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Abstract. In this paper, a simple 1D crowd model is proposed, which aim is to properly describe 
the crowd-flow phenomena occurring when pedestrians walk on a flexible footbridge. The crowd is 
assumed to behave like a continuous compressible fluid and the pedestrian flow is modeled in a 1-D 
framework using the (total) mass (of pedestrians) conservation equation. This crowd model is then 
coupled with a simple model for the dynamical behavior of the footbridge and an optimized 
modeling of synchronization effects is performed. Numerical simulations are presented to show 
some preliminary results.  

Introduction 

Recent examples of footbridges have shown to be sensitive to the human induced vibration 
(Millenium Bridge, London; Solférino Bridge, Paris). Several experimental measurements allowed 
this phenomenon to be better understood [1, 2]. The crowd walking on a footbridge imposes to the 
structure a dynamic lateral excitation at a frequency close to 1 Hz. When the first mode of lateral 
vibration of a footbridge falls in the same frequency interval, then a resonance phenomenon is 
activated, the oscillation amplitude increases and pedestrians are forced to change their way of 
walking, up to the so-called structure-pedestrian synchronization occurring if the oscillation 
amplitude is large enough. This phenomenon has been often experimentally detected and also 
analyzed in several studies [1, 3, 4]. A series of simplified design rules for footbridges accounting 
for these effects was recently proposed [2]. 

Moreover, the behaviour of a single pedestrian is affected by the presence of the crowd around 
him. In more detail, when the pedestrian density is very low, the walk is « free » and characterized 
by the speed, the walk frequency, the step length, etc. slightly varying from a walker to the other. 
Nonetheless, when the crowd density becomes higher, a single walker is forced to synchronize his 
speed with that of the others. This kind of pedestrian-pedestrian synchronization occurs even when 
the walk is on a rigid floor and some crowd models were already developed [5] for this case. 
However, very few existing studies concern the modeling of both kinds of synchronizations [3]. In 
this contribution, an approach that we call “Eulerian”, is proposed in order to take into account 
traffic effects and pedestrian-structure synchronization. 

 

Some experimental results 

Single pedestrian’s walking. The human walking is characterized by time intervals where both 
feet are in contact with the floor and intervals where only one foot touches the floor. One can define 
the beginning of a step as the beginning of a simultaneous contact period. The end of a step 
coincides with the beginning of the following simultaneous contact period. For a given pedestrian 
walking at constant speed, the time-length sT of a step is approximately constant. The walking 

frequency is defined by: ss Tf 1 . For a standard walking, one gets Hzf s 2 [4]. The force 

induced by a single pedestrian on the floor has a lateral component related to the small lateral 



 
 

 

oscillation of the centre of gravity of the pedestrian during walk. It acts in the direction 
perpendicular to the walk speed, and with opposite signs for each foot. Hence, the frequency of the 
lateral force is: Hzff slat 12  . The processing of data provided by Decathlon [6] concerning 

lateral walking forces show a quasi-periodic behavior, with a typical right-left cycle like the one 
indicated in Fig. 1. The periodicity of the lateral force )t(f l  suggests a Fourier harmonic 

decomposition:  
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where i is the i-th Fourier coefficient, i  is the i-th phase difference. )t(f l  is always bounded and 

less than N50 . For an increasing walking speed, the frequency flat also increases. 

 

Figure 1- Lateral walking force on a rigid floor, for several walking speeds. 

It can be deduced that the first harmonic amplitude is of order N3530  , confirming the results of 
SETRA [2] and can be related to the walking velocity v  by: 517135619101 .v.  . For the 
analysis of the crowd effect on the lateral motion of footbridges, only the first harmonic (frequency 
flat) is retained in most studies and this will be the case in this paper. This flat frequency is often very 
close to the lateral modal frequency of footbridges. Hence footbridges may be subject to large 
oscillations because their behavior is often slightly damped even if the pedestrian lateral force is 
relatively small. In the case of non-rigid floor, the lateral force amplitude of the human walk is 
assumed to be similar to that of the rigid-floor case. This strong assumption is supported by the 
experimental results of SETRA [2]. Conversely, the walking velocity and frequency are affected by 
the structure’s vibrations, as seen in the following paragraph. 
Influence of the structural oscillation on pedestrians walking. When the amplitude of the lateral 
vibrations acceleration for the footbridge is larger than a certain threshold: 210 s/m.amin  , the 

lateral vibrations become perceptible for pedestrians, who tend to change their walking frequency to 
synchronize their walk with the structure’s oscillations [4]. If a certain number of pedestrians is 
synchronized with the structure (and therefore, with each other), the total lateral force they produce 
further increases the structure’s oscillations, inducing other pedestrians to synchronize their walk. If 
the lateral velocity of the footbridge floor reaches s/m.umax 250 , pedestrians stop walking, 

otherwise they would loose equilibrium [3].  
Interactions between pedestrians. For low crowd densities 230 m/p.c  , every single 

pedestrian walks freely, with an average speed sm.vM 51  [3], slightly varying from one walker 

to the other. Conversely, when the crowd density  is higher than c, the walking velocity decreases 



