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Abstract

Short title: Non-classical plasticity theories and generalized normality.

A simple way to define the flow rules of plasticity models is the assumption of
generalized normality associated with a suitable pseudo-potential function. This
approach, however, is not usually employed to formulate endochronic theory and
non-linear kinematic (NLK) hardening rules as well as generalized plasticity mod-
els. In this paper, generalized normality is used to give a new formulation of these
classes of models. As a result, a suited pseudo-potential is introduced for endochronic
models and a non-standard description of NLK hardening and generalized plasticity
models is also provided. This new formulation allows for an effective investigation
of the relationships between these three classes of plasticity models.
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1 Introduction

The models proposed so far in the literature to describe the rate independent
inelastic behavior of real materials subjected to monotonic or cyclic loading
conditions can be essentially classified into two main families: (i) models where
the present state depends on the present value of observable variables (total
strain, temperature) and of suitable internal variables; (ii) models, indicated
here as hereditary, that require the knowledge of the whole past history of
observable variables.

The first group encompasses, for instance, the classical models of Prandtl-
Reuss and Prager (see e.g. Lemaitre and Chaboche (1990)) and the NLK
hardening model of Armstrong and Frederick (1966), in its original form as
well as in the modified versions recently proposed by Chaboche (1991) and
Ohno and Wang (1993) in order to improve the ratchetting modelling. For
these models, the well known notions of elastic domain and loading (or yield-

ing) surface apply. Associativity and non-associativity of the plastic strain
flow rule are also well-established concepts, as well as the assumption of gen-
eralized associativity (or generalized normality), relating all internal variable
flow directions to a given loading surface (Halphen and Nguyen, 1975) (Jirásek
and Bažant, 2002). Using the language of convex analysis (Rockafellar, 1969),
generalized normality entails that the flows of all internal variables belong to
the subdifferential set of a given scalar non-negative function called pseudo-

potential (Moreau, 1970) (Frémond, 2002).

Among internal variable theories, generalized plasticity deserves special at-
tention. A first important step for its formulation was the idea, suggested
by Eisenberg and Phillips (1971), of a plasticity model where, despite clas-
sical plasticity, loading and yielding surfaces are not coincident. Then, start-
ing from an axiomatic approach to describe inelastic behavior of materials,
Lubliner proposed some simple generalized plasticity models, able to repre-
sent some observed experimental behavior of metals (Lubliner, 1974, 1980,
1984) (Lubliner et al., 1993). More recently, generalized plasticity has been
used for describing the shape memory alloy behavior (Lubliner and Auricchio,
1996).

Endochronic models (Valanis, 1971) and Bouc-Wen type models (Bouc, 1971)
(Wen, 1976) are two important examples of hereditary models. Endochronic
theory has been developed during the seventies and used for modelling the
plastic behavior of metals (see, for instance, Valanis (1971), Valanis and Wu
(1975)) and the inelastic behavior of concrete and soils (among others, Bažant
and Krizek (1976), Bažant and Bath (1976)). The endochronic stress evolution
rule depends on the so-called intrinsic time and is formulated by a convolu-
tion integral between the strain tensor and a scalar function of the intrinsic

2



time called memory kernel. When the kernel is an exponential function, an
incremental form of endochronic flow rules exists, which is commonly used in
standard analyses and applications.

Models of Bouc-Wen type are widely employed for modelling the cyclic be-
havior of structures in seismic engineering (Baber and Wen, 1981) (Sivaselvan
and Reinhorn, 2000) and for representing hysteresis of magneto-rheological
dampers in semi-active control applications (Sain et al., 1997) (Jansen and
Dyke, 2000). The strict relationship between endochronic and Bouc-Wen type
models has been mentioned several times in the literature (see, among others,
Karray and Bouc (1989) and Casciati (1989)). Recently, Erlicher and Point
(2004) showed that the fundamental element of this relationship is the choice
of an appropriate intrinsic time.

Endochronic theory and classical internal variable theory have been compared
by using several approaches: Bažant (1978) observed that for endochronic
theory the notion of loading surface can still be introduced, but it looses its
physical meaning; Valanis (1980) and Watanabe and Atluri (1986) proved
that a NLK hardening model can be derived from an endochronic model by
imposing a special intrinsic time definition. Moreover, a comparative study
between NLK hardening and generalized plasticity models has been presented
by Auricchio and Taylor (1995). A tight relationship between endochronic the-
ory and generalized plasticity is also expected to exist, but, by the authors’
knowledge, no analysis on this subject exists. More generally, there is a lack
of unified theoretical framework, on which formal comparisons between these
plasticity theories could be based. The main goal of this paper is the formu-
lation of this theoretical framework using the classical notion of generalized

normality (Moreau, 1970) (Halphen and Nguyen, 1975). As a result, a new
formulation of endochronic and NLK hardening models as well as general-
ized plasticity models is suggested and is used to investigate the relationships
between them.

The paper is organized as follows: in the first section, the standard theoret-
ical framework of thermomechanics is briefly recalled, with reference to the
notions of pseudo-potential and generalized normality as well as Legendre-
Fenchel transform and dual pseudo-potential. In the following sections, several
plasticity models are presented and are shown to fulfil the generalized normal-
ity assumption. The Prandtl-Reuss and endochronic models are considered
first, in both standard and multi-layer formulations. Then, NLK hardening
model and generalized plasticity follow. The discussion is limited to initially
isotropic materials, whose plastic behavior is governed by the second invariant
of the deviatoric stress, J2, known as von Mises or J2 materials. No stability
analysis is provided, as it is beyond the purposes of this contribution.
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2 General thermodynamic framework

Under the assumption of infinitesimal transformations, the classical expression
of the local form of the first and second principle of thermodynamics can be
written as follows:

T ṡ = −Ψ̇ − sṪ − div (q) + r + σ : ε̇ (1)

Φs (t) = ṡ + div
(

q

T

)

− r

T
≥ 0 (2)

where the superposed dot indicates the time derivative; s is the entropy density
per unit volume, q is the vector of the flowing out heat flux, T is the absolute
temperature, r is the rate of heat received by the unit volume of the system
from the exterior; σ is the second order symmetric Cauchy stress tensor; ε

is the tensor of small total strains; Φs (t) is the rate of interior entropy pro-
duction. In the vector space of all second order tensors, the Euclidean scalar
product : is defined by x : y = xijyij; the vector subspace of second order
symmetric tensors is denoted by S2. The Helmholtz free energy density per
unit volume is a state function defined as

Ψ = Ψ (ε, T, χ1, ..., χN) = Ψ (v) (3)

where χ1, ..., χN , are the tensorial and/or scalar internal variables, related to
the non-elastic evolution and v = {ε, T, χ1, ..., χN} is the vector containing all
the state variables, namely the total strain tensor, the temperature and the
internal variables.

For isothermal conditions, the use of Eq. ( 1) in the inequality (2) leads to

Φm (t) := TΦs (t) = T ṡ = σ : ε̇ − Ψ̇ ≥ 0 (4)

which states that the intrinsic or mechanical dissipation Φm (rate of energy
per unit volume) must be non-negative. The non-dissipative thermodynamic
forces are defined as functions of the free energy density Ψ (see, among others,
Frémond (2002))

σnd := ∂Ψ
∂ε

, τ nd
i := ∂Ψ

∂χi
⇐⇒ qnd = ∂Ψ

∂v
(5)

The non-dissipative stress σnd is associated with the observable variable ε,
while τ nd

i are associated with the internal variables χi. All non-dissipative
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forces can be collected in qnd =
(

σnd, τ nd
1 , ..., τ nd

N

)

. Hence, by substituting (5)

into (4), one obtains

Φm (t) =
(

σ − σnd
)

: ε̇ −
N
∑

i=1

τ nd
i · χ̇i = σ : ε̇ − qnd · v̇ ≥ 0 (6)

where v̇ is the vector of the fluxes, belonging to a suitable vector space V. The
vector spaces considered in this paper are isomorph to Rn and the same hold
for their dual V∗ (see Appendix). The symbol · indicates the scalar product
of two objects having the same structure: two tensors, two scalar variables
or two collections of tensorial and/or scalar variables (the same notation has
been used e.g. by Jirásek and Bažant (2002, pg. 428)). The inequality (6)
can be written in a slightly different manner, by introducing the dissipative

thermodynamic forces

qd =
[

σd, τ d
1, ..., τ

d
N

]

:=
[

σ − σnd,−τ nd
1 , ...,−τ nd

N

]

∈ V
∗ (7)

Hence,

Φm (t) = σd : ε̇ +
N
∑

i=1

τ d
i · χ̇i= qd · v̇ ≥ 0 (8)

The forces qd have to be defined in such a way that the couple
(

qd, v̇
)

always

fulfils the inequality (8). Therefore, some additional complementary rules have
to be introduced. They can be defined by assuming the existence of a non-
negative, proper, convex and lower semi-continuous function φ : V → (−∞,∞]
(Appendix, item 2), called pseudo-potential, in general non-differentiable, such
that φ (0) = 0 and:

qd ∈ ∂φ (v̇) (9)

where ∂ indicates the sub-differential operator (see Appendix, item 3). This
condition is called generalized normality. A more detailed way of writing (9)
is

qd ∈ ∂φ (v̇′;v)|v̇′=v̇ (10)

As a matter of fact, φ is a general function of the fluxes v̇′ and may also
depend on the state variables v. However, the subdifferential is taken, by
definition, only with respect to the fluxes v̇′ and the thermodynamic force qd

corresponds to the subdifferential of φ at v̇′ = v̇, where v̇ is the actual flow. By
using the properties of sub-differentials, it can be proved that for dissipative
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forces defined by (9), the inequality qd · v̇ ≥ 0 is always fulfilled (Appendix,
item 4). Therefore, the second principle (8) is also satisfied.

