∈ ∂φ (v̇′;v)|v̇′=v̇ (4)

where ∂ indicates the sub-differential operator [10] with respect to the generic

flow v̇′ and computed for v̇′ = v̇, the actual value of the flow. Defining the

dual pseudo-potential φ∗ by the Legendre-Fenchel transform φ∗

(

qd′ ;v
)

=

supv̇∈V

(

qd′ · v̇ − φ (v̇;v)
)

, the dual normality condition reads:

v̇ ∈ ∂φ∗

(

qd′;v
)∣

∣

∣

qd′=qd
(5)

Plasticity is rate independent, hence φ is a positively homogeneous function

of order 1 with respect to the fluxes v̇′. Therefore, the dual pseudo-potential

becomes φ∗ = IE, the indicator function of a closed convex set E depending on

the dissipative forces but also on the states variables. Moreover, the dissipation
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reads: Φ1 = qd · v̇ =φ (v̇;v).

3 A new formulation of endochronic models

Endochronic theory was first formulated by Valanis [7]. The model evolution is

described by a convolution integral involving the past values of ε and a positive

function µ, the memory kernel, depending on a positive scalar variable called

intrinsic time. If µ is an exponential, the integral expression can be rewritten

as simple differential equations. For an isotropic plastically incompressible

endochronic model, they read:































tr (σ̇) = 3K tr (ε̇)

dev (σ̇) = 2G dev (ε̇)−β dev (σ) ζ̇
g(ζ)

(6)

These relationships are equivalent to

σ= C : (ε − εp) , tr (ε̇p) = 0, ε̇p =
dev (σ)

2G/β

ζ̇

g (ζ)
.

with C =
(

K − 2
3
G

)

1 ⊗ 1+2GI. The intrinsic time flow is given by ϑ̇ = ζ̇
g(ζ)

,

where ζ is the intrinsic time scale and with g(ζ) ≥ 0 and g(0) = 1. Generally

ζ̇ = ‖dev (ε̇)‖.

The state variables and the associated non-dissipative thermodynamic forces

are represented by v =(ε, εp, ζ) and qnd=
(

σnd, τ nd, Rnd
)

respectively. The

Helmholtz free energy Ψ and the pseudo-potential are chosen as follows :

Ψ (v) =
1

2
(ε − εp) : C : (ε − εp) (7)
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φ (v̇′;v) =
‖dev[C:(ε − εp)]‖

2

2Gg(ζ)/β
ζ̇ ′ + ID̄(v) (v̇′)

D̄ (v) =































(v̇′) ∈ V tr
(

ε̇p′
)

= 0, ζ̇ ′ ≥ 0,

ε̇p′ =
dev[C:(ε − εp)]

2Gg(ζ)/β
ζ̇ ′































(8)

The condition tr
(

ε̇p′
)

= 0 introduces the plastic incompressibility, while the

third one characterizes the plastic strain flow of endochronic theory. The pos-

itivity of ζ̇ ′ guarantees the positivity of φ. When the generic flux variable v̇′ is

equal to the actual value of the flux v̇ , the first term of φ, in which the stress

σnd = C : (ε − εp) is written as a function of the state variables, is equal to

the intrinsic dissipation Φ1. To have zero viscous effect, the pseudo-potential

is chosen independent from ε̇. This entails σd = 0. The dual pseudo-potential

φ∗ reads:

φ∗

(

qd′;v
)

= I0

(

σd′
)

+ IE

(

τ d′ , Rd′ ;v
)

(9)

with E =
{(

τ d′ , Rd′
)

∈ S
2×R / f ≤ 0

}

, and

f
(

τ d′ , Rd′ ;v
)

=
dev

(

τ d′
)

:dev[C:(ε − εp)]
2Gg(ζ)/β

−
‖dev[C:(ε − εp)]‖

2

2Gg(ζ)/β + Rd′

(10)

The expression (10) defines the loading function of endochronic models. In

Figure 1 the set E is represented in the
(

τ d′ , Rd′
)

space together with the

projection D of the effective domain D̄ when g (ζ) = 1. As the system evolves,

both sets change, due to their dependence on the internal variables. At every

instantaneous configurations, the set D is a straight line starting from the

origin. The corresponding sets E are half-planes orthogonal to D. Since Ψ is

independent of ζ then Rnd = −Rd = 0. Moreover, as σd = 0, at the actual

stress state τ d = C : (ε − εp) and the loading function f is always equal to
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Fig. 1. Endochronic model. a) Several configurations of the domain D. b) Config-

urations of the convex set E associated with D. The actual state, (τ d, Rd), always

lies on the axis Rd′ = 0, and the flux is normal to the boundary of E.

zero. In other words, (τ d, Rd) always belongs to the boundary of E , during

both loading and unloading phases, and all the states are plastic states. The

dual normality conditions (5) lead to the endochronic flow rules:

ε̇p =
dev[C:(ε − εp)]

2G g(ζ)/β
λ̇, ζ̇ = λ̇ , λ̇ ≥ 0 (11)

Eqs. (9)-(10) and (11) prove that endochronic models are associated in gen-

eralized sense. Moreover, since f is always equal to zero at the actual state,

the consistency condition is automatically fulfilled and cannot be used to com-

pute λ̇. This situation, typical of endochronic theory, entails that the plastic

multiplier λ̇ = ζ̇ has to be defined by an additional assumption. The standard

choices are g (ζ) = 1 and ϑ̇ = ζ̇ = ‖dev (ε̇)‖. More complex definitions can be

chosen [4]. It must be noticed that both flows ε̇p and ζ̇ can be different from

zero during unloading phases.
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4 New formulation of the Mróz model