 

in order to avoid collisions between pedestrians. For very high crowd densities 
( 28161 mspedestrian,,M  [3]), pedestrians stop walking.  

Simplified footbridge modeling 

The lateral motion of a footbridge can be approximately represented by an Euler-Bernoulli beam 
equation with viscous damping [2]:  
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where x is the coordinate along the beam axis; t the time; u(x,t) the lateral displacement; ms(x) the 
mass per unit length of the beam [kg/m]; c(x) the viscous damping coefficient [N.s /m2]; k(x) the 
stiffness per unit length ]Nm[ 2 ; Fl(x,t) the pedestrian lateral force per unit length ]m/N[  and 

)t,x(mp  the linear mass of pedestrians ]m/kg[ . Under the assumption of doubly hinged beam of 

length L, the first lateral mode shape can be approximated by a sinus having the half-period equal to 
L, which is exact when ms, mp, c and k are constant along the beam axis. 
Since this mode plays a major role in the lateral footbridge dynamics, the solution is assumed of the 
form  1( , ) ( ) ( ) ( )sin /u x t U t x U t x L    and Eq. (2) becomes 
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made of the classical structural mass contribution plus the total mass of pedestrians walking on the 
footbridge deck and having the instantaneous distribution given by )t,x(mp . Hence, the 

instantaneous modal frequency of the system footbridge+pedestrians reads: 
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The mass )t,x(mp and the force )t,x(Fl  must be defined to solve Eq. (3) and are related to the 

approach used for modeling the crowd. Two different approaches are understudy: (i) an “Eulerian” 
approach consisting in a macroscopic modeling of the crowd which is considered as a whole and 
(ii) a “Lagrangian” approach consisting in a microscopic modeling of the crowd where each 
pedestrian is modeled. Under after, only the first approach is presented. 

The Eulerian crowd model (ECM) 

An Eulerian crowd model (ECM) postulates that the crowd behaves like a compressible fluid [3]. 
This kind of analysis is intended to represent the pedestrian behaviour for high crowd densities. The 
crowd motion is characterized by it local density )t,x(  and its local speed )t,x(v . In general three 
equations govern the motion of a fluid, i.e. the mass conservation 

0







)v.(
xt


 (5) 



 
 

 

the dynamic equilibrium and a constitutive law. However, for traffic flow modelling, it is usual to 
substitute these last two equations with a simpler “closure” equation [3, 6], relying on  and v . For 
the pedestrian flow, the following closure equation is adopted [3]: 

)u(h)(g)u,(v     (6) 
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The crowd velocity )u,(v   depends on the )(g  function, representing the interaction between 
pedestrians described above. )t,x(  is a parameter describing the traffic conditions. The 
mechanical analogy suggests for   the role of a viscosity parameter of the equivalent crowd fluid. 
A larger   value indicates more difficult traffic conditions (highly viscous crowd fluid). Fig. 2 
presents the crowd speed on a rigid floor ( 1)u(h  ) for different   values. Experimental data lead 
to the values of  being between 0 and 10 [3]. 

 

Figure 2- Walking speed vs. crowd density for different  values 

The second function 1)u(h   allows accounting for the influence of the lateral footbridge vibration 
on the crowd speed, in the sense that it imposes a speed reduction when pedestrians walk on a 
footbridge undergoing large oscillations. In addition, it is assumed that after a stop occurring when 

maxu u  , the pedestrian speed remains zero during five seconds. After this delay, they begin to 

walk if maxuu   , otherwise, the stop lasts five more seconds. Observe that Eq. (6) governs the 

crowd speed but nothing is said about the pedestrians-structure synchronization phenomenon which 
also involves the phases of pedestrians and of the structure. 
Once the density (x,t) is known, the linear mass density follows 1( , ) ( , ) ( )p pm x t m x t x  , where 

( )x  is the deck width and m1p is the mass of a single pedestrian. The linear force density reads: 
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where ];[),u(S 10  is a coefficient introduced to represent the synchronization effects [3]. 
According to the assumptions of Venuti [3], the special case 1S occurs when all the pedestrians 
walk with the frequency and phase of the structural velocity ( )U t . And Eq.7 states then that the 
linear force density is given by the product of the force of a single pedestrian with the number 

)t,x(n p  of pedestrians per unit length. This case is the most severe for the structure, in the sense 

that the same number of pedestrians always produces a less important structural motion when they 
are not in this situation of full synchronization.  