A dual pseudo-potential φ∗ : V∗ → (−∞,∞] can be defined by the Legendre-
Fenchel transform of φ:

φ∗
(

qd′
)

:= sup
v̇′∈V

(

qd′ · v̇′ − φ (v̇′)
)

(11)

When φ has an additional dependence on the state variables v , then (11)

leads to φ∗ = φ∗
(

qd′ ;v
)

. It can be proved that the dual pseudo-potential is a

non-negative, proper, convex and lower semi-continuous function of qd′ , such
that φ∗ (0) = 0 (see Appendix, item 5). The dual normality condition reads

v̇ ∈ ∂φ∗
(

qd
)

(12)

where qd is the actual value of the dissipative force. The expression (12) is
equivalent to

v̇ ∈ ∂φ∗
(

qd′ ;v
)∣

∣

∣

qd′=qd
(13)

and it guarantees that qd · v̇ ≥ 0 (Appendix, item 5). Moreover, it de-
fines the complementarity rules of generalized standard materials (Halphen
and Nguyen, 1975), sometimes called fully associated materials (Jirásek and
Bažant, 2002, pg. 452).

Plasticity is characterized by a rate-independent memory effect (Visintin, 1994,
pg. 13). This special behavior occurs when the pseudo-potential φ is a posi-
tively homogeneous function of order 1 with respect to the fluxes v̇′. In this
case, provided that qd is computed from (9) or that v̇ derives from (12), it can
be proved that the pseudo-potential at v̇ is equal to the intrinsic dissipation,
viz. φ (v̇) = qd · v̇ = Φm (Appendix, item 6). Moreover, the dual pseudo-
potential φ∗ becomes the indicator function of a closed convex set Ē ⊂ V∗ and
the normality rule (12) entails that, given the dissipative force qd ∈ Ē, the
flux v̇ fulfils the following condition:

∀qd′ ∈ Ē

(

qd′ − qd
)

· v̇ ≤ 0 (14)

viz. for a given dissipative force qd, the flow v̇ defined by (14) (or, equivalently,
by (12) or (13)) is such that its power when it is associated to the actual force
qd is always greater or equal to the power qd′ · v̇ of all the other dissipa-
tive forces qd′ ∈ Ē (generalized maximum-dissipation principle (Halphen and
Nguyen, 1975)). When qd ∈ ∂Ē, the inequality (14) indicates that v̇ belongs
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to the cone orthogonal to ∂Ē at the point qd. When qd ∈ int
(

Ē

)

, it forces

the flow v̇ to be zero (Appendix, item 7).

3 Prandtl-Reuss model

3.1 Perfectly plastic Prandtl-Reuss model

In order to illustrate the general procedure that is adopted hereinafter, the
basic example of the Prandtl-Reuss model is considered first. The relevant
state variables are the total and the plastic strain v = (ε, εp) and qnd =
(

σnd, τ nd
)

are the associated non-dissipative thermodynamic forces. The usual
quadratic form of the Helmholtz free energy density Ψ is used, in order to
preserve the linear dependence of all non-dissipative forces with respect to
state variables:

Ψ =
1

2
(ε − εp) : C : (ε − εp) (15)

For isotropic materials, the fourth-order tensor of the elastic moduli is equal
to C =

(

K − 2
3
G
)

1 ⊗ 1+2GI, where K is the (isothermal) bulk modulus, G is

the shear modulus and ⊗ is the direct (or outer) product of two second order
tensors. The assumption of isotropy is always adopted, even if the concise
symbol C is used. The non-dissipative forces associated with (15) can be
derived by means of (5):

σnd = C : (ε − εp) , τ nd = −C : (ε − εp) (16)

The evolution of the dissipative forces qd =
(

σd, τ d
)

∈ S2×S2 := V∗ is defined
by introducing a suitable pseudo-potential φ, which is a function of the fluxes
v̇′ =

(

ε̇′, ε̇p′
)

∈ S
2 × S

2 := V (× is the cartesian product):

φ
(

ε̇′, ε̇p′
)

=
√

2
3
σy

∥

∥

∥ε̇p′
∥

∥

∥+ ID̄

(

ε̇′, ε̇p′
)

D̄ =
{(

ε̇′, ε̇p′
)

∈ V such that tr
(

ε̇p′
)

= 0
}

(17)

where tr(u) indicates the trace of the tensor u ∈S2. The norm of the second
order symmetric tensor u is given by ‖u‖ =

√
uij uij. If in addition tr (u) =

uii = 0, then ‖u‖2 = 2J2 (u) where J2 (u) is the second invariant of the
deviatoric part of u; σy is the one-dimensional tension stress limit and ID̄
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is the indicator function of the set D̄, namely ID̄ = 0 if tr
(

ε̇p′
)

= 0 and

ID̄ = +∞ elsewhere. This set is the effective domain of φ (Appendix, item
2). The pseudo-potential φ is a homogeneous function of order 1 with respect

to
(

ε̇′, ε̇p′
)

and therefore a rate independent constitutive behavior is expected

and the dissipation Φm is equal to
√

2
3
σy‖ε̇p‖, where ε̇p is the actual plastic

flow (Appendix, item 6). The indicator function ID̄ accounts for the fact that
plastic deformation occurs without volume changes (plastic incompressibility).
This assumption is usual for metals and has been validated by experimental
evidence.

The pseudo-potential φ∗, dual of φ, can be computed using the Legendre-
Fenchel transform (Appendix, item 5) and is equal to:

φ∗
(

σd′ , τ d′
)

= sup(ε̇′,ε̇p′)∈D̄

(

σd′ : ε̇′ + τ d′ : ε̇p′ − φ
)

= IĒ

(

σd′ , τ d′
)

(18)

The dual pseudo-potential φ∗ is the indicator function of a closed convex set
Ē. Hence, φ = φ∗∗ is the support function of the same set (Appendix, item 6).
Moreover, since φ does not depend on ε̇′, the dual pseudo-potential φ∗ can be
written as the sum of two indicator functions (Appendix, item 7):

φ∗
(

σd′ , τ d′
)

= I0

(

σd′
)

+ IE

(

τ d′
)

E =
{

τ d′ ∈ S2 such that f
(

τ d′
)

=
∥

∥

∥dev
(

τ d′
)∥

∥

∥−
√

2
3
σy ≤ 0

}
(19)

where dev(u) is the deviatoric part of u ∈S2. The first term is equivalent to
the condition σd′ = 0, while the other indicator function IE defines a region
in the τ d′ stress space. Recalling that the actual value of τ d′, viz. τ d, fulfils
the condition τ d = −τ nd and that the only possible value for σd is zero,
using (16) it is straightforward to see that τ d = σ = σnd and that E can
also be interpreted as a set in the σ stress space. The associated function f is
known as loading function and the condition f = 0 defines the plastic states.
The interior of E is associated with the elastic states and the whole (closed)
set E contains all plastically admissible states. The actual flows (ε̇, ε̇p) can
now be derived from (19) by computing the subdifferential set of φ∗ and then

considering it at
(

σd′ , τ d′
)

=
(

σd, τ d
)

. Hence, no restrictive conditions are

imposed on ε̇, while the plastic strain flow reads (Appendix, item 7)

ε̇p =
dev(τ d)

‖dev(τ d)‖ λ̇ = n λ̇ with

λ̇ ≥ 0, f
(

τ d
)

≤ 0, λ̇f
(

τ d
)

= 0
(20)
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Observe that f in the loading-unloading conditions in the second row of (20) is
computed at the actual stress state. The plastic multiplier λ̇ is then evaluated
by imposing the consistency condition, i.e. λ̇ḟ = 0 (see e.g. Simo and Hughes
(1988)), with

ḟ =

[

∂f

∂τ d′
: τ̇ d′

]

τ d′=τ d

(21)

Note that ḟ is computed from the general expression of f
(

τ d′
)

and then evalu-

ated at the actual state τ d′ = τ d. Consistency corresponds to the requirement
that in order to have λ̇ > 0, the actual dissipative force τ d ∈ ∂E cannot
leave ∂E during the plastic flow. Hence, by using (20) and the relationship
τ d = σ = C : (ε − εp), one has

ḟ =
dev

(

τ d
)

‖dev (τ d)‖ : dev
(

τ̇ d
)

= n : C : ε̇−n : C : n λ̇ (22)

thus λ̇ = H (f)
〈n:C:ε̇〉
n:C:n

= H (f) 〈n : ε̇〉 , where 〈x〉 = x+|x|
2

(McCauley brackets)
and H (f) is the Heaviside function, equal to zero for f < 0 and equal to 1
elsewhere.

In summary, the Prandtl-Reuss perfectly plastic model was formulated by
means of the Helmholtz free energy Ψ and the pseudo-potential φ; then, the
dual potential φ∗ was computed from the Legendre-Fenchel transform of φ;
the subdifferential set of φ∗ was used to define the fluxes and the consistency
assumption led to the determination of the plastic multiplier λ̇. In the next
sections, this approach will be used to formulate two Prandtl-Reuss models
with isotropic hardening and other more complex plasticity models, such as
endochronic, NLK hardening and generalized plasticity models. In order to
get this result, some non-standard expressions for the pseudo-potentials φ and
φ∗ are introduced.

