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Non-classical plasticity theories and generalized normality.

A simple way to define the flow rules of plasticity models is the assumption of generalized normality associated with a suitable pseudo-potential function. This approach, however, is not usually employed to formulate endochronic theory and non-linear kinematic (NLK) hardening rules as well as generalized plasticity models. In this paper, generalized normality is used to give a new formulation of these classes of models. As a result, a suited pseudo-potential is introduced for endochronic models and a non-standard description of NLK hardening and generalized plasticity models is also provided. This new formulation allows for an effective investigation of the relationships between these three classes of plasticity models.

Introduction

The models proposed so far in the literature to describe the rate independent inelastic behavior of real materials subjected to monotonic or cyclic loading conditions can be essentially classified into two main families: (i) models where the present state depends on the present value of observable variables (total strain, temperature) and of suitable internal variables; (ii) models, indicated here as hereditary, that require the knowledge of the whole past history of observable variables.

The first group encompasses, for instance, the classical models of Prandtl-Reuss and Prager (see e.g. [START_REF] Lemaitre | Mechanics of solid materials[END_REF]) and the NLK hardening model of [START_REF] Armstrong | A mathematical representation of the multiaxial Bauschinger effect[END_REF], in its original form as well as in the modified versions recently proposed by [START_REF] Chaboche | On some modifications of kinematic hardening to improve the description of ratchetting effects[END_REF] and [START_REF] Ohno | Kinematic hardening rules with critical states of dynamic recovery. Parts I and II[END_REF] in order to improve the ratchetting modelling. For these models, the well known notions of elastic domain and loading (or yielding) surface apply. Associativity and non-associativity of the plastic strain flow rule are also well-established concepts, as well as the assumption of generalized associativity (or generalized normality), relating all internal variable flow directions to a given loading surface [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF] [START_REF] Jirásek | Étude dynamique d'un système d'isolation antisismique[END_REF]. Using the language of convex analysis [START_REF] Rockafellar | Convex Analysis[END_REF], generalized normality entails that the flows of all internal variables belong to the subdifferential set of a given scalar non-negative function called pseudopotential [START_REF] Moreau | Sur les lois de frottement, de plasticité et de viscosité[END_REF] [START_REF] Frémond | Non-Smooth Thermomechanics[END_REF].

Among internal variable theories, generalized plasticity deserves special attention. A first important step for its formulation was the idea, suggested by [START_REF] Eisenberg | A theory of Plasticity with non-coincident yield and loading surfaces[END_REF], of a plasticity model where, despite classical plasticity, loading and yielding surfaces are not coincident. Then, starting from an axiomatic approach to describe inelastic behavior of materials, Lubliner proposed some simple generalized plasticity models, able to represent some observed experimental behavior of metals [START_REF] Lubliner | A simple theory of plasticity[END_REF][START_REF] Lubliner | An axiomatic model of rate-independent plasticity[END_REF][START_REF] Lubliner | A maximum-dissipation principle in generalized plasticity[END_REF] [START_REF] Lubliner | A new model of generalized plasticity[END_REF]. More recently, generalized plasticity has been used for describing the shape memory alloy behavior [START_REF] Lubliner | Generalized plasticity and shape-memory alloys[END_REF].

Endochronic models [START_REF] Valanis | A theory of viscoplasticity without a yield surface[END_REF]) and Bouc-Wen type models [START_REF] Bouc | Modèle mathématique d'hystérésis[END_REF]) [START_REF] Wen | Method for random vibration of hysteretic systems[END_REF] are two important examples of hereditary models. Endochronic theory has been developed during the seventies and used for modelling the plastic behavior of metals (see, for instance, [START_REF] Valanis | A theory of viscoplasticity without a yield surface[END_REF], [START_REF] Valanis | Endochronic representation of cyclic creep and relaxation of metals[END_REF]) and the inelastic behavior of concrete and soils (among others, [START_REF] Bažant | Endochronic constitutive law for liquefaction of sand[END_REF], [START_REF] Bažant | Endochronic theory of inelasticity and failure of concrete[END_REF]). The endochronic stress evolution rule depends on the so-called intrinsic time and is formulated by a convolution integral between the strain tensor and a scalar function of the intrinsic time called memory kernel. When the kernel is an exponential function, an incremental form of endochronic flow rules exists, which is commonly used in standard analyses and applications. Models of Bouc-Wen type are widely employed for modelling the cyclic behavior of structures in seismic engineering [START_REF] Baber | Random vibrations of hysteretic, degrading systems[END_REF] [START_REF] Sivaselvan | Hysteretic models for deteriorating inelastic structures[END_REF] and for representing hysteresis of magneto-rheological dampers in semi-active control applications [START_REF] Sain | Model for hysteresis and application to structural control[END_REF] [START_REF] Jansen | Semi-active control strategies for MR dampers: a comparative study[END_REF]. The strict relationship between endochronic and Bouc-Wen type models has been mentioned several times in the literature (see, among others, Karray and Bouc (1989) and [START_REF] Casciati | Stochastic dynamics of hysteretic media[END_REF]). Recently, [START_REF] Erlicher | Thermodynamic admissibility of Bouc-Wen type hysteresis models[END_REF] showed that the fundamental element of this relationship is the choice of an appropriate intrinsic time.

Endochronic theory and classical internal variable theory have been compared by using several approaches: [START_REF] Bažant | Endochronic inelasticity and incremental plasticity[END_REF] observed that for endochronic theory the notion of loading surface can still be introduced, but it looses its physical meaning; [START_REF] Valanis | Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the endochronic theory[END_REF] and [START_REF] Watanabe | Internal time, general internal variable, and multi-yield-surface theories of plasticity and creep: a unification of concepts[END_REF] proved that a NLK hardening model can be derived from an endochronic model by imposing a special intrinsic time definition. Moreover, a comparative study between NLK hardening and generalized plasticity models has been presented by [START_REF] Auricchio | Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity[END_REF]. A tight relationship between endochronic theory and generalized plasticity is also expected to exist, but, by the authors' knowledge, no analysis on this subject exists. More generally, there is a lack of unified theoretical framework, on which formal comparisons between these plasticity theories could be based. The main goal of this paper is the formulation of this theoretical framework using the classical notion of generalized normality [START_REF] Moreau | Sur les lois de frottement, de plasticité et de viscosité[END_REF] [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF]. As a result, a new formulation of endochronic and NLK hardening models as well as generalized plasticity models is suggested and is used to investigate the relationships between them.

The paper is organized as follows: in the first section, the standard theoretical framework of thermomechanics is briefly recalled, with reference to the notions of pseudo-potential and generalized normality as well as Legendre-Fenchel transform and dual pseudo-potential. In the following sections, several plasticity models are presented and are shown to fulfil the generalized normality assumption. The Prandtl-Reuss and endochronic models are considered first, in both standard and multi-layer formulations. Then, NLK hardening model and generalized plasticity follow. The discussion is limited to initially isotropic materials, whose plastic behavior is governed by the second invariant of the deviatoric stress, J 2 , known as von Mises or J 2 materials. No stability analysis is provided, as it is beyond the purposes of this contribution.