Like for endochronic theory, the flow rules of the Mróz model [8] can be de-

duced from a suited pseudo-potential using the normality assumption. The

Helmholtz free energy is defined as follows:

Ψ (v) = 1
2

(

ε −
∑N

i=1 ε
p
i

)

: C :
(

ε −
∑N

i=1 ε
p
i

)

+ 1
2

∑N
i=1 (εp

i − βi) : Di : (εp
i − βi)

where v = (ε, εp
1, ..., ε

p
N , β1, ..., βN , ζ1, ..., ζN) are the state variables (total strain

and, for each of the N mechanisms introduced, plastic strain, kinematic and

isotropic hardening variables); Di=
(

D1,i −
2
3
D2,i

)

1 ⊗ 1+2D2,iI is the fourth-

order tensor of the hardening coefficients. The non-dissipative thermodynamic

forces are deduced

σnd = ∂Ψ
∂ε = C :

(

ε −
∑N

i=1 ε
p
i

)

= σ

τ nd
i = ∂Ψ

∂εp

i

= −σ + Xd
i = −τ d

i

Xnd
i = ∂Ψ

∂β
i

= −Di : (εp
i − βi) = −Xd

i

Rnd
i = ∂Ψ

∂ζi
= 0 = −Rd

i

(12)

Eqs. (12) also report the relationships between non-dissipative (nd) and dissi-

pative forces (d). These thermodynamic forces, together with the correspond-

ing state variables, define the analogical scheme depicted in Figure 2a. The

pseudo-potential φ is chosen as a sum of N pseudo-potentials, one for each of

the N mechanisms, i.e. φ =
∑N

i=1

[

φi + ID̄i(v)

]

, with

φi = [σy,i + (εp
i − βi) : Di : (nj (v) − mj (v))] ζ̇ ′

i
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Fig. 2. Mróz model. (a) Analogical scheme. (b) Loading surfaces.

D̄i (v) =































(

ε̇p′

i , ζ̇ ′

i, β̇
′

i

)

/ tr
(

ε̇p′

i

)

= 0, ζ̇ ′

i ≥
∥

∥

∥ε̇p′

i

∥

∥

∥

tr
(

β̇ ′

i

)

= 0 , β̇ ′

i = (nj (v) − mj (v)) ζ̇ ′

i































Moreover (see also Figure 2b),

nj (v) =
dev(τ d

j (v))
‖dev(τ d

j
(v))‖

mj (v) =
dev(σj+1(v)−σ(v))

‖dev(σj+1(v)−σ(v))‖

σj+1 (v) = Xd
j+1 (v) +

σy,j+1

σy,j
dev

(

σ (v)−Xd
j (v)

)

where mj is the vector defining Mróz’s translation rule and σj+1 corresponds

to the target stress point, lying on the (j + 1) − th active surface, i.e. the

largest one among those having the actual stress point on its boundary; nj is

the normal to the active surface at the actual stress point.

The formulation suggested here properly defines the duality between the back-

stresses Xd
i and the internal variables βi. Moreover, it shows that the flows β̇i

may be different from zero only for non-proportional loading, viz. nj 6= mj .

One can also notice that the term φi of the pseudo-potential, contributing to

the dissipation Φ1 when ζ̇ ′

i = ζ̇i 6= 0, may be negative for non-proportional

8



loading.

The dual pseudo-potentials can be computed by the Legendre-Fenchel trans-

form. Therefore :

φ∗ =
∑N

i=1 φ∗

i =
∑N

i=1 IEi(v) with

Ei (v)=
{(

Xd′

i , Rd′

i

)

/ fi

(

Xd′

i , Rd′

i ;v
)

≤ 0
}

where the loading function fi is given by:

fi

(

Xd′

i , Rd′

i ;v
)

=
∥

∥

∥dev
(

τ d′

i

)
∥

∥

∥ + Rd′

i − σy,i

+dev
(

Xd′

i

)

: (nj − mj) − (εp
i − βi) : Di : (nj −mj)

At the actual state, one has fi =
∥

∥

∥dev
(

τ d
i

)∥

∥

∥−σy,i, which is the usual definition

for the loading function. The normality conditions (5) lead to the well-known

Mróz flow rules:

ε̇p
i = λ̇inj , ζ̇i = λ̇i, β̇i = λ̇i (nj − mj) (13)

with the Kuhn-Tucker conditions λ̇ifi = 0, λ̇i ≥ 0, fi ≤ 0; recall that fi = 0

for all i ≤ j. The consistency conditions, viz. ḟi

(

Xd′

i , Rd′

i ;v
)

= 0 for i ≤ j,

lead to the computation of λ̇i and then of the plastic flow ε̇p :=
(

∑j
i=1 λ̇i

)

nj.

5 Conclusions

Pseudo-potentials depending on states variables and the normality assumption

have been used to formulate the endochronic theory of plasticity and the Mróz

model. This description helps to investigate the thermodynamic properties of
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both models and makes possible an insightful comparison with other classical

and non-classical plasticity theories.
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[9] M. Jirásek, Z.P. Bažant, Inelastic analysis of structures, Wiley, Chichester, 2002.

[10] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1969.

10