3.2 Classical Prandtl-Reuss model with isotropic hardening

The vector of the representative state variables for a Prandtl-Reuss model
with isotropic hardening is equal to v = (ε, εp, ζ), while qnd =

(

σnd, σ, Rnd
)

are the associated non-dissipative forces. The scalar internal variable ζ and the
associated forces Rd and Rnd are introduced in order to represent the isotropic
hardening. Moreover, v̇ =

(

ε̇, ε̇p, ζ̇
)

∈ V = S
2 × S2 × R is the flux vector and

qd =
(

σd, σd, Rd
)

∈ V∗= S
2 × S2 × R contains all dissipative thermodynamic
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forces. The Helmholtz free energy is assumed to be of the form

Ψ =
1

2
(ε − ε p) : C : (ε − εp) + ξ (ζ) (23)

where ξ (ζ) is a scalar function such that ξ (0) = 0 and dξ
dζ

(0) = 0. It follows
that

σnd = C : (ε − εp) , τ nd = −C : (ε − εp) , Rnd = dξ
dζ

(ζ) (24)

The pseudo-potential is assumed of the following form:

φ
(

ε̇′, ε̇p′, ζ̇ ′
)

=
√

2
3
σy ζ̇ ′ + ID̄

(

ε̇′, ε̇p′, ζ̇ ′
)

D̄=
{

(

ε̇′, ε̇p′, ζ̇ ′
)

∈ V such that tr
(

ε̇p′
)

= 0 and ζ̇ ′ ≥
∥

∥

∥ε̇p′
∥

∥

∥

}

(25)

The first term in the expression of φ is the same as in the perfectly-plastic
model when ζ̇ ′ is equal to the norm of ε̇p′. The second term, that is the
indicator function ID̄, depends not only on tr(ε̇p′), but also on the flow ζ̇ ′,
which is forced be greater or equal than the norm of the plastic strain flow.
This inequality guarantees that ζ̇ ′ and φ are non-negative and entails that D̄

is convex and closed (see Appendix, item 1 and Figure 1a, which illustrates

the projection of D̄ on the
(

ε̇p′, ζ̇ ′
)

-plane for the tension-compression case).

The dual pseudo-potential is different from (18), due to the presence of the
dissipative force Rd′ associated with ζ̇ ′:

φ∗
(

σd′ , τ d′ , Rd′
)

= sup(ε̇′,ε̇p′ ,ζ̇′)∈D̄

(

σd′ : ε̇′ + τ d′ : ε̇p′ + Rd′ ζ̇ ′ − φ
)

= I0

(

σd′
)

+ IE

(

τ d′ , Rd′
)

(26)

where E =
{(

τ d′ , Rd′
)

∈ S2×R such that f
(

τ d′ , Rd′
)

≤ 0
}

and

f
(

τ d′ , Rd′
)

=
∥

∥

∥dev
(

τ d′
)∥

∥

∥−




√

2

3
σy − Rd′



 ≤ 0 (27)

The loading function f defines a convex and closed region E in the
(

τ d′ , Rd′
)

space, where the actual value of Rd′, viz. Rd = −Rnd = −dξ(ζ)
dζ

governs isotropic

hardening (or softening). The limit stress becomes greater than its initial value
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√

2
3
σy when dξ(ζ)

dζ
≥ 0 and less when dξ(ζ)

dζ
≤ 0. Figure 1b illustrates the set E.

The flow rules follow from the generalized normality conditions:

ε̇p =
dev(τ d)

‖dev(τ d)‖ λ̇ = nλ̇, ζ̇ = λ̇

with λ̇ ≥ 0, f ≤ 0, λ̇f = 0
(28)

The flow of the internal variable ζ is equal to the plastic multiplier λ̇, which
can be evaluated by imposing the consistency condition:

ḟ =

[

∂f

∂τ d′
: τ̇ d′ +

∂f

∂Rd′
Ṙd′

]

(τ d′=τ d,Rd′=Rd)
= 0 (29)

It follows that

λ̇ = H (f)
〈n : C : ε̇〉

n : C : n+d2ξ(ζ)
dζ2

= H (f)
〈n : ε̇〉

1+ 1
2G

d2ξ(ζ)
dζ2

(30)

where H (f) and 〈 〉 still indicate the Heaviside function and McCauley brack-
ets, respectively.

3.3 Modified Prandtl-Reuss model with isotropic hardening

The classical model of the previous section can be extended as follows. Assume
the state variables v = (ε, εp, ζ) and let the Helmholtz energy be equal to

Ψ =
1

2
(ε − ε p) : C : (ε − εp) + ξ (ζ) (31)

As a result, the non-dissipative forces are the same as in Eq. (24). Then, a
generalized definition of the pseudo-potential φ is adopted:

φ
(

ε̇′, ε̇p′, ζ̇ ′; ζ
)

=
(√

2
3
σyg (ζ) − dξ(ζ)

dζ

)

ζ̇ ′ + ID̄

(

ε̇′, ε̇p′, ζ̇ ′
)

D̄=
{

(

ε̇′, ε̇p′, ζ̇ ′
)

∈ V such that tr
(

ε̇p′
)

= 0 and ζ̇ ′ ≥
∥

∥

∥ε̇p′
∥

∥

∥

} (32)

In this case, φ explicitly depends on the internal variable ζ , by means of dξ(ζ)
dζ

and of the function g (ζ), positive and such that g (0) = 1. In the particular

case where g (ζ) = 1 + dξ(ζ)
dζ

√

3
2

1
σy

, the classical expression given in Eq. (25) is

11



recovered. The dual pseudo-potential φ∗ can be evaluated from the standard
procedure, thus yielding:

φ∗
(

σd′, τ d′ , Rd′ ; ζ
)

= I0

(

σd′
)

+ IE

(

τ d′ , Rd′; ζ
)

(33)

where E =
{(

τ d′ , Rd′
)

∈ S2×R such that f
(

τ d′ , Rd′ ; ζ
)

≤ 0
}

and

f
(

τ d′ , Rd′ ; ζ
)

=
∥

∥

∥dev
(

τ d′
)∥

∥

∥−




√

2

3
σyg (ζ) − dξ (ζ)

dζ
− Rd′



 (34)

In Figure 2, the projection of D̄ on the
(

ε̇p′, ζ̇ ′
)

-plane and the set E are depicted

for the tension-compression case, with the assumption ξ (ζ) = 0. The flow
rules are the same as in the previous case and they are reported below for
completeness:

ε̇p =
dev(τ d)

‖dev(τ d)‖ λ̇ = nλ̇, ζ̇ = λ̇

with λ̇ ≥ 0, f ≤ 0, λ̇f = 0
(35)

In this case, ḟ has to be computed accounting for the state variables. Hence
consistency condition reads

ḟ =

[

∂f

∂τ d′
: τ̇ d′ +

∂f

∂Rd′
Ṙd′ +

∂f

∂ζ
ζ̇

]

(τ d′=τ d,Rd′=Rd)
= 0 (36)

and the plastic multiplier becomes equal to:

λ̇ = H (f)
〈n : C : ε̇〉

n : C : n+
√

2
3
σy

dg(ζ)
dζ

= H (f)
〈n : ε̇〉

1+
√

2
3

σy

2G
dg(ζ)

dζ

(37)

provided that 1 +
√

2
3

σy

2G
dg(ζ)

dζ
> 0. This condition does not prevent softening,

which occurs when dg(ζ)
dζ

≤ 0.

The comparison of Eqs. (27) and (34) proves to be very interesting. First, the
usual loading function only depends on the dissipative forces, while f in Eq.
(34) is also related to the internal variable ζ . Moreover, since Rd = −Rnd =

−dξ(ζ)
dζ

, the loading function (34) at
(

τ d, Rd
)

becomes

f
(

τ d, Rd; ζ
)

=
∥

∥

∥dev
(

τ d
)∥

∥

∥−
√

2

3
σyg (ζ) (38)

12



This expression shows that the actual limit stress is equal to
√

2
3
σyg (ζ) and

is independent from the function ξ (ζ) introduced in the Helmholtz energy
density (this is not the case for the classical Prandtl-Reuss model).

The difference between the two Prandtl-Reuss models can be also explained
in terms of mechanical dissipation Φm. For the modified Prandtl-Reuss model,
it is equal to

Φm =





√

2

3
σyg (ζ) − dξ (ζ)

dζ



 ζ̇ (39)

which is non-negative provided that dξ(ζ)
dζ

≤
√

2
3
σy g (ζ). The case of a mono-

dimensional monotonic loading is depicted in Figure 3. The standard Prandtl-
Reuss model is characterized by the fact that the energy Rdζ̇ associated to
isotropic hardening is not dissipated. For this reason it is sometimes referred as
energy blocked in dislocations (Lemaitre and Chaboche, 1990, pg. 402). Hence,

the mechanical dissipation is equal to
√

2
3
σy ζ̇ for any function ξ(ζ). Conversely,

for the modified Prandtl-Reuss model the amount of mechanical dissipation
depends, for a given function g(ζ), on the choice of ξ (ζ). Figure 3b reports
the case of generic functions g(ζ) and ξ(ζ). Figure 3c and 3d correspond to
ξ(ζ) = 0 and to the case where the modified model is equal to the classical
one, respectively.