General thermodynamic framework

Under the assumption of infinitesimal transformations, the classical expression of the local form of the first and second principle of thermodynamics can be written as follows:

T ṡ = -Ψ -s Ṫ -div (q) + r + σ : ε (1) Φ s (t) = ṡ + div q T - r T ≥ 0 (2)
where the superposed dot indicates the time derivative; s is the entropy density per unit volume, q is the vector of the flowing out heat flux, T is the absolute temperature, r is the rate of heat received by the unit volume of the system from the exterior; σ is the second order symmetric Cauchy stress tensor; ε is the tensor of small total strains; Φ s (t) is the rate of interior entropy production. In the vector space of all second order tensors, the Euclidean scalar product : is defined by x : y = x ij y ij ; the vector subspace of second order symmetric tensors is denoted by S 2 . The Helmholtz free energy density per unit volume is a state function defined as

Ψ = Ψ (ε, T, χ 1 , ..., χ N ) = Ψ (v) (3) 
where χ 1 , ..., χ N , are the tensorial and/or scalar internal variables, related to the non-elastic evolution and v = {ε, T, χ 1 , ..., χ N } is the vector containing all the state variables, namely the total strain tensor, the temperature and the internal variables.

For isothermal conditions, the use of Eq. ( 1) in the inequality (2) leads to

Φ m (t) := T Φ s (t) = T ṡ = σ : ε -Ψ ≥ 0 (4)
which states that the intrinsic or mechanical dissipation Φ m (rate of energy per unit volume) must be non-negative. The non-dissipative thermodynamic forces are defined as functions of the free energy density Ψ (see, among others, [START_REF] Frémond | Non-Smooth Thermomechanics[END_REF])

σ nd := ∂Ψ ∂ε , τ nd i := ∂Ψ ∂χ i ⇐⇒ q nd = ∂Ψ ∂v (5)
The non-dissipative stress σ nd is associated with the observable variable ε, while τ nd i are associated with the internal variables χ i . All non-dissipative forces can be collected in q nd = σ nd , τ nd 1 , ..., τ nd N . Hence, by substituting (5) into (4), one obtains

Φ m (t) = σ -σ nd : ε - N i=1 τ nd i • χi = σ : ε -q nd • v ≥ 0 (6)
where v is the vector of the fluxes, belonging to a suitable vector space V. The vector spaces considered in this paper are isomorph to R n and the same hold for their dual V * (see Appendix). The symbol • indicates the scalar product of two objects having the same structure: two tensors, two scalar variables or two collections of tensorial and/or scalar variables (the same notation has been used e.g. by Jirásek and Bažant (2002, pg. 428)). The inequality ( 6) can be written in a slightly different manner, by introducing the dissipative thermodynamic forces

q d = σ d , τ d 1 , ..., τ d N := σ -σ nd , -τ nd 1 , ..., -τ nd N ∈ V * (7) Hence, Φ m (t) = σ d : ε + N i=1 τ d i • χi = q d • v ≥ 0 (8)
The forces q d have to be defined in such a way that the couple q d , v always fulfils the inequality (8). Therefore, some additional complementary rules have to be introduced. They can be defined by assuming the existence of a nonnegative, proper, convex and lower semi-continuous function φ : V → (-∞, ∞] (Appendix, item 2), called pseudo-potential, in general non-differentiable, such that φ (0) = 0 and:

q d ∈ ∂φ ( v) (9) 
where ∂ indicates the sub-differential operator (see Appendix, item 3). This condition is called generalized normality. A more detailed way of writing ( 9) is

q d ∈ ∂φ ( v′ ; v)| v′ = v (10)
As a matter of fact, φ is a general function of the fluxes v′ and may also depend on the state variables v. However, the subdifferential is taken, by definition, only with respect to the fluxes v′ and the thermodynamic force q d corresponds to the subdifferential of φ at v′ = v, where v is the actual flow. By using the properties of sub-differentials, it can be proved that for dissipative forces defined by (9), the inequality q d • v ≥ 0 is always fulfilled (Appendix, item 4). Therefore, the second principle ( 8) is also satisfied.

A dual pseudo-potential φ * : V * → (-∞, ∞] can be defined by the Legendre-Fenchel transform of φ:

φ * q d ′ := sup v′ ∈V q d ′ • v′ -φ ( v′ ) (11) 
When φ has an additional dependence on the state variables v , then (11) leads to φ * = φ * q d ′ ; v . It can be proved that the dual pseudo-potential is a non-negative, proper, convex and lower semi-continuous function of q d ′ , such that φ * (0) = 0 (see Appendix, item 5). The dual normality condition reads

v ∈ ∂φ * q d (12)
where q d is the actual value of the dissipative force. The expression ( 12) is equivalent to

v ∈ ∂φ * q d ′ ; v q d ′ =q d (13) 
and it guarantees that q d • v ≥ 0 (Appendix, item 5). Moreover, it defines the complementarity rules of generalized standard materials [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF], sometimes called fully associated materials (Jirásek and Bažant, 2002, pg. 452).

Plasticity is characterized by a rate-independent memory effect (Visintin, 1994, pg. 13). This special behavior occurs when the pseudo-potential φ is a positively homogeneous function of order 1 with respect to the fluxes v′ . In this case, provided that q d is computed from (9) or that v derives from (12), it can be proved that the pseudo-potential at v is equal to the intrinsic dissipation, viz. φ ( v) = q d • v = Φ m (Appendix, item 6). Moreover, the dual pseudopotential φ * becomes the indicator function of a closed convex set Ē ⊂ V * and the normality rule (12) entails that, given the dissipative force q d ∈ Ē, the flux v fulfils the following condition:

∀q d ′ ∈ Ē q d ′ -q d • v ≤ 0 (14)
viz. for a given dissipative force q d , the flow v defined by (14) (or, equivalently, by ( 12) or ( 13)) is such that its power when it is associated to the actual force q d is always greater or equal to the power q d ′ • v of all the other dissipative forces q d ′ ∈ Ē (generalized maximum-dissipation principle [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF]). When q d ∈ ∂ Ē, the inequality ( 14) indicates that v belongs to the cone orthogonal to ∂ Ē at the point q d . When q d ∈ int Ē , it forces the flow v to be zero (Appendix, item 7).

3 Prandtl-Reuss model

Perfectly plastic Prandtl-Reuss model

In order to illustrate the general procedure that is adopted hereinafter, the basic example of the Prandtl-Reuss model is considered first. The relevant state variables are the total and the plastic strain v = (ε, ε p ) and q nd = σ nd , τ nd are the associated non-dissipative thermodynamic forces. The usual quadratic form of the Helmholtz free energy density Ψ is used, in order to preserve the linear dependence of all non-dissipative forces with respect to state variables:

Ψ = 1 2 (ε -ε p ) : C : (ε -ε p ) (15)
For isotropic materials, the fourth-order tensor of the elastic moduli is equal to

C = K -2 3 G 1 ⊗ 1+2GI,
where K is the (isothermal) bulk modulus, G is the shear modulus and ⊗ is the direct (or outer) product of two second order tensors. The assumption of isotropy is always adopted, even if the concise symbol C is used. The non-dissipative forces associated with (15) can be derived by means of (5):

σ nd = C : (ε -ε p ) , τ nd = -C : (ε -ε p ) (16)
The evolution of the dissipative forces q d = σ d , τ d ∈ S 2 ×S 2 := V * is defined by introducing a suitable pseudo-potential φ, which is a function of the fluxes v′ = ε′ , εp ′ ∈ S 2 × S 2 := V (× is the cartesian product):

φ ε′ , εp ′ = 2 3 σ y εp ′ + ID ε′ , εp ′ D = ε′ , εp ′ ∈ V such that tr εp ′ = 0 ( 17 
)
where tr(u) indicates the trace of the tensor u ∈S 2 . The norm of the second order symmetric tensor u is given by u = √ u ij u ij . If in addition tr (u) = u ii = 0, then u 2 = 2J 2 (u) where J 2 (u) is the second invariant of the deviatoric part of u; σ y is the one-dimensional tension stress limit and ID is the indicator function of the set D, namely ID = 0 if tr εp ′ = 0 and ID = +∞ elsewhere. This set is the effective domain of φ (Appendix, item 2). The pseudo-potential φ is a homogeneous function of order 1 with respect to ε′ , εp ′ and therefore a rate independent constitutive behavior is expected and the dissipation Φ m is equal to 2 3 σ y εp , where εp is the actual plastic flow (Appendix, item 6). The indicator function ID accounts for the fact that plastic deformation occurs without volume changes (plastic incompressibility). This assumption is usual for metals and has been validated by experimental evidence.