 

Conversely, if pedestrians are not synchronized, the total force is defined as the product of the force 
of a single pedestrian and an equivalent synchronized pedestrian number. This equivalent number is 
defined to give a fictitious total force ( , )lF x t acting at the modal frequency and phase of the 

structure whose effects (structural motion) are the same as those of the true total force, deriving 
from the true non-synchronized pedestrians (see [2]). The synchronization coefficient, i.e. the ratio 
between the number of synchronised pedestrians per unit length and the number of pedestrians per 
unit length, is defined by Venuti [3] as follows 

                                                ))t,x(u(Sps))t,x((Spp)t,x(S    (8) 

The first term accounts for the fact that for high densities pedestrians are synchronized each other: 
for c  , the walk is free, every pedestrian has a different frequency and/or phase and the 

contribution to the total force is therefore null. The second term derives from the observation that 
for large oscillations, pedestrians have a stronger tendency to be synchronized with the structure. 
The function )u(Sps   has two branches (Figure 3-b): the first one is a quadratic approximation of the 
ARUP data [1]. It defines an increase of the synchronization when the structural oscillations are 
larger. However, after reaching a maximum for a particular amplitude of structural oscillations, the 
synchronization (and the equivalent pedestrian number) is assumed then to decrease, as represented 
by the decreasing branch. 

a)
M/  u   b) 

Figure3- a) Coefficient )(Spp  , b) Coefficient )u(Sps   

The previous definition of the synchronisation coefficient (Eq. 8) have some drawbacks: (i) the sum 
of two contributions is rather “artificial”, (ii) the Spp coefficient is arbitrary and not based on 
experimental data, (iii) it is difficult to distinguish the effects in the case of a vibrating floor 
between the two synchronisations: the one between pedestrians and the other with the vibrations of 
the structure ; the synchronisation between pedestrians being induced by the synchronisation with 
the deck’s vibrations. Hence, a new definition of the synchronisation coefficient is introduced. 
According to SETRA [2], the lateral force induced by a crowd of N pedestrians on a rigid floor can 
be approximated by the force induced by eqN pedestrians walking in place and having the same 

phase and frequency. Thus, denoting   the proportional modal damping ratio, the synchronisation 
coefficient in the case of non-vibrating floor is defined as follows 
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Finally, a new definition for the synchronisation coefficient is given by 
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Numerical example : the Millennium Bridge 



 
 

 

Eq. (4) is solved by a Runge-Kutta scheme of order 4-5, and Eq. (5) is discretized by a finite 
difference scheme (Lax-Friedrichs), fulfilling the Lax Friedrichs conditions for the ratio between 
the spatial step dx  and the time step dt . The model is validated using the Millennium Footbridge 
main deck’s parameters. The pedestrian mass is assumed to be kg75 , hence l)t,x()t,x(mp 75 . 

Moreover the following parameters are adopted: 0)t,x( , 000  )(U)(U  and 210 .),x(  .  

Figures 4-a and 4-b represent )t(U and )t(Fl
  respectively. The initial high density of pedestrians 

induces a synchronisation between pedestrians which leads to a lateral force of high amplitudes. As 
a consequence, the structure’s lateral vibrations are more important.  When the vibrations’ velocity 
is high ( maxu)t,x(u   ), the pedestrians stop, hence the lateral force amplitude decreases and so do 

the structural vibrations.      

a)  b)  

Figure 4 -a) Footbridge velocity )t(U  ; b) total lateral force )t(Fl


 induced by the crowd     

Conclusion 

In this paper, the crowd flow has been described by an “Eulerian” approach, in a 1D framework, 
viz. pedestrians are supposed to walk along straight trajectories parallel to the longitudinal 
dimension of the footbridge. The non-stationary behaviour has been analyzed, as well as the 
synchronization phenomenon. Some improvements have been proposed. Work is in progress on a 
“Lagrangian” model including synchronization and the 2D generalization of both approaches. 
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