3.4 Multi-layer models of Prandtl-Reuss type

Modified Prandtl-Reuss models, defined by Eqs. (31)-(32), can be directly
extended to multi-layer models (Besseling, 1958). They consist of a system of
N elastoplastic elements connected in parallel. When every individual elements
are Prandtl-Reuss models, the corresponding multi-layer model is indicated as
of the Prandtl-Reuss type. This is the case in the present section. Hence, let

Ψ =
N
∑

i=1

Ψi =
N
∑

i=1

[

1

2
(ε − ε

p
i ) : C : (ε − ε

p
i ) + ξi (ζi)

]

(40)

be the Helmholtz energy density, defined as the sum of N expressions of the
type (31). The internal variable ε

p
i is the plastic strain of the generic element

i, while ζi is the scalar variable associated with the isotropic hardening of the
same element. All elements have by definition the same elastic modulus ten-
sor, chosen to be equal to C = 1

N

[(

K − 2
3
G
)

1 ⊗ 1+2GI
]

. The non-dissipative

13



thermodynamic forces read:

σnd =
∑N

i=1 C : (ε − ε
p
i ) , τ nd

i = −C : (ε − ε
p
i ) , Rnd

i = dξi(ζi)
dζi

(41)

Let us introduce the pseudo-potential φ as the sum of N independent functions
of the type (32):

φ =
∑N

i=1 φi

(

ε̇′, ε̇p′

i , ζ̇ ′
i; ζi

)

=
∑N

i=1

[(√

2
3
σyi gi (ζi) − dξi(ζi)

dζi

)

ζ̇ ′
i + ID̄i

(

ε̇′, ε̇p′

i , ζ̇ ′
i

)]

D̄i =
{

(

ε̇′, ε̇p′

i , ζ̇ ′
i

)

∈ V such that tr
(

ε̇
p′

i

)

= 0 and ζ̇ ′
i ≥

∥

∥

∥ε̇
p′

i

∥

∥

∥

}

(42)

The limit stresses σyi as well as the isotropic hardening functions gi (ζi) are,
in general, distinct. The conjugated pseudo-potential is in turn the sum of N
independent functions, i.e. φ∗ =

∑N
i=1 φ∗

i with

φ∗
i

(

σd′ , τ d′

i , Rd′

i

)

= sup(
ε̇′,ε̇p′

i
,ζ̇′

i

)

∈D̄i

(

σd′ : ε̇′ + τ d′

i : ε̇
p′

i + Rd′

i ζ̇ ′
i − φi

)

= I0

(

σd′
)

+ IEi

(

τ d′

i , Rd′

i

)

(43)

where Ei =
{(

τ d′

i , Rd′

i

)

∈ S2×R such that fi

(

τ d′

i , Rd′

i ; ζi

)

≤ 0
}

and

fi

(

τ d′

i , Rd′

i ; ζi

)

=
∥

∥

∥dev
(

τ d′

i

)∥

∥

∥−
√

2

3
σyi gi (ζi) + Rd′

i +
dξi (ζi)

dζi

(44)

Therefore, N independent loading surfaces have been defined. Using the stan-
dard procedure based on the normality assumption, N pairs of flow rules of
the type (35) can be derived:

ε̇
p
i =

dev(τ d
i )

‖dev(τ d
i )‖ λ̇i = niλ̇i, ζ̇i = λ̇i

with λ̇i ≥ 0, fi ≤ 0, λ̇ifi = 0
(45)

Moreover, by imposing the consistency conditions and accounting for Eqs. (41)
as well as the identities τ d

i = −τ nd
i and Rd

i = −Rnd
i , each plastic multiplier

can be easily determined by an expression of the type (37):

λ̇i = H (fi)
〈ni : C : ε̇〉

ni : C : ni +
√

2
3
σyi

dgi(ζi)
dζi

= H (fi)
〈ni : ε̇〉

1+
√

2
3

σyi

2G
dgi(ζi)

dζi

(46)
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provided that 1 +
√

2
3

σyi

2G
dgi(ζi)

dζi
> 0.

The Distributed Element Model (Iwan, 1966) (Chiang and Beck, 1994) is
recovered when gi (ζi) = 1 and ξi (ζi) = 0.

4 Endochronic theory

Endochronic theory was first formulated by Valanis (1971), who suggested the
use of a positive scalar variable ϑ, called intrinsic time, in the definition of
constitutive laws of plasticity models. The evolution laws are described by
convolution integrals involving past values of the state variable ε and suitable
scalar functions depending on ϑ called memory kernels. When the memory
kernel is exponential, the integral expressions can be rewritten as simple differ-
ential equations, which, for an initially isotropic endochronic material fulfilling
the plastic incompressibility assumption, read:











tr (σ̇) = 3K tr (ε̇)

dev (σ̇) = 2G dev (ε̇)−β dev (σ) ϑ̇
(47)

with β > 0. These relationships are equivalent to:



























σ= C : (ε − εp) ,

C =
(

K − 2
3
G
)

1 ⊗ 1+2GI ,

tr (ε̇p) = 0 and ε̇p = dev(σ)
2G/β

ϑ̇

(48)

where ϑ̇ ≥ 0 is the time-derivative of the intrinsic time. The simplest choice
for the intrinsic time flow is ϑ̇ = ‖dev (ε̇)‖ (Valanis, 1971). However, more
complex definitions can be given, such as:

ϑ̇ = ζ̇
g(ζ)

= f1 (ζ) ζ̇ with ζ̇ = ‖dev (ε̇)‖ (49)

where ζ is the intrinsic time scale and the positive function f1(ζ) = 1/g(ζ),
such that f1(0) = 1, is sometimes called hardening-softening function (Bažant
and Bath, 1976).
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4.1 A new formulation of endochronic models

In this section, the endochronic model defined by Eqs. (48) is innovatively de-
scribed by its Helmholtz free energy and a suitable pseudo-potential associated
with generalized normality conditions. This approach allows for insightful com-
parisons between endochronic models and Prandtl-Reuss models. The main
implications will be discussed later. Let v =(ε, εp, ζ) and qnd=

(

σnd, τ nd, Rnd
)

be the assumed state variables and the associated non-dissipative thermody-
namic forces, respectively. They are the same as in the Prandtl-Reuss model
with isotropic hardening. The Helmholtz free energy Ψ reads:

Ψ =
1

2
(ε − εp) : C : (ε − εp) (50)

This form is a particular case of the one originally proposed by Valanis (1971),
since only one tensorial internal variable, the plastic strain, is considered here.
The first two non-dissipative forces σnd and τ nd are the same as in Eq. (24),
while Rnd = 0 since Ψ is assumed to be independent of the scalar variable ζ .
The pseudo-potential is defined as follows:

φ
(

ε̇′, ε̇p′, ζ̇ ′; ε, εp, ζ
)

=
‖dev[C:(ε − εp)]‖2

2Gg(ζ)/β
ζ̇ ′ + ID̄

(

ε̇′, ε̇p′, ζ̇ ′; ε, εp, ζ
)

D̄ =















(

ε̇′, ε̇p′, ζ̇ ′
)

∈ V such that

tr
(

ε̇p′
)

= 0 , ε̇p′ =
dev[C:(ε − εp)]

2G
β

g(ζ)
ζ̇ ′ , ζ̇ ′ ≥ 0















(51)

The first term of φ, in which the stress σnd = C : (ε − εp) is written as a
function of the state variables, is equal to the intrinsic dissipation Φm when
ζ̇ ′ assumes the actual value ζ̇. The first condition associated with the closed
convex set D̄ introduces the plastic incompressibility assumption, while the
second condition characterizes the plastic strain flow of endochronic theory,
as it can be seen by comparing it to Eqs. (48) and (49). Finally, the positivity
of ζ̇ ′ is imposed in order to guarantee that φ is positive. Using the language
of the endochronic theory, the internal variable ζ corresponds to the intrinsic
time scale, while the intrinsic time ϑ is defined by its flow ϑ̇ = ζ̇/g (ζ) . The
variable ζ does not directly appear in the Helmholtz free energy density and
its associated thermodynamic forces, dissipative and non-dissipative, are thus
zero. However, ζ is not zero during the plastic evolution and plays an important
role in the definition of ε̇p.
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The conjugated pseudo-potential is, in this case, of the following form:

φ∗
(

σd′ , τ d′ , Rd′; ε, εp, ζ
)

=

= sup(ε̇′,ε̇p′ ,ζ̇′)∈D̄

(

σd′ : ε̇′ + τ d′ : ε̇p′ + Rd′ ζ̇ ′ − φ
)

= I0

(

σd′
)

+ IE

(

τ d′ , Rd′; ε, εp, ζ
)

(52)

where E =
{(

τ d′ , Rd′
)

∈ S2×R such that f
(

τ d′ , Rd′; ε, εp, ζ
)

≤ 0
}

and

f
(

τ d′ , Rd′ ;ε,εp, ζ
)

=
dev

(

τ d′
)

:dev[C:(ε − εp)]
2Gg(ζ)/β − ‖dev[C:(ε − εp)]‖2

2Gg(ζ)/β + Rd′ (53)

The expression (53) defines the loading function of endochronic models. It is

associated with a set E in the
(

τ d′ , Rd′
)

space. In Figure 4 this set is repre-

sented in the case of tension-compression with g (ζ) = 1, together with the

projection of D̄ on the
(

ε̇p′, ζ̇ ′
)

-plane. This last set is indicated by D. Some
important remarks have to be made. First, as the system evolves, both sets
change, due to their dependence on the internal variables. At every instan-
taneous configurations, the set D is a straight line starting from the origin.
The corresponding sets E are half-planes orthogonal to D. Moreover, Eq. (50)
entails that Rnd = −Rd = 0 and, accounting for the indicator function I0(σ

d′)
in (52), it also leads to

τ d = −τ nd = σ= C : (ε − εp) (54)

Therefore, at the actual stress state (τ d, Rd) the loading function f is always

equal to zero. In other words, (τ d, Rd) always belongs to ∂E, during both load-
ing and unloading phases, and all the states are plastic states. The normality
conditions lead to the endochronic flow rules:

ε̇p =
dev[C:(ε − εp)]

2G g(ζ)/β
λ̇, ζ̇ = λ̇ with λ̇ ≥ 0 (55)

Eqs. (52)-(53) and (55) prove that endochronic models are associative in gen-
eralized sense. Moreover, since f is always equal to zero at the actual state,
the loading-unloading conditions reduce to the requirement of the plastic mul-
tiplier λ̇ to be non-negative (see the inequality in (55)). In addition, the time
derivative ḟ at (τ d, Rd), computed accounting for the fact that f also depends
on ε, εp and ζ , is also equal to zero and therefore, the consistency condition

is automatically fulfilled and cannot be used to compute λ̇.