The pseudo-potential φ * , dual of φ, can be computed using the Legendre-Fenchel transform (Appendix, item 5) and is equal to:

φ * σ d ′ , τ d ′ = sup ( ε′ , εp ′ )∈ D σ d ′ : ε′ + τ d ′ : εp ′ -φ = IĒ σ d ′ , τ d ′ (18)
The dual pseudo-potential φ * is the indicator function of a closed convex set Ē. Hence, φ = φ * * is the support function of the same set (Appendix, item 6). Moreover, since φ does not depend on ε′ , the dual pseudo-potential φ * can be written as the sum of two indicator functions (Appendix, item 7):

φ * σ d ′ , τ d ′ = I 0 σ d ′ + I E τ d ′ E = τ d ′ ∈ S 2 such that f τ d ′ = dev τ d ′ -2 3 σ y ≤ 0 (19)
where dev(u) is the deviatoric part of u ∈S 2 . The first term is equivalent to the condition σ d ′ = 0, while the other indicator function I E defines a region in the τ d ′ stress space. Recalling that the actual value of τ d ′ , viz. τ d , fulfils the condition τ d = -τ nd and that the only possible value for σ d is zero, using ( 16) it is straightforward to see that τ d = σ = σ nd and that E can also be interpreted as a set in the σ stress space. The associated function f is known as loading function and the condition f = 0 defines the plastic states.

The interior of E is associated with the elastic states and the whole (closed) set E contains all plastically admissible states. The actual flows ( ε, εp ) can now be derived from ( 19) by computing the subdifferential set of φ * and then considering it at σ d ′ , τ d ′ = σ d , τ d . Hence, no restrictive conditions are imposed on ε, while the plastic strain flow reads (Appendix, item 7)

εp = dev(τ d ) dev(τ d ) λ = n λ with λ ≥ 0, f τ d ≤ 0, λf τ d = 0 (20)
Observe that f in the loading-unloading conditions in the second row of ( 20) is computed at the actual stress state. The plastic multiplier λ is then evaluated by imposing the consistency condition, i.e. λ ḟ = 0 (see e.g. [START_REF] Simo | Elastoplasticity and Viscoplasticity -Computational aspects[END_REF]), with

ḟ = ∂f ∂τ d ′ : τ d ′ τ d ′ =τ d (21)
Note that ḟ is computed from the general expression of f τ d ′ and then evaluated at the actual state τ d ′ = τ d . Consistency corresponds to the requirement that in order to have λ > 0, the actual dissipative force τ d ∈ ∂E cannot leave ∂E during the plastic flow. Hence, by using ( 20) and the relationship

τ d = σ = C : (ε -ε p ), one has ḟ = dev τ d dev (τ d ) : dev τ d = n : C : ε-n : C : n λ (22) thus λ = H (f ) n:C: ε n:C:n = H (f ) n : ε , where x = x+|x| 2 ( McCauley 
brackets) and H (f ) is the Heaviside function, equal to zero for f < 0 and equal to 1 elsewhere.

In summary, the Prandtl-Reuss perfectly plastic model was formulated by means of the Helmholtz free energy Ψ and the pseudo-potential φ; then, the dual potential φ * was computed from the Legendre-Fenchel transform of φ; the subdifferential set of φ * was used to define the fluxes and the consistency assumption led to the determination of the plastic multiplier λ. In the next sections, this approach will be used to formulate two Prandtl-Reuss models with isotropic hardening and other more complex plasticity models, such as endochronic, NLK hardening and generalized plasticity models. In order to get this result, some non-standard expressions for the pseudo-potentials φ and φ * are introduced.

Classical Prandtl-Reuss model with isotropic hardening

The vector of the representative state variables for a Prandtl-Reuss model with isotropic hardening is equal to v = (ε, ε p , ζ), while q nd = σ nd , σ, R nd are the associated non-dissipative forces. The scalar internal variable ζ and the associated forces R d and R nd are introduced in order to represent the isotropic hardening. Moreover, v = ε, εp , ζ ∈ V = S 2 × S 2 × R is the flux vector and

q d = σ d , σ d , R d ∈ V * = S 2 × S 2 × R contains all dissipative thermodynamic
forces. The Helmholtz free energy is assumed to be of the form

Ψ = 1 2 (ε -ε p ) : C : (ε -ε p ) + ξ (ζ) (23)
where ξ (ζ) is a scalar function such that ξ (0) = 0 and dξ dζ (0) = 0. It follows that

σ nd = C : (ε -ε p ) , τ nd = -C : (ε -ε p ) , R nd = dξ dζ (ζ) (24)
The pseudo-potential is assumed of the following form:

φ ε′ , εp ′ , ζ′ = 2 3 σ y ζ′ + ID ε′ , εp ′ , ζ′ D= ε′ , εp ′ , ζ′ ∈ V such that tr εp ′ = 0 and ζ′ ≥ εp ′ (25) 
The first term in the expression of φ is the same as in the perfectly-plastic model when ζ′ is equal to the norm of εp ′ . The second term, that is the indicator function ID, depends not only on tr( εp ′ ), but also on the flow ζ′ , which is forced be greater or equal than the norm of the plastic strain flow. This inequality guarantees that ζ′ and φ are non-negative and entails that D is convex and closed (see Appendix, item 1 and Figure 1a, which illustrates the projection of D on the εp ′ , ζ′ -plane for the tension-compression case). The dual pseudo-potential is different from (18), due to the presence of the dissipative force R d ′ associated with ζ′ :

φ * σ d ′ , τ d ′ , R d ′ = sup ( ε′ , εp ′ , ζ′ )∈ D σ d ′ : ε′ + τ d ′ : εp ′ + R d ′ ζ′ -φ = I 0 σ d ′ + I E τ d ′ , R d ′ (26) where E = τ d ′ , R d ′ ∈ S 2 ×R such that f τ d ′ , R d ′ ≤ 0 and f τ d ′ , R d ′ = dev τ d ′ -   2 3 σ y -R d ′   ≤ 0 (27)
The loading function f defines a convex and closed region E in the

τ d ′ , R d ′ space, where the actual value of R d ′ , viz. R d = -R nd = -dξ(ζ)
dζ governs isotropic hardening (or softening). The limit stress becomes greater than its initial value 2 3 σ y when dξ (ζ) dζ ≥ 0 and less when dξ(ζ) dζ ≤ 0. Figure 1b illustrates the set E. The flow rules follow from the generalized normality conditions:

εp = dev(τ d ) dev(τ d ) λ = n λ, ζ = λ with λ ≥ 0, f ≤ 0, λf = 0 (28)
The flow of the internal variable ζ is equal to the plastic multiplier λ, which can be evaluated by imposing the consistency condition:

ḟ = ∂f ∂τ d ′ : τ d ′ + ∂f ∂R d ′ Ṙd ′ (τ d ′ =τ d ,R d ′ =R d ) = 0 (29) It follows that λ = H (f ) n : C : ε n : C : n+ d 2 ξ(ζ) dζ 2 = H (f ) n : ε 1+ 1 2G d 2 ξ(ζ) dζ 2 (30)
where H (f ) and still indicate the Heaviside function and McCauley brackets, respectively.