This situation is typical of endochronic theory and entails that the plastic
multiplier λ̇ = ζ̇ has to be defined by an additional assumption. When the
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function g (ζ) is also fixed, the plastic flow ε̇p and the intrinsic time flow
ϑ̇ = ζ̇/g (ζ) are then known. The standard choices are g (ζ) = 1 and ϑ̇ = ζ̇ =
‖dev (ε̇)‖. It has been shown in Erlicher and Point (2004) that more complex
definitions can be chosen, such as g (ζ) = 1 and

ϑ̇ = ζ̇ =
∥

∥

∥dev
(

τ d
)∥

∥

∥

n−2 (

1 + γ
β
sign

(

dev
(

τ d
)

: ε̇
))

|dev
(

τ d
)

: ε̇|
−β ≤ γ ≤ β , n > 0

(56)

which is effectively the Karray-Bouc-Casciati model (Karray and Bouc, 1989)
(Casciati, 1989). It must be noticed that both flows ε̇p and ζ̇ can be different

from zero during unloading phases, i.e. when dev
(

τ d
)

: ε̇ < 0. This situation,
which is not possible in classical plasticity, occurs when γ 6= β. Figure 5a
illustrates for the mono-dimensional case the effect of n for given values of the
other parameters: in the limit of increasing n-values the Prandtl-Reuss model
is retrieved. Figure 5b shows unloading branches for different γ/β ratios, the
other parameters being fixed: plastic strains may occur and tend to zero when
γ/β tends to 1.

4.2 Endochronic theory vs. Prandtl-Reuss model

Consider the endochronic model, as formulated in the previous section, and the
modified Prandtl-Reuss model. The significant state variables ε, εp and ζ are
the same in both cases. Moreover, Eqs. (31) and (50) show that the Helmholtz
free energies differ only by the term ξ (ζ), which is zero in endochronic theory.
The main differences concern pseudo-potentials, as seen comparing Eqs. (32)
and (51). However, the strict relationship between the two models can be

highlighted by imposing that ζ̇ ′ =
∥

∥

∥ε̇p′
∥

∥

∥ in (51): when ζ̇ ′ > 0, the condition

‖dev (C : (ε − εp))‖ = 2G
β

g (ζ) must be fulfilled, while for ζ̇ ′ = 0 there is no

limitation on dev (C : (ε − εp)). As a result, the endochronic pseudo-potential
(51) becomes equal to

φ̃
(

ε̇′, ε̇p′, ζ̇ ′; ζ
)

= 2G
β

g (ζ) ζ̇ ′ + ID̄

(

ε̇′, ε̇p′, ζ̇ ′
)

D̄=
{

(

ε̇′, ε̇p′, ζ̇ ′
)

∈ V such that tr
(

ε̇p′
)

= 0 and ζ̇ ′ =
∥

∥

∥ε̇p′
∥

∥

∥

} (57)

The set D̄ and the function φ̃ are not convex (see Figure 6a). However, the
Legendre-Fenchel conjugate of φ̃ is still well-posed (Appendix, item 5) and can
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be explicitly derived from the standard procedure:

φ∗
(

σd′ , τ d′ , Rd′; ζ
)

= sup(ε̇′,ε̇p′ ,ζ̇′)∈D̄

(

σd′ : ε̇′ + τ d′ : ε̇p′ + Rd′ ζ̇ ′ − φ̃
)

= I0

(

σd′
)

+ IE

(

τ d′ , Rd′; ζ
)

(58)

with E =
{(

τ d′ , Rd′
)

∈ S2×R such that f
(

τ d′ , Rd′ ; ζ
)

≤ 0
}

and

f
(

τ d′ , Rd′ ; ζ
)

=
∥

∥

∥dev
(

τ d′
)∥

∥

∥− 2G

β
g (ζ) + Rd′ (59)

Provided that 2G
β

=
√

2
3
σy, Eqs. (58)-(59) also define the Legendre-Fenchel

conjugate of the proper convex lower semi-continuous function (Appendix,
item 5)

φ = cl
(

conv φ̃
)

=
√

2
3
σy g (ζ) ζ̇ ′ + ID̄

(

ε̇′, ε̇p′, ζ̇ ′
)

D̄=
{

(

ε̇′, ε̇p′, ζ̇ ′
)

∈ V such that tr
(

ε̇p′
)

= 0 and ζ̇ ′ ≥
∥

∥

∥ε̇p′
∥

∥

∥

} (60)

which corresponds to the pseudo-potential of a modified Prandtl-Reuss model,
in the case ξ (ζ) = dξ(ζ)

dζ
= 0 (see Eqs. (32)).

A similar comparison between the classical Prandtl-Reuss model (Eqs. (23)
and (25)) and endochronic models is possible as well, but only when the former
is perfectly plastic, i.e. if ξ (ζ) = 0, and conditions ξ (ζ) = 0 and g = 1 hold
in the latter. Note that these assumptions have been adopted in Figure 5.

4.3 Multi-layer models of endochronic type

The concept of assembling in parallel several plastic elements can be applied
to the case in which each element is of endochronic type. The approach is
analogous to the one adopted in Section 3.4. Let ε and (εp

i , ζi) be the rele-
vant state variables. Then, the Helmholtz energy is defined as the sum of N
contributions, of the same kind as in Eq. (50):

Ψ =
N
∑

i=1

Ψi =
N
∑

i=1

[

1

2
(ε − ε

p
i ) : C : (ε − ε

p
i )
]

(61)

where the internal variables ε
p
i have the meaning of plastic strain of the i− th

endochronic element. The thermodynamic forces associated with ζi are zero,
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viz. Rnd
i = 0. Moreover, N independent pseudo-potentials are assumed to be

of the type (51):

φi =
‖dev[C:(ε − εp

i )]‖2

2G gi(ζi)/βi
ζ̇ ′
i + ID̄i

(

ε̇′, ε̇p′

i , ζ̇ ′
i; ε, εp

i , ζi

)

D̄i =











(

ε̇′, ε̇p′

i , ζ̇ ′
i

)

∈ V such that

tr
(

ε̇
p′

i

)

= 0, ζ̇ ′
i ≥ 0 and ε̇

p′

i =
dev[C:(ε − εp

i )]
2G gi(ζi)/βi

ζ̇ ′
i











(62)

with βi > 0, gi (ζi) > 0 and gi (0) = 1. The pseudo-potential of the multi-layer
model is φ =

∑N
i=1 φi and its dual is φ∗ =

∑N
i=1 φ∗

i , with

φ∗
i = sup(

ε̇′,ε̇p′

i
,ζ̇′

i

)

∈D̄i

(

σd′ : ε̇′ + τ d′

i : ε̇
p′

i + Rd
i ζ̇

′
i − φi

)

= I0

(

σd′
)

+ IEi

(

τ d′

i , Rd′

i ; ε, εp
i , ζi

)

(63)

where Ei =
{(

τ d′

i , Rd′

i

)

∈ S2×R such that fi

(

τ d′

i , Rd′

i ; ε, εp
i , ζi

)

≤ 0
}

and

fi =
dev

(

τ d′

i

)

:dev[C:(ε − εp
i )]

2G gi(ζi)/βi
− ‖dev[C:(ε − εp

i )]‖2

2G gi(ζi)/βi
+ Rd′

i
(64)

The flow rules then become of the form (55). Moreover, it can be easily proved
that at the actual state represented by (τ d

i , R
d
i ), the identities fi = ḟi = 0

hold and, for this reason, the fluxes ζ̇i = λ̇i ≥ 0 cannot be computed from the
consistency conditions and have to be defined using a further assumption.

If the number of elements is N = 2, g1 = g2 = 1 and both fluxes ζ̇1 and ζ̇2 are
of the form (56), then the model of Casciati (1989) is retrieved. Moreover, the

condition ζ̇ ′
i =

∥

∥

∥ε̇
p′

i

∥

∥

∥ into (62) leads to a multi-layer model of Prandtl-Reuss
type.

5 Non-linear kinematic hardening models

The NLK hardening rule was first suggested by Armstrong and Frederick
(1966), who introduced a dynamic recovery term in the classical Prager’s linear
kinematic hardening rule. Several modifications of this basic rule have been
proposed, in order to improve the description of the cyclic behavior of metals,
particularly for the ratchetting phenomenon (see, among others, Chaboche
(1991) and Ohno and Wang (1993)).
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According to traditional formulation, NLK hardening models do not fulfil
the assumption of generalized normality (Lemaitre and Chaboche, 1990, pp.
219-221) (Chaboche et al., 1995). Following an approach based on the notion
of bipotential, De Saxcé (1992) introduced implicit standard materials and
showed that the plasticity models with NLK hardening rules are of such type.

In this section, another formulation is suggested, which leads to the proof that
NLK hardening models belong to the class of generalized standard materials,
provided that a suitable, non-conventional, loading function is defined. First,
the state variables v = (ε, εp, ζ, β, ζ1) have to be introduced. The first three
are the same as for Prandtl-Reuss and endochronic models, while β and ζ1

are related to NLK hardening rule. The role of the scalar variable ζ1 will
be discussed later on. The corresponding thermodynamic forces are qnd =
(

σnd, τ nd, Rnd,Xnd, Rnd
1

)

and qd =
(

σd, τ d, Rd,Xd, Rd
1

)

∈ V∗. The Helmholtz
energy density is chosen as follows:

Ψ =
1

2
(ε − εp) : C : (ε − εp) +

1

2
(εp − β) : D : (εp − β) (65)

The quantity α = εp−β is usually adopted as the internal variable associated
with the kinematic hardening. However, the choice of β as a representative
internal variable appears more suited, because it highlights the formal analogy
between the first quadratic term in Eq. (65), typical of plasticity models, and
the second one, associated with the kinematic hardening. The isotropy assump-
tion leads to the usual expression for C and entails that D =D11 ⊗ 1+D2I.
The non-dissipative forces can then be readily evaluated:

σnd = C : (ε − εp)

τ nd = −C : (ε − εp) + D : (εp − β) , Rnd = 0

Xnd = −D : (εp − β) , Rnd
1 = 0

(66)

The three tensorial non-dissipative forces are related by the identity τ nd =
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−σnd − Xnd. Moreover, let the pseudo-potential be equal to

φ =
√

2
3
σy g (ζ) ζ̇ ′ +

‖D:(εp−β)‖2

D2
δ

g1(ζ1)
ζ̇ ′
1

+ID̄

(

ε̇′, ε̇p′, ζ̇ ′, β̇
′
, ζ̇ ′

1; ε, εp, ζ, β, ζ1

)

D̄=











































(

ε̇′, ε̇p′, ζ̇ ′, β̇
′
, ζ̇ ′

1

)

∈ V such that

tr
(

ε̇p′
)

= 0, ζ̇ ′ ≥
∥

∥

∥ε̇p′
∥

∥

∥ ,

tr
(

β̇
′)

= 0, β̇
′
=

D:(εp−β)
D2
δ

g1(ζ1)
ζ̇ ′
1 ,

ζ̇ ′
1 = h (ε, εp, ζ, β, ζ1) ζ̇ ′ ≥ 0











































(67)

with δ, g (ζ) , g1 (ζ1) > 0 and g (0) = g1 (0) = 1. Figure 7 shows two projections
of the effective domain D̄ for the tension-compression case. The first term in
the definition of φ is identical to that of Eq. (32) for a modified Prandtl-Reuss
model with ξ(ζ) = 0. The second term is related to the NLK hardening and
it is formally identical to the one used in the definition of endochronic models

(see Eq. (51)), with the substitutions dev (ε) → εp, εp → β and ζ → ζ1. The
same analogy applies to the conditions defining the set D̄.

The dual pseudo-potential then becomes

φ∗ = sup(ε̇′,ε̇p′ ,ζ̇′,β̇
′

,ζ̇′
1)∈D̄







σd′ : ε̇′ + τ d′ : ε̇p′ + Rd′ ζ̇ ′+

Xd′ : β̇
′
+ Rd′

1 ζ̇ ′
1 − φ







= I0

(

σd′
)

+ IE

(

τ d′ , Rd′,Xd′ , Rd′

1 ; ε, εp, ζ, β, ζ1

)

(68)

where E =
{(

τ d′ , Rd′,Xd′, Rd′

1

)

∈ S2×R × S
2×R such that f ≤ 0

}

and

f =
∥

∥

∥dev
(

τ d′
)∥

∥

∥−
√

2
3
σy g (ζ) + Rd′

+

(

Xd′ :[D:(εp−β) ]
D2 g1(ζ1)/δ

− ‖D:(εp−β)‖2

D2 g1(ζ1)/δ
+ Rd′

1

)

h (ε, εp, ζ, β, ζ1)
(69)

Eq. (69) defines the loading function of a model with NLK hardening and the
associated set E is depicted in Figure 8 for the tension-compression case when
g(ζ) = 1. The normality condition associated with φ∗ leads to the following
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flow rules:

ε̇p =
dev(τ d)

‖dev(τ d)‖ λ̇ = nλ̇ ζ̇ = λ̇

β̇ =
D:(εp−β)
D2 g1(ζ1)/δ

h (ε, εp, ζ, β, ζ1) λ̇ ζ̇1 = h (ε, εp, ζ, β, ζ1) λ̇

with λ̇ ≥ 0, f ≤ 0, λ̇f = 0

(70)

The thermodynamic force Xd = −Xnd = D : (εp − β) is traceless, due to
the assumptions adopted for the traces of ε̇p and β̇. Special attention must
be paid to the relationship between the fluxes ζ̇1 and ζ̇. The time derivative
of ζ1 is defined as the product between ζ̇ and the function h, which depends
on the state variables and must be non-negative and finite, but is otherwise
free. The variable ζ1 can be interpreted as an intrinsic time scale for the NLK

hardening flow rule.

Accounting for the identities
(

τ nd, Rnd,Xnd, Rnd
1

)

= −
(

τ d, Rd,Xd, Rd
1

)

and

Eqs. (66), one can prove that Rd = 0 and that the term proportional to h in
Eq. (69) is always zero at the actual state. Hence, only the first two terms in
the expression of f affect the consistency condition ḟ = 0, which leads to the
plastic multiplier

λ̇ = H (f)
〈n : ε̇〉

1+D2

2G
− 1

2G
n:Xd

g1(ζ1)/δ
h (ε, εp, ζ, β, ζ1) +

√

2
3

σy

2G
dg(ζ)

dζ

(71)

The positive functions g, g1 and h determine the actual model.

The choice g = g1 = h = 1 corresponds to the basic NLK hardening model
of Armstrong and Frederick (1966). Another interesting case is given by g =
g1 = 1 and















h =

(

‖D:(εp−β)‖
D2/δ

)m1

〈k1 : n〉 if D : (εp − β) 6= 0

h = 0 if D : (εp − β) = 0
(72)

where m1 > 0 and k1 =
D:(εp−β)
‖D:(εp−β)‖ is the unit vector having the same direc-

tion as Xd = D : (εp − β). These conditions lead to

β̇ =
Xd

D2/δ
ζ̇1 =

Xd

D2/δ





∥

∥

∥Xd
∥

∥

∥

D2/δ





m1

〈k1 : ε̇p〉 = ε̇p − Ẋd

D2
(73)

which is the NLK hardening rule proposed by Ohno and Wang (1993) for
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modelling the ratchetting phenomenon in metal plasticity. It is interesting to
compare the quantity

ζ̇1 = h ζ̇ =





∥

∥

∥Xd
∥

∥

∥

D2/δ





m1

〈k1 : ε̇p〉 (74)

and the intrinsic time flow ϑ̇, defined in Eq. (56) for endochronic models of the
Bouc-Wen type. Two significant differences can be observed: (i) the governing
flow variable is the plastic strain for NLK hardening rule and the total strain
for the flow rule of the endochronic model; (ii) due to presence of the absolute

value instead of the McCauley brackets, the endochronic model of Bouc-Wen
type introduces non-zero flows during unloading phases when γ 6= β.

5.1 From an endochronic model to a NLK hardening model

Valanis (1980) and Watanabe and Atluri (1986) proved that a NLK harden-
ing model can be derived from the endochronic theory by adopting a special
intrinsic-time definition, namely when the intrinsic time scale flow ζ̇ is forced
to be equal to the norm of the plastic strain flow. The approach suggested in
this paper not only confirms this result, but allows for a generalization, due
to the presence of a second intrinsic time scale ζ1, in general distinct from
ζ . Consider the differential equations defining an endochronic model with a
kinematic hardening variable τ d :























































tr (σ̇) = 3K tr (ε̇)

dev (σ̇) = 2G dev(ε̇) − β dev
(

σ − τ d
)

ζ̇
g(ζ)

tr
(

τ̇ d
)

= 0

τ̇ d = D2ε̇
p−δ τ d ζ̇1

g1(ζ1)

ζ̇1 = h (ε, εp, ζ, β, ζ1) ζ̇

(75)

The idea of a kinematic hardening variable in an endochronic model was first
suggested by Bažant (1978), who however considered a linear evolution of τ d

as function of the plastic strain. An alternative way to describe the model
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defined by (75) is











































σ = C : (ε − εp) τ d = D : (εp − β)

C =
(

K − 2
3
G
)

1 ⊗ 1 + 2GI D =D11 ⊗ 1 + D2I

tr (ε̇p) = 0, ε̇p = dev(σ − τ d
)

2G
β

g(ζ)
ζ̇ tr

(

β̇
)

= 0, β̇ = τ d

D2
δ

g1(ζ1)
ζ̇1

ζ̇1 = h (ε, εp, ζ, β, ζ1) ζ̇

(76)

Moreover, both Eqs. (75) and (76) can be derived from (65) and the following
pseudo-potential:

φ =
‖dev[C:(ε − εp)−D:(εp−β)]‖2

2G
β

g(ζ)
ζ̇ ′ +

‖D:(εp−β)‖2

D2
δ

g1(ζ1)
ζ̇ ′
1

+ID̄

(

ε̇′, ε̇p′, ζ̇ ′, β̇
′
, ζ̇ ′

1; ε, εp, ζ, β, ζ1

)

D̄=































(

ε̇′, ε̇p′, ζ̇ ′, β̇
′
, ζ̇ ′

1

)

∈ V such that

tr
(

ε̇p′
)

= 0, ε̇p′=
dev[C:(ε − εp)−D:(εp−β)]

2G
β

g(ζ)
ζ̇ ′, ζ̇ ′ ≥ 0,

tr
(

β̇
′)

= 0, β̇
′
=

D:(ε p−β)
D2
δ

g1(ζ1)
ζ̇ ′
1, ζ̇ ′

1 = h (ε, εp, ζ, β, ζ1) ζ̇ ′ ≥ 0































(77)

Let ζ̇ ′ =
∥

∥

∥ε̇p′
∥

∥

∥ be the chosen intrinsic time definition and assume 2G
β

=
√

2
3
σy.

Then, introducing these conditions in (77), one obtains a pseudo-potential φ̃

which differs from the one of Eq. (67) only in the inequality ζ̇ ′ ≥
∥

∥

∥ε̇p′
∥

∥

∥, which

is an equality in φ̃. This difference affects neither the expression of the dual
pseudo-potential φ̃∗ = φ∗ (Appendix, item 6) nor the flow rules, which are
in both cases equal to Eqs. (68)-(69) and Eq. (70), respectively. Moreover, in
the particular case h = 1 and g (ζ) = g1 (ζ), the results discussed by Valanis
(1980) and Watanabe and Atluri (1986) are retrieved.

6 Generalized plasticity models

Generalized plasticity models (Lubliner et al., 1993) are considered an effective
alternative to NLK hardening models, since they behave similarly and are com-
putationally less expensive (Auricchio and Taylor, 1995). A new description of
these models is suggested here, supported by a suitable pseudo-potential and
the generalized normality assumption. In order to expose the basic principles
of this new approach, only the simple generalized plasticity model presented
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by Auricchio and Taylor (1995) is considered. The extension to more complex
cases is straightforward.