Modified Prandtl-Reuss model with isotropic hardening

The classical model of the previous section can be extended as follows. Assume the state variables v = (ε, ε p , ζ) and let the Helmholtz energy be equal to

Ψ = 1 2 (ε -ε p ) : C : (ε -ε p ) + ξ (ζ) (31) 
As a result, the non-dissipative forces are the same as in Eq. ( 24). Then, a generalized definition of the pseudo-potential φ is adopted:

φ ε′ , εp ′ , ζ′ ; ζ = 2 3 σ y g (ζ) -dξ(ζ) dζ ζ′ + ID ε′ , εp ′ , ζ′ D= ε′ , εp ′ , ζ′ ∈ V such that tr εp ′ = 0 and ζ′ ≥ εp ′ (32) 
In this case, φ explicitly depends on the internal variable ζ, by means of dξ(ζ) dζ and of the function g (ζ), positive and such that g (0) = 1. In the particular case where g (ζ) = 1 + dξ(ζ) dζ 3 2 1 σy , the classical expression given in Eq. ( 25) is recovered. The dual pseudo-potential φ * can be evaluated from the standard procedure, thus yielding:

φ * σ d ′ , τ d ′ , R d ′ ; ζ = I 0 σ d ′ + I E τ d ′ , R d ′ ; ζ (33) 
where

E = τ d ′ , R d ′ ∈ S 2 ×R such that f τ d ′ , R d ′ ; ζ ≤ 0 and f τ d ′ , R d ′ ; ζ = dev τ d ′ -   2 3 σ y g (ζ) - dξ (ζ) dζ -R d ′   (34) 
In Figure 2, the projection of D on the εp ′ , ζ′ -plane and the set E are depicted for the tension-compression case, with the assumption ξ (ζ) = 0. The flow rules are the same as in the previous case and they are reported below for completeness:

εp = dev(τ d ) dev(τ d ) λ = n λ, ζ = λ with λ ≥ 0, f ≤ 0, λf = 0 (35)
In this case, ḟ has to be computed accounting for the state variables. Hence consistency condition reads

ḟ = ∂f ∂τ d ′ : τ d ′ + ∂f ∂R d ′ Ṙd ′ + ∂f ∂ζ ζ (τ d ′ =τ d ,R d ′ =R d ) = 0 (36)
and the plastic multiplier becomes equal to:

λ = H (f ) n : C : ε n : C : n+ 2 3 σ y dg(ζ) dζ = H (f ) n : ε 1+ 2 3 σy 2G dg(ζ) dζ (37) provided that 1 + 2 3 σy 2G dg(ζ)
dζ > 0. This condition does not prevent softening, which occurs when dg(ζ) dζ ≤ 0.

The comparison of Eqs. ( 27) and (34) proves to be very interesting. First, the usual loading function only depends on the dissipative forces, while f in Eq. ( 34) is also related to the internal variable ζ. Moreover, since

R d = -R nd = -dξ(ζ) dζ , the loading function (34) at τ d , R d becomes f τ d , R d ; ζ = dev τ d - 2 3 σ y g (ζ) (38) 
This expression shows that the actual limit stress is equal to 2 3 σ y g (ζ) and is independent from the function ξ (ζ) introduced in the Helmholtz energy density (this is not the case for the classical Prandtl-Reuss model).

The difference between the two Prandtl-Reuss models can be also explained in terms of mechanical dissipation Φ m . For the modified Prandtl-Reuss model, it is equal to

Φ m =   2 3 σ y g (ζ) - dξ (ζ) dζ   ζ (39) which is non-negative provided that dξ(ζ) dζ ≤ 2 3 σ y g (ζ)
. The case of a monodimensional monotonic loading is depicted in Figure 3. The standard Prandtl-Reuss model is characterized by the fact that the energy R d ζ associated to isotropic hardening is not dissipated. For this reason it is sometimes referred as energy blocked in dislocations (Lemaitre and Chaboche, 1990, pg. 402). Hence, the mechanical dissipation is equal to 

Multi-layer models of Prandtl-Reuss type

Modified Prandtl-Reuss models, defined by Eqs. ( 31)-(32), can be directly extended to multi-layer models [START_REF] Besseling | A theory of elastic, plastic and creep deformation of an initially isotropic material showing anisotropic strain hardening, creep recovery and secondary creep[END_REF]. They consist of a system of N elastoplastic elements connected in parallel. When every individual elements are Prandtl-Reuss models, the corresponding multi-layer model is indicated as of the Prandtl-Reuss type. This is the case in the present section. Hence, let

Ψ = N i=1 Ψ i = N i=1 1 2 (ε -ε p i ) : C : (ε -ε p i ) + ξ i (ζ i ) ( 40 
)
be the Helmholtz energy density, defined as the sum of N expressions of the type (31). The internal variable ε p i is the plastic strain of the generic element i, while ζ i is the scalar variable associated with the isotropic hardening of the same element. All elements have by definition the same elastic modulus tensor, chosen to be equal to

C = 1 N K -2 3 G 1 ⊗ 1+2GI .
The non-dissipative 13 thermodynamic forces read:

σ nd = N i=1 C : (ε -ε p i ) , τ nd i = -C : (ε -ε p i ) , R nd i = dξ i (ζ i ) dζ i (41)
Let us introduce the pseudo-potential φ as the sum of N independent functions of the type (32):

φ = N i=1 φ i ε′ , εp ′ i , ζ′ i ; ζ i = N i=1 2 3 σ yi g i (ζ i ) -dξ i (ζ i ) dζ i ζ′ i + ID i ε′ , εp ′ i , ζ′ i Di = ε′ , εp ′ i , ζ′ i ∈ V such that tr εp ′ i = 0 and ζ′ i ≥ εp ′ i ( 42 
)
The limit stresses σ yi as well as the isotropic hardening functions g i (ζ i ) are, in general, distinct. The conjugated pseudo-potential is in turn the sum of N independent functions, i.e. φ * = N i=1 φ * i with

φ * i σ d ′ , τ d ′ i , R d ′ i = sup ε′ , εp ′ i , ζ′ i ∈ Di σ d ′ : ε′ + τ d ′ i : εp ′ i + R d ′ i ζ′ i -φ i = I 0 σ d ′ + I E i τ d ′ i , R d ′ i ( 43 
)
where

E i = τ d ′ i , R d ′ i ∈ S 2 ×R such that f i τ d ′ i , R d ′ i ; ζ i ≤ 0 and f i τ d ′ i , R d ′ i ; ζ i = dev τ d ′ i - 2 3 σ yi g i (ζ i ) + R d ′ i + dξ i (ζ i ) dζ i (44) 
Therefore, N independent loading surfaces have been defined. Using the standard procedure based on the normality assumption, N pairs of flow rules of the type (35) can be derived:

εp i = dev(τ d i ) dev(τ d i ) λi = n i λi , ζi = λi with λi ≥ 0, f i ≤ 0, λi f i = 0 (45)
Moreover, by imposing the consistency conditions and accounting for Eqs. (41) as well as the identities τ d i = -τ nd i and R d i = -R nd i , each plastic multiplier can be easily determined by an expression of the type (37):

λi = H (f i ) n i : C : ε n i : C : n i + 2 3 σ yi dg i (ζ i ) dζ i = H (f i ) n i : ε 1+ 2 3 σ yi 2G dg i (ζ i ) dζ i (46) provided that 1 + 2 3 σ yi 2G dg i (ζ i ) dζ i > 0.
The Distributed Element Model [START_REF] Iwan | A Distributed-Element Model for hysteresis and its steady-state dynamic response[END_REF]) [START_REF] Chiang | A new class of Distributed-Element Models of cyclic plasticity -I. Theory and applications[END_REF] is recovered when g i (ζ i ) = 1 and ξ i (ζ i ) = 0.