First, the state variables v = (ε, εp, ζ) have to be introduced. The correspond-

ing thermodynamic forces are qnd =
(

σnd, τ nd, Rnd
)

and qd =
(

σd, τ d, Rd
)

.
The Helmholtz energy density is chosen as follows:

Ψ =
1

2
(ε − εp) : C : (ε − εp) +

1

2
εp : D : εp (78)

The expression for C and D are the same as in NLK hardening models. The
non-dissipative forces can be readily evaluated:

σnd = C : (ε − εp) , τ nd = −C : (ε − εp) + D : εp, Rnd = 0 (79)

Note that σnd and τ nd are related by the identity τ nd = −
(

σnd − D : εp
)

,
where the backstress D : εp introduces a linear kinematic hardening effect.
Moreover, let the pseudo-potential be equal to

φ
(

ε̇′, ε̇p′, ζ̇ ′; ε, εp, ζ
)

= ḡ (ε, εp, ζ) ζ̇ ′ + ID̄

(

ε̇′, ε̇p′, ζ̇ ′
)

D̄=
{

(

ε̇′, ε̇p′, ζ̇ ′
)

∈ V such that tr
(

ε̇p′
)

= 0 and ζ̇ ′ ≥
∥

∥

∥ε̇p′
∥

∥

∥

}

(80)

where

ḡ (ε, εp, ζ) =











√

2
3
σy + Hiso ζ if f̄ < 0

‖dev [C : (ε − εp) − D : εp]‖ if f̄ ≥ 0

f̄ (ε, εp, ζ) := ‖dev [C : (ε − εp) − D : εp]‖ −
(√

2
3
σy + Hiso ζ

)

(81)

with Hiso ≥ 0. The main characteristic of this pseudo-potential function is
given by the piecewise expression introduced to define the positive function ḡ.
It is assumed that ḡ depends on the sign of the function f̄ , which in turn is
related to the state variables. The conjugated pseudo-potential φ∗ reads

φ∗
(

σd′ , τ d′ , Rd′; ε, εp, ζ
)

= sup(ε̇′,ε̇p′ ,ζ̇′)∈D̄

(

σd′ : ε̇′ + τ d′ : ε̇p′ + Rd′ ζ̇ ′ − φ
)

= I0

(

σd′
)

+ IE

(

τ d′ , Rd′; ε, εp, ζ
)

(82)
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where E =
{(

τ d′ , Rd′
)

∈ S
2×R such that f

(

τ d′ , Rd′ ; ε, εp, ζ
)

≤ 0
}

and

f
(

τ d′ , Rd′; ε, εp, ζ
)

=











∥

∥

∥dev
(

τ d′
)∥

∥

∥−
(√

2
3
σy + Hiso ζ

)

+ Rd′ if f̄ < 0
∥

∥

∥dev
(

τ d′
)∥

∥

∥− ‖dev [C : (ε − εp) − D : εp]‖ + Rd′ if f̄ ≥ 0

(83)

The loading function f also has a twofold definition: recalling that the actual
thermodynamic force τ d fulfils the following identities

τ d = C : (ε − εp) −D : εp = σ − D : εp (84)

and Rd = −Rnd = 0, one can prove that if f̄ (ε, εp, ζ) < 0 then f
(

τ d, Rd; ε, εp, ζ
)

=

f̄ (ε, εp, ζ); moreover, if f̄ (ε, εp, ζ) ≥ 0, then f
(

τ d, Rd; ε, εp, ζ
)

is always zero,

viz. the actual state represented by (τ d, Rd) remains in contact with the
loading surface ∂E. In Figure 9, this situation is depicted for the tension-
compression case.

The normality conditions associated with the loading function f read:

ε̇p =
dev(τ d)

‖dev(τ d)‖ λ̇ = nλ̇, ζ̇ = λ̇

with λ̇f = 0 f ≤ 0 λ̇ ≥ 0
(85)

These flow rules are identical to those of a Prandtl-Reuss model (see Eqs.
(35)). However, they derive from a different loading function and for this
reason the computation of the plastic multiplier λ̇ is not the same. When
f
(

τ d, Rd; ε, εp, ζ
)

= f̄ (ε, εp, ζ) < 0, the loading-unloading conditions reduce

to λ̇ = 0, leading to an elastic behavior. As a result, the function f̄ is also
called yielding function, while the surface defined by the condition f̄ = 0 is
called yielding surface. Conversely, when f̄ ≥ 0 the set E evolves by virtue of
the dependence of f on the state variables ε, εp and ζ . During this evolution,
the actual thermodynamic forces (τ d, Rd) always satisfy the condition f = 0.
Moreover, the consistency condition

ḟ =







∂f

∂τ d′ : τ̇ d′ + ∂f
∂Rd′ Ṙd′

+ ∂f
∂ε : ε̇ + ∂f

∂εp : ε̇p + ∂f
∂ζ

ζ̇







(τ d′=τ d,Rd′=Rd)

= 0 (86)

is also identically fulfilled and, like for the endochronic theory, it does not
permit to compute λ̇ ≥ 0. Hence, the condition that the so-called limit function
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is equal to zero has to be invoked and this leads to (Auricchio and Taylor,
1995):

λ̇ = ζ̇ =















0 if f̄ < 0

〈n:ε̇〉
1+

N̄(M̄−f̄)+(D2+Hiso) M̄

2G f̄

if 0 ≤ f̄ ≤ M̄
(87)

where M̄, N̄ > 0. It can be proved that when f̄ tends to M̄ , the expression of
the plastic multiplier of a classical plasticity model with linear kinematic and
isotropic hardening is retrieved. Moreover, if Hiso = 0 an asymptotic value of

‖τ d‖ exists, and is equal to
√

2
3
σy + M̄ .

7 Conclusions

A common theoretical framework between Prandtl-Reuss models and endo-
chronic theory as well as NLK hardening and generalized plasticity models was
constructed. All models were defined assuming generalized normality. It was
therefore proved that a unique mathematical structure, based on the notions
of pseudo-potential and generalized normality, was able to contain plasticity
models traditionally formulated by other approaches. In particular, no exten-
sion of the generalized standard class of materials had to be introduced to
describe NLK hardening and generalized plasticity models. This approach al-
lowed several comparisons, that have clarified the relationships and analogies
between these, a priori different, plasticity theories.
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A Appendix

The vector spaces considered in this paper are: (i) the space of second order
tensors; (ii) the space of symmetric second order tensors S2; (iii) the set of real
scalars R =(−∞ + ∞); (iv) the cartesian product of a finite number of such
spaces. They are all equipped with an Euclidian product, so they are always
isomorph to the Euclidian vector space X = Rn.

(1) A subset C of X is said to be:
(a) a convex set if (1 − λ)x+λy ∈C whenever x,y ∈C and 0 < λ < 1.
(b) a cone if λy ∈ C when y ∈ C and λ > 0.

(2) Let φ : X → (−∞,∞] be an extended-real-valued function defined on the
vector space X. Then,
(a) the epigraph of φ is the set

epi φ = {(y, µ) such that y ∈ X, µ ∈ R, µ ≥ φ(y)} (A.1)

(b) φ is said to be convex on X if epi φ is convex as a subset of X × R.
(c) a convex function φ is said to be proper if and only if the set

D̄ = {y ∈X : φ (y) < +∞} (A.2)

is not empty. The set D̄ is called effective domain of φ, it is convex
since φ is convex and is the set where φ is finite.

(d) φ is said to be continuous relative to a set D̄ if the restriction of φ
to D̄ is a continuous function.

(e) φ is lower semicontinuous at x ∈X if

φ (x) = lim
y→x

inf φ (y) (A.3)

It can be proved that the condition of lower semi-continuity of φ is
equivalent to have that the level set {y : φ (y) ≤ α} is closed in X for
every α ∈ R (Rockafellar, 1969, pg. 51). As a result, when φ is a proper
convex function with a (convex) effective domain D̄ closed in X and φ is
continuous relative to D̄, then φ is lower-semicontinuous (Rockafellar,
1969, pg. 52).

(3) Let X∗ be the dual of X. Since X = Rn, then X∗∗ = X and the duality
product between x and x∗ elements of the dual vector spaces X and X∗

can be written as x∗·x.
Let φ : X → (−∞,∞] be an extended-real-valued convex function. Then,
the subgradients of φ at x ∈ X are elements x∗ ∈ X∗ such that

∀y ∈ X, φ(y) − φ(x) ≥ x∗ · (y − x) (A.4)
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The subdifferential set ∂φ(x) is the set of all subgradients x∗ at x:

∂φ(x) = {x∗ ∈ X
∗ such that the condition (A.4) holds} (A.5)

The function φ is said to be subdifferentiable at x when ∂φ(x) is non-
empty.

(4) If a function φ : X → (−∞,∞] is convex, proper, non-negative and such
that φ(0) = 0, then the normality condition

x∗ ∈ ∂φ(x) (A.6)

viz. x∗ belongs to the subdifferential set of φ at x, entails that x∗·x ≥ 0.
Proof: Setting y = 0 in the inequality (A.4) entails that, for any x in
the effective domain of φ, −φ(x) ≥ x∗ · (0 − x). Hence, by virtue of the
non-negativity of φ, x∗·x ≥ 0.

(5) When a function φ : X → (−∞,∞] is proper, convex and lower semi-
continuous, the dual function φ∗ : X

∗ → (−∞,∞] , defined by the
Legendre-Fenchel transform

∀y∗ ∈ X
∗ φ∗(y∗) = sup

y∈X

(y∗ · y − φ(y)) (A.7)

is related to φ by a one-to-one correspondence, in the sense that for such
a kind of functions, the conjugate φ∗ is in turn proper, convex and lower
semi-continuous and φ∗∗ = φ (Rockafellar, 1969, pg. 104).