Endochronic theory

Endochronic theory was first formulated by [START_REF] Valanis | A theory of viscoplasticity without a yield surface[END_REF], who suggested the use of a positive scalar variable ϑ, called intrinsic time, in the definition of constitutive laws of plasticity models. The evolution laws are described by convolution integrals involving past values of the state variable ε and suitable scalar functions depending on ϑ called memory kernels. When the memory kernel is exponential, the integral expressions can be rewritten as simple differential equations, which, for an initially isotropic endochronic material fulfilling the plastic incompressibility assumption, read:

     tr ( σ) = 3K tr ( ε) dev ( σ) = 2G dev ( ε) -β dev (σ) θ (47) 
with β > 0. These relationships are equivalent to:

             σ= C : (ε -ε p ) , C = K -2 3 G 1 ⊗ 1+2GI , tr ( εp ) = 0 and εp = dev(σ) 2G/β θ (48)
where θ ≥ 0 is the time-derivative of the intrinsic time. The simplest choice for the intrinsic time flow is θ = dev ( ε) [START_REF] Valanis | A theory of viscoplasticity without a yield surface[END_REF]. However, more complex definitions can be given, such as:

θ = ζ g(ζ) = f 1 (ζ) ζ with ζ = dev ( ε) ( 49 
)
where ζ is the intrinsic time scale and the positive function

f 1 (ζ) = 1/g(ζ)
, such that f 1 (0) = 1, is sometimes called hardening-softening function [START_REF] Bažant | Endochronic theory of inelasticity and failure of concrete[END_REF].

A new formulation of endochronic models

In this section, the endochronic model defined by Eqs. ( 48) is innovatively described by its Helmholtz free energy and a suitable pseudo-potential associated with generalized normality conditions. This approach allows for insightful comparisons between endochronic models and Prandtl-Reuss models. The main implications will be discussed later. Let v = (ε, ε p , ζ) and q nd = σ nd , τ nd , R nd be the assumed state variables and the associated non-dissipative thermodynamic forces, respectively. They are the same as in the Prandtl-Reuss model with isotropic hardening. The Helmholtz free energy Ψ reads:

Ψ = 1 2 (ε -ε p ) : C : (ε -ε p ) ( 50 
)
This form is a particular case of the one originally proposed by [START_REF] Valanis | A theory of viscoplasticity without a yield surface[END_REF], since only one tensorial internal variable, the plastic strain, is considered here. The first two non-dissipative forces σ nd and τ nd are the same as in Eq. ( 24), while R nd = 0 since Ψ is assumed to be independent of the scalar variable ζ.

The pseudo-potential is defined as follows:

φ ε′ , εp ′ , ζ′ ; ε, ε p , ζ = dev[C:(ε -ε p )] 2 2Gg(ζ)/β ζ′ + ID ε′ , εp ′ , ζ′ ; ε, ε p , ζ D =        ε′ , εp ′ , ζ′ ∈ V such that tr εp ′ = 0 , εp ′ = dev[C:(ε -ε p )] 2G β g(ζ)
ζ′ , ζ′ ≥ 0

       (51) 
The first term of φ, in which the stress σ nd = C : (εε p ) is written as a function of the state variables, is equal to the intrinsic dissipation Φ m when ζ′ assumes the actual value ζ. The first condition associated with the closed convex set D introduces the plastic incompressibility assumption, while the second condition characterizes the plastic strain flow of endochronic theory, as it can be seen by comparing it to Eqs. ( 48) and ( 49). Finally, the positivity of ζ′ is imposed in order to guarantee that φ is positive. Using the language of the endochronic theory, the internal variable ζ corresponds to the intrinsic time scale, while the intrinsic time ϑ is defined by its flow θ = ζ/g (ζ) . The variable ζ does not directly appear in the Helmholtz free energy density and its associated thermodynamic forces, dissipative and non-dissipative, are thus zero. However, ζ is not zero during the plastic evolution and plays an important role in the definition of εp .

The conjugated pseudo-potential is, in this case, of the following form:

φ * σ d ′ , τ d ′ , R d ′ ; ε, ε p , ζ = = sup ( ε′ , εp ′ , ζ′ )∈ D σ d ′ : ε′ + τ d ′ : εp ′ + R d ′ ζ′ -φ = I 0 σ d ′ + I E τ d ′ , R d ′ ; ε, ε p , ζ (52) 
where

E = τ d ′ , R d ′ ∈ S 2 ×R such that f τ d ′ , R d ′ ; ε, ε p , ζ ≤ 0 and f τ d ′ , R d ′ ; ε, ε p , ζ = dev τ d ′ :dev[C:(ε -ε p )] 2Gg(ζ)/β - dev[C:(ε -ε p )] 2 2Gg(ζ)/β + R d ′ (53)
The expression (53) defines the loading function of endochronic models. It is associated with a set E in the τ d ′ , R d ′ space. In Figure 4 this set is represented in the case of tension-compression with g (ζ) = 1, together with the projection of D on the εp ′ , ζ′ -plane. This last set is indicated by D. Some important remarks have to be made. First, as the system evolves, both sets change, due to their dependence on the internal variables. At every instantaneous configurations, the set D is a straight line starting from the origin. The corresponding sets E are half-planes orthogonal to D. Moreover, Eq. ( 50) entails that R nd = -R d = 0 and, accounting for the indicator function I 0 (σ d ′ ) in ( 52), it also leads to

τ d = -τ nd = σ= C : (ε -ε p ) (54)
Therefore, at the actual stress state (τ d , R d ) the loading function f is always equal to zero. In other words, (τ d , R d ) always belongs to ∂E, during both loading and unloading phases, and all the states are plastic states. The normality conditions lead to the endochronic flow rules:

εp = dev[C:(ε -ε p )] 2G g(ζ)/β λ, ζ = λ with λ ≥ 0 (55)
Eqs. ( 52)-( 53) and ( 55) prove that endochronic models are associative in generalized sense. Moreover, since f is always equal to zero at the actual state, the loading-unloading conditions reduce to the requirement of the plastic multiplier λ to be non-negative (see the inequality in ( 55)). In addition, the time derivative ḟ at (τ d , R d ), computed accounting for the fact that f also depends on ε, ε p and ζ, is also equal to zero and therefore, the consistency condition is automatically fulfilled and cannot be used to compute λ.

This situation is typical of endochronic theory and entails that the plastic multiplier λ = ζ has to be defined by an additional assumption. When the function g (ζ) is also fixed, the plastic flow εp and the intrinsic time flow θ = ζ/g (ζ) are then known. The standard choices are g (ζ) = 1 and θ = ζ = dev ( ε) . It has been shown in [START_REF] Erlicher | Thermodynamic admissibility of Bouc-Wen type hysteresis models[END_REF] that more complex definitions can be chosen, such as g (ζ) = 1 and

θ = ζ = dev τ d n-2 1 + γ β sign dev τ d : ε |dev τ d : ε| -β ≤ γ ≤ β , n > 0 (56)
which is effectively the Karray-Bouc-Casciati model (Karray and Bouc, 1989) [START_REF] Casciati | Stochastic dynamics of hysteretic media[END_REF]. It must be noticed that both flows εp and ζ can be different from zero during unloading phases, i.e. when dev τ d : ε < 0. This situation, which is not possible in classical plasticity, occurs when γ = β. Figure 5a illustrates for the mono-dimensional case the effect of n for given values of the other parameters: in the limit of increasing n-values the Prandtl-Reuss model is retrieved. Figure 5b shows unloading branches for different γ/β ratios, the other parameters being fixed: plastic strains may occur and tend to zero when γ/β tends to 1.

Endochronic theory vs. Prandtl-Reuss model

Consider the endochronic model, as formulated in the previous section, and the modified Prandtl-Reuss model. The significant state variables ε, ε p and ζ are the same in both cases. Moreover, Eqs. ( 31) and ( 50) show that the Helmholtz free energies differ only by the term ξ (ζ), which is zero in endochronic theory. The main differences concern pseudo-potentials, as seen comparing Eqs. ( 32) and ( 51). However, the strict relationship between the two models can be highlighted by imposing that ζ′ = εp ′ in (51): when ζ′ > 0, the condition

dev (C : (ε -ε p )) = 2G
β g (ζ) must be fulfilled, while for ζ′ = 0 there is no limitation on dev (C : (εε p )). As a result, the endochronic pseudo-potential (51) becomes equal to

φ ε′ , εp ′ , ζ′ ; ζ = 2G β g (ζ) ζ′ + ID ε′ , εp ′ , ζ′ D= ε′ , εp ′ , ζ′ ∈ V such that tr εp ′ = 0 and ζ′ = εp ′ (57)
The set D and the function φ are not convex (see Figure 6a). However, the Legendre-Fenchel conjugate of φ is still well-posed (Appendix, item 5) and can be explicitly derived from the standard procedure:

φ * σ d ′ , τ d ′ , R d ′ ; ζ = sup ( ε′ , εp ′ , ζ′ )∈ D σ d ′ : ε′ + τ d ′ : εp ′ + R d ′ ζ′ -φ = I 0 σ d ′ + I E τ d ′ , R d ′ ; ζ (58) with E = τ d ′ , R d ′ ∈ S 2 ×R such that f τ d ′ , R d ′ ; ζ ≤ 0 and f τ d ′ , R d ′ ; ζ = dev τ d ′ - 2G β g (ζ) + R d ′ (59)
Provided that 2G β = 2 3 σ y , Eqs. ( 58)-( 59) also define the Legendre-Fenchel conjugate of the proper convex lower semi-continuous function (Appendix, item 5) A similar comparison between the classical Prandtl-Reuss model (Eqs. ( 23) and ( 25)) and endochronic models is possible as well, but only when the former is perfectly plastic, i.e. if ξ (ζ) = 0, and conditions ξ (ζ) = 0 and g = 1 hold in the latter. Note that these assumptions have been adopted in Figure 5.

φ = cl conv φ = 2 3 σ y g (ζ) ζ′ + ID ε′ , εp ′ , ζ′ D= ε′ , εp ′ , ζ′ ∈ V such

Multi-layer models of endochronic type

The concept of assembling in parallel several plastic elements can be applied to the case in which each element is of endochronic type. The approach is analogous to the one adopted in Section 3.4. Let ε and (ε p i , ζ i ) be the relevant state variables. Then, the Helmholtz energy is defined as the sum of N contributions, of the same kind as in Eq. ( 50):

Ψ = N i=1 Ψ i = N i=1 1 2 (ε -ε p i ) : C : (ε -ε p i ) ( 61 
)
where the internal variables ε p i have the meaning of plastic strain of the i -th endochronic element. The thermodynamic forces associated with ζ i are zero, viz. R nd i = 0. Moreover, N independent pseudo-potentials are assumed to be of the type (51):

φ i = dev[C:(ε -ε p i )] 2 2G g i (ζ i )/β i ζ′ i + ID i ε′ , εp ′ i , ζ′ i ; ε, ε p i , ζ i Di =      ε′ , εp ′ i , ζ′ i ∈ V such that tr εp ′ i = 0, ζ′ i ≥ 0 and εp ′ i = dev[C:(ε -ε p i )] 2G g i (ζ i )/β i ζ′ i      (62)
with

β i > 0, g i (ζ i ) > 0 and g i (0) = 1. The pseudo-potential of the multi-layer model is φ = N i=1 φ i and its dual is φ * = N i=1 φ * i , with φ * i = sup ε′ , εp ′ i , ζ′ i ∈ Di σ d ′ : ε′ + τ d ′ i : εp ′ i + R d i ζ′ i -φ i = I 0 σ d ′ + I E i τ d ′ i , R d ′ i ; ε, ε p i , ζ i (63) 
where

E i = τ d ′ i , R d ′ i ∈ S 2 ×R such that f i τ d ′ i , R d ′ i ; ε, ε p i , ζ i ≤ 0 and f i = dev τ d ′ i :dev[C:(ε -ε p i )] 2G g i (ζ i )/β i - dev[C:(ε -ε p i )] 2 2G g i (ζ i )/β i + R d ′ i ( 64 
)
The flow rules then become of the form (55). Moreover, it can be easily proved that at the actual state represented by (τ d i , R d i ), the identities f i = ḟi = 0 hold and, for this reason, the fluxes ζi = λi ≥ 0 cannot be computed from the consistency conditions and have to be defined using a further assumption.

If the number of elements is N = 2, g 1 = g 2 = 1 and both fluxes ζ1 and ζ2 are of the form ( 56), then the model of [START_REF] Casciati | Stochastic dynamics of hysteretic media[END_REF] is retrieved. Moreover, the condition ζ′ i = εp ′ i into (62) leads to a multi-layer model of Prandtl-Reuss type.

Non-linear kinematic hardening models

The NLK hardening rule was first suggested by [START_REF] Armstrong | A mathematical representation of the multiaxial Bauschinger effect[END_REF], who introduced a dynamic recovery term in the classical Prager's linear kinematic hardening rule. Several modifications of this basic rule have been proposed, in order to improve the description of the cyclic behavior of metals, particularly for the ratchetting phenomenon (see, among others, [START_REF] Chaboche | On some modifications of kinematic hardening to improve the description of ratchetting effects[END_REF] and [START_REF] Ohno | Kinematic hardening rules with critical states of dynamic recovery. Parts I and II[END_REF]).

According to traditional formulation, NLK hardening models do not fulfil the assumption of generalized normality (Lemaitre and Chaboche, 1990, pp. 219-221) [START_REF] Chaboche | Thermodynamic modeling of viscoplasticity, recovery and aging processes[END_REF]. Following an approach based on the notion of bipotential, De Saxcé (1992) introduced implicit standard materials and showed that the plasticity models with NLK hardening rules are of such type.