Under these assumptions, it also holds:

∀y∗ ∈ X
∗ φ∗(y∗) = sup

y∈D̄

(y∗ · y − φ(y)) (A.8)

Moreover, the following relationships are equivalent:
(i) x∗ ∈ ∂φ(x);
(ii) x ∈ ∂φ∗(x∗)
(iii) φ(x) + φ∗(x∗) = x∗ · x (A.9)

Condition (i) is equivalent to x∗ · x−φ(x) ≥ x∗ · y−φ(y). The supremum
of the second term of this inequality is equal by definition to φ∗(x∗) and
occurs when y = x and therefore (iii) is the same as (i). Dually, (ii) and
(iii) are equivalent.
Remark 1. Under the previous assumptions, if φ ≥ 0 and φ(0) = 0, then
(A.7) entails that φ∗(0) = 0. Moreover, the identity φ∗∗ = φ implies that
φ(0) = supy∗∈X∗(−φ∗(y∗)), which in turn leads to φ∗ ≥ 0. Reciprocally,
φ∗ ≥ 0 and φ∗(0) = 0 entail that φ ≥ 0 and φ(0) = 0.
Remark 2. If φ∗ is such that φ∗ ≥ 0 and φ∗(0) = 0, then the normality
condition (ii) implies that x∗ · x ≥ 0. Proof: Condition (ii) is equivalent
to (i), with φ ≥ 0 and φ(0) = 0. Then, using the result of item 4, the
non-negativity of x∗ · x follows.
Remark 3. The conjugate φ̃∗ of an arbitrary function φ̃ : X → (−∞,∞]
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can still be defined by (A.7). In this case, φ̃∗ is proper, convex, lower semi-

continuous and is equal to the conjugated φ∗ of φ = cl
(

conv φ̃
)

, where φ
is the greatest proper convex lower semi-continuous function majorized
by φ̃ (Rockafellar, 1969, pp. 52, 103-104).

(6) A function φ : X → (−∞,∞] is positively homogeneous of order 1 if and
only if

∀y ∈ X, ∀ρ ∈ (0,∞), φ (ρy) = ρφ (y) (A.10)

The epigraph of such functions is a cone (Rockafellar, 1969, pg. 30 ).
Given φ : X → (−∞,∞], the following three statements are equivalent:

(i) φ is proper, convex, lower semi-continuous and positively homoge-
neous of order 1

(ii) The Legendre-Fenchel conjugate φ∗ of φ is the indicator function of
a non-empty, convex and closed set Ē, i.e.

φ∗ (y∗) = IĒ (y∗) =











0 if y∗ ∈ Ē

+∞ if y∗ ∈ Ē

(iii) φ is the support function of a non-empty, convex and closed set Ē,
i.e.

φ (y) = I
∗
Ē

(y) = sup
y∗∈Ē

(y∗·y)

The equivalence between (i) and (ii) can be proved by showing that φ∗

has no values other than 0 and +∞ (Rockafellar, 1969, pg. 114). The set
where φ∗ = 0 is non-empty, convex and closed since φ is proper, convex
and lower semi-continuous. The equivalence between (ii) and (iii) follows
from the definition of Legendre-Fenchel transform, support functions and
indicator functions.

Remark. If φ fulfils conditions in (i), then for any x where φ is subd-
ifferentiable,

φ (x) = φ∗∗ (x) = x∗·x with x∗ ∈ ∂φ(x)

Proof: from the equivalence between (i) and (ii), the conjugated of φ is
the indicator function of a closed convex set Ē and x∗ ∈ Ē since φ is
subdifferentiable at x by assumption. Then, use Eq. (A.9) and recall by
(ii) that φ∗ (x∗) = 0.

(7) Let φ : X → (−∞, +∞] be a proper, convex, lower semi-continuous
function, positively homogeneous of order 1. Then:
(i) from item (6), its conjugate φ∗ is the indicator function of a non-
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empty, closed and convex set Ē. Hence, by using the definition (A.4),

∂φ∗ (x∗) = ∂IĒ (x∗) =



























0 if x∗ ∈ int
(

Ē

)

C (x∗) if x∗ ∈ ∂Ē

∅ if x∗ /∈ Ē

(A.11)

where C (x∗) =
{

x ∈ X : ∀y∗ ∈ ¯E x· (y∗ − x∗) ≤ 0
}

is the so-called

normal cone at x∗ ∈ ∂Ē.
(ii) if in addition φ does not depend on some components y1 of y =

(y1,y2) ⊂ X = X1 × X2 , i.e. φ(y) = φ(y1,y2) = φ̂(y2), then the
conjugated function φ∗ can be computed as follows:

φ∗(y∗
1,y

∗
2) = sup(y1,y2)∈X

(y∗
1 · y1 + y∗

2 · y2 − φ̂(y2))

= I0(y
∗
1) + supy2∈X2

(y∗
2 · y2 − φ̂(y2))

= I0(y
∗
1) + IE(y∗

2)

(A.12)

The Legendre-Fenchel conjugate is the indicator function of 0 with
respect to y∗

1 plus the Legendre-Fenchel conjugate of φ̂(x2), which is
the indicator function of a non-empty, closed and convex set E. Hence,

x ∈ ∂IĒ (x∗) ⇔ x1 ∈ X1 and x2 ∈ ∂IE(x∗
2)

In the particular case where E= {y∗ ∈ X
∗ such that f (y∗) ≤ 0} ,

where f is a convex and smooth function, the normality condition at
y∗ = x∗, viz. x ∈ ∂IE (x∗), can be written as follows

x = µ grad f (x∗) with











µ = 0 for f (x∗) < 0

µ ≥ 0 for f (x∗) = 0

These two last conditions are often replaced by

µ ≥ 0, f (x∗) ≤ 0, µf (x∗) = 0 (A.13)

which are the classical loading-unloading conditions of plasticity, usu-
ally written with µ replaced by the plastic multiplier λ̇. The dependence
of f on the argument x∗ is often omitted in order to simplify the nota-
tion. In the convex mathematical programming literature, (A.13) are
known as Kuhn-Tucker conditions (see e.g. Luenberger (1984)).
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Fig. 1. Classical Prandtl-Reuss model. Tension-compression case.

a) Projection of the pseudo-potential effective domain D̄ on the
(

ε̇p′ , ζ̇ ′
)

-plane. This

set is indicated by D. b) Domain E associated with the dual pseudo-potential φ∗.
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Fig. 2. Modified Prandtl-Reuss model. Tension-compression case with ξ(ζ) = 0.

a) Projection of the pseudo-potential effective domain D̄ on the
(

ε̇p′ , ζ̇ ′
)

-plane. This

set is indicated by D. b) Different configurations of the domain E. The position of
E changes according to the value of the internal variable ζ. The point (τ d, Rd),
representing the actual state, always lies on the axis Rd′ = 0.

37



Fig. 3. Mechanical dissipation for the case of simple tension. The hatched area is
the energy

∫

Φm(t)dt dissipated during the monotonic loading.
a) Classical Prandtl-Reuss model. b) Modified Prandtl-Reuss model. c) Modified
Prandtl-Reuss model with ξ(ζ) = dξ

dζ (ζ) = 0. d) Modified Prandtl-Reuss model with
√

3
2

dξ
dζ (ζ) = σy(g(ζ) − 1): the classical model is recovered.

38



Fig. 4. Endochronic model. Tension-compression case with g(ζ) = 1.
a) Several configurations of the set D, which is the projection of the pseudo-potential

effective domain D̄ on the
(

ε̇p′ , ζ̇ ′
)

-plane. b) Configurations of the convex set E

associated with those of D. The point (τ d, Rd), representing the actual state, always
lies on the axis Rd′ = 0.
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Fig. 5. Endochronic Karray-Bouc-Casciati model (thin lines) vs. Prandtl-Reuss
model (thick line). Tension-compression case with g(ζ)=1 and ξ(ζ) = 0.
a) Influence of the parameter n on loading branches. b) Influence of the γ/β ratio
on unloading branches. The slope at σ11 = 0 is the same for all γ/β values.
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Fig. 6. Endochronic model vs. Prandtl-Reuss model. Tension-compression case.

a) The set D is the projection of D̄ on the
(

ε̇p′ , ζ̇ ′
)

-plane, where D̄ is the non-convex

effective domain of the pseudo-potential φ̃ of Eq. (57). It defines an endochronic
model where the intrinsic time flow ζ̇ equals the norm of ε̇p. b) The convex set
E associated with the indicator function φ∗ given in Eqs. (58)-(59), which is the
Legendre-Fenchel conjugated of φ̃.
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Fig. 7. NLK hardening model. Tension-compression case.

a) Projection of the effective domain D̄ on the
(

ε̇p′ , ζ̇ ′
)

-plane. b) Projection of D̄

on the
(

β̇
′
, ζ̇ ′1

)

-plane.
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Fig. 8. NLK hardening model. Tension-compression case with g(ζ) = 1.
a) Condition f ≤ 0 when Rd′

1 = Rd
1 = 0 and X

d′ = X
d = D : (εp − β). b) Condition

f ≤ 0 when Rd′ = Rd = 0 and ‖dev
(

τ d′
)

‖ = ‖dev
(

τ d
)

‖ =
√

2
3σy.
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Fig. 9. Generalized plasticity. Tension-compression case.

a) Projection of the pseudo-potential effective domain D̄ on the
(

ε̇p′ , ζ̇ ′
)

-plane. This

set is indicated by D. b) Several configurations of the domain E. When f̄ ≥ 0, E

translates upward during loading phases and downward during unloading phases.
The point (τ d, Rd), representing the actual state, always lies on the axis Rd′ = 0.
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1975 and her thèse d’état in 1989. She joined the Conservatoire National des
Art et Métiers (CNAM) in 1973, where she teaches Mathematics for engineers.
She develops her research activity at the Laboratoire d’Analyse des Matériaux
et Identification (LAMI-ENPC/Institut Navier), Paris, France. Her research
interests include applied mathematics and mechanics, in particular adhesion,
fracture, plasticity and hysteresis.

45