In this section, another formulation is suggested, which leads to the proof that NLK hardening models belong to the class of generalized standard materials, provided that a suitable, non-conventional, loading function is defined. First, the state variables v = (ε, ε p , ζ, β, ζ 1 ) have to be introduced. The first three are the same as for Prandtl-Reuss and endochronic models, while β and ζ 1 are related to NLK hardening rule. The role of the scalar variable ζ 1 will be discussed later on. The corresponding thermodynamic forces are

q nd = σ nd , τ nd , R nd , X nd , R nd 1 and q d = σ d , τ d , R d , X d , R d 1 ∈ V * .
The Helmholtz energy density is chosen as follows:

Ψ = 1 2 (ε -ε p ) : C : (ε -ε p ) + 1 2 (ε p -β) : D : (ε p -β) (65) 
The quantity α = ε pβ is usually adopted as the internal variable associated with the kinematic hardening. However, the choice of β as a representative internal variable appears more suited, because it highlights the formal analogy between the first quadratic term in Eq. ( 65), typical of plasticity models, and the second one, associated with the kinematic hardening. The isotropy assumption leads to the usual expression for C and entails that D =D 1 1 ⊗ 1+D 2 I.

The non-dissipative forces can then be readily evaluated:

σ nd = C : (ε -ε p ) τ nd = -C : (ε -ε p ) + D : (ε p -β) , R nd = 0 X nd = -D : (ε p -β) , R nd 1 = 0 (66) 
The three tensorial non-dissipative forces are related by the identity τ nd = -σ nd -X nd . Moreover, let the pseudo-potential be equal to

φ = 2 3 σ y g (ζ) ζ′ + D:(ε p -β) 2 D 2 δ g 1 (ζ 1 ) ζ′ 1 +ID ε′ , εp ′ , ζ′ , β′ , ζ′ 1 ; ε, ε p , ζ, β, ζ 1 D=                      ε′ , εp ′ , ζ′ , β′ , ζ′ 1 ∈ V such that tr εp ′ = 0, ζ′ ≥ εp ′ , tr β′ = 0, β′ = D:(ε p -β) D 2 δ g 1 (ζ 1 ) ζ′ 1 , ζ′ 1 = h (ε, ε p , ζ, β, ζ 1 ) ζ′ ≥ 0                      (67)
with δ, g (ζ) , g 1 (ζ 1 ) > 0 and g (0) = g 1 (0) = 1. Figure 7 shows two projections of the effective domain D for the tension-compression case. The first term in the definition of φ is identical to that of Eq. ( 32) for a modified Prandtl-Reuss model with ξ(ζ) = 0. The second term is related to the NLK hardening and it is formally identical to the one used in the definition of endochronic models (see Eq. ( 51)), with the substitutions dev (ε) → ε p , ε p → β and ζ → ζ 1 . The same analogy applies to the conditions defining the set D.

The dual pseudo-potential then becomes

φ * = sup ( ε′ , εp ′ , ζ′ , β′ , ζ′ 1 )∈ D    σ d ′ : ε′ + τ d ′ : εp ′ + R d ′ ζ′ + X d ′ : β′ + R d ′ 1 ζ′ 1 -φ    = I 0 σ d ′ + I E τ d ′ , R d ′ , X d ′ , R d ′ 1 ; ε, ε p , ζ, β, ζ 1 (68) 
where

E = τ d ′ , R d ′ , X d ′ , R d ′ 1 ∈ S 2 ×R × S 2 ×R such that f ≤ 0 and f = dev τ d ′ -2 3 σ y g (ζ) + R d ′ + X d ′ :[D:(ε p -β) ] D 2 g 1 (ζ 1 )/δ - D:(ε p -β) 2 D 2 g 1 (ζ 1 )/δ + R d ′ 1 h (ε, ε p , ζ, β, ζ 1 ) (69) 
Eq. ( 69) defines the loading function of a model with NLK hardening and the associated set E is depicted in Figure 8 for the tension-compression case when g(ζ) = 1. The normality condition associated with φ * leads to the following flow rules:

εp = dev(τ d ) dev(τ d ) λ = n λ ζ = λ β = D:(ε p -β) D 2 g 1 (ζ 1 )/δ h (ε, ε p , ζ, β, ζ 1 ) λ ζ1 = h (ε, ε p , ζ, β, ζ 1 ) λ with λ ≥ 0, f ≤ 0, λf = 0 (70)
The thermodynamic force X d = -X nd = D : (ε pβ) is traceless, due to the assumptions adopted for the traces of εp and β. Special attention must be paid to the relationship between the fluxes ζ1 and ζ. The time derivative of ζ 1 is defined as the product between ζ and the function h, which depends on the state variables and must be non-negative and finite, but is otherwise free. The variable ζ 1 can be interpreted as an intrinsic time scale for the NLK hardening flow rule.

Accounting for the identities 66), one can prove that R d = 0 and that the term proportional to h in Eq. ( 69) is always zero at the actual state. Hence, only the first two terms in the expression of f affect the consistency condition ḟ = 0, which leads to the plastic multiplier λ = H (f ) n : ε

τ nd , R nd , X nd , R nd 1 = -τ d , R d , X d , R d 1 and Eqs. (
1+ D 2 2G -1 2G n:X d g 1 (ζ 1 )/δ h (ε, ε p , ζ, β, ζ 1 ) + 2 3 σy 2G dg(ζ) dζ (71) 
The positive functions g, g 1 and h determine the actual model.

The choice g = g 1 = h = 1 corresponds to the basic NLK hardening model of [START_REF] Armstrong | A mathematical representation of the multiaxial Bauschinger effect[END_REF]. Another interesting case is given by g = g 1 = 1 and

       h = D:(ε p -β) D 2 /δ m 1 k 1 : n if D : (ε p -β) = 0 h = 0 if D : (ε p -β) = 0 (72) 
where m 1 > 0 and

k 1 = D:(ε p -β) D:(ε p -β)
is the unit vector having the same direction as X d = D : (ε pβ). These conditions lead to

β = X d D 2 /δ ζ1 = X d D 2 /δ   X d D 2 /δ   m 1 k 1 : εp = εp - Ẋd D 2 (73)
which is the NLK hardening rule proposed by [START_REF] Ohno | Kinematic hardening rules with critical states of dynamic recovery. Parts I and II[END_REF] for modelling the ratchetting phenomenon in metal plasticity. It is interesting to compare the quantity

ζ1 = h ζ =   X d D 2 /δ   m 1 k 1 : εp (74)
and the intrinsic time flow θ, defined in Eq. ( 56) for endochronic models of the Bouc-Wen type. Two significant differences can be observed: (i) the governing flow variable is the plastic strain for NLK hardening rule and the total strain for the flow rule of the endochronic model; (ii) due to presence of the absolute value instead of the McCauley brackets, the endochronic model of Bouc-Wen type introduces non-zero flows during unloading phases when γ = β.

5.1 From an endochronic model to a NLK hardening model [START_REF] Valanis | Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the endochronic theory[END_REF] and [START_REF] Watanabe | Internal time, general internal variable, and multi-yield-surface theories of plasticity and creep: a unification of concepts[END_REF] proved that a NLK hardening model can be derived from the endochronic theory by adopting a special intrinsic-time definition, namely when the intrinsic time scale flow ζ is forced to be equal to the norm of the plastic strain flow. The approach suggested in this paper not only confirms this result, but allows for a generalization, due to the presence of a second intrinsic time scale ζ 1 , in general distinct from ζ. Consider the differential equations defining an endochronic model with a kinematic hardening variable τ d :

                           tr ( σ) = 3K tr ( ε) dev ( σ) = 2G dev( ε) -β dev σ -τ d ζ g(ζ)
tr τ d = 0

τ d = D 2 εp -δ τ d ζ1 g 1 (ζ 1 ) ζ1 = h (ε, ε p , ζ, β, ζ 1 ) ζ (75)
The idea of a kinematic hardening variable in an endochronic model was first suggested by [START_REF] Bažant | Endochronic inelasticity and incremental plasticity[END_REF], who however considered a linear evolution of τ d as function of the plastic strain. An alternative way to describe the model defined by ( 75) is

                     σ = C : (ε -ε p ) τ d = D : (ε p -β) C = K -2 3 G 1 ⊗ 1 + 2GI D =D 1 1 ⊗ 1 + D 2 I tr ( εp ) = 0, εp = dev(σ -τ d ) 2G β g(ζ) ζ tr β = 0, β = τ d D 2 δ g 1 (ζ 1 ) ζ1 ζ1 = h (ε, ε p , ζ, β, ζ 1 ) ζ (76)
Moreover, both Eqs. ( 75) and ( 76) can be derived from ( 65) and the following pseudo-potential:

φ = dev[C:(ε -ε p )-D:(ε p -β)] 2 2G β g(ζ) ζ′ + D:(ε p -β) 2 D 2 δ g 1 (ζ 1 ) ζ′ 1 +ID ε′ , εp ′ , ζ′ , β′ , ζ′ 1 ; ε, ε p , ζ, β, ζ 1 D=                ε′ , εp ′ , ζ′ , β′ , ζ′ 1 ∈ V such that tr εp ′ = 0, εp ′ = dev[C:(ε -ε p )-D:(ε p -β)] 2G β g(ζ)
ζ′ , ζ′ ≥ 0,

tr β′ = 0, β′ = D:(ε p -β) D 2 δ g 1 (ζ 1 ) ζ′ 1 , ζ′ 1 = h (ε, ε p , ζ, β, ζ 1 ) ζ′ ≥ 0                (77) 
Let ζ′ = εp ′ be the chosen intrinsic time definition and assume 2G β = 2 3 σ y . Then, introducing these conditions in (77), one obtains a pseudo-potential φ which differs from the one of Eq. ( 67) only in the inequality ζ′ ≥ εp ′ , which is an equality in φ. This difference affects neither the expression of the dual pseudo-potential φ * = φ * (Appendix, item 6) nor the flow rules, which are in both cases equal to Eqs. ( 68)-( 69) and Eq. ( 70), respectively. Moreover, in the particular case h = 1 and g (ζ) = g 1 (ζ), the results discussed by [START_REF] Valanis | Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the endochronic theory[END_REF] and [START_REF] Watanabe | Internal time, general internal variable, and multi-yield-surface theories of plasticity and creep: a unification of concepts[END_REF] are retrieved.

6 Generalized plasticity models Generalized plasticity models [START_REF] Lubliner | A new model of generalized plasticity[END_REF] are considered an effective alternative to NLK hardening models, since they behave similarly and are computationally less expensive [START_REF] Auricchio | Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity[END_REF]. A new description of these models is suggested here, supported by a suitable pseudo-potential and the generalized normality assumption. In order to expose the basic principles of this new approach, only the simple generalized plasticity model presented by [START_REF] Auricchio | Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity[END_REF] is considered. The extension to more complex cases is straightforward.

First, the state variables v = (ε, ε p , ζ) have to be introduced. The corresponding thermodynamic forces are q nd = σ nd , τ nd , R nd and q

d = σ d , τ d , R d .
The Helmholtz energy density is chosen as follows:

Ψ = 1 2 (ε -ε p ) : C : (ε -ε p ) + 1 2 ε p : D : ε p (78) 
The expression for C and D are the same as in NLK hardening models. The non-dissipative forces can be readily evaluated:

σ nd = C : (ε -ε p ) , τ nd = -C : (ε -ε p ) + D : ε p , R nd = 0 (79) 
Note that σ nd and τ nd are related by the identity τ nd =σ nd -D : ε p , where the backstress D : ε p introduces a linear kinematic hardening effect. Moreover, let the pseudo-potential be equal to

φ ε′ , εp ′ , ζ′ ; ε, ε p , ζ = ḡ (ε, ε p , ζ) ζ′ + ID ε′ , εp ′ , ζ′ D= ε′ , εp ′ , ζ′ ∈ V such that tr εp ′ = 0 and ζ′ ≥ εp ′ (80) 
where

ḡ (ε, ε p , ζ) =      2 3 σ y + H iso ζ if f < 0 dev [C : (ε -ε p ) -D : ε p ] if f ≥ 0 f (ε, ε p , ζ) := dev [C : (ε -ε p ) -D : ε p ] - 2 3 σ y + H iso ζ (81) 
with H iso ≥ 0. The main characteristic of this pseudo-potential function is given by the piecewise expression introduced to define the positive function ḡ.

It is assumed that ḡ depends on the sign of the function f, which in turn is related to the state variables. The conjugated pseudo-potential φ * reads

φ * σ d ′ , τ d ′ , R d ′ ; ε, ε p , ζ = sup ( ε′ , εp ′ , ζ′ )∈ D σ d ′ : ε′ + τ d ′ : εp ′ + R d ′ ζ′ -φ = I 0 σ d ′ + I E τ d ′ , R d ′ ; ε, ε p , ζ (82) 
where

E = τ d ′ , R d ′ ∈ S 2 ×R such that f τ d ′ , R d ′ ; ε, ε p , ζ ≤ 0 and f τ d ′ , R d ′ ; ε, ε p , ζ =      dev τ d ′ - 2 3 σ y + H iso ζ + R d ′ if f < 0 dev τ d ′ -dev [C : (ε -ε p ) -D : ε p ] + R d ′ if f ≥ 0 (83)
The loading function f also has a twofold definition: recalling that the actual thermodynamic force τ d fulfils the following identities

τ d = C : (ε -ε p ) -D : ε p = σ -D : ε p (84) and R d = -R nd = 0, one can prove that if f (ε, ε p , ζ) < 0 then f τ d , R d ; ε, ε p , ζ = f (ε, ε p , ζ); moreover, if f (ε, ε p , ζ) ≥ 0, then f τ d , R d ; ε, ε p , ζ is always zero,
viz. the actual state represented by (τ d , R d ) remains in contact with the loading surface ∂E. In Figure 9, this situation is depicted for the tensioncompression case.

The normality conditions associated with the loading function f read:

εp = dev(τ d ) dev(τ d ) λ = n λ, ζ = λ with λf = 0 f ≤ 0 λ ≥ 0 (85) 
These flow rules are identical to those of a Prandtl-Reuss model (see Eqs. ( 35)). However, they derive from a different loading function and for this reason the computation of the plastic multiplier λ is not the same. When f τ d , R d ; ε, ε p , ζ = f (ε, ε p , ζ) < 0, the loading-unloading conditions reduce to λ = 0, leading to an elastic behavior. As a result, the function f is also called yielding function, while the surface defined by the condition f = 0 is called yielding surface. Conversely, when f ≥ 0 the set E evolves by virtue of the dependence of f on the state variables ε, ε p and ζ. During this evolution, the actual thermodynamic forces (τ d , R d ) always satisfy the condition f = 0. Moreover, the consistency condition

ḟ =    ∂f ∂τ d ′ : τ d ′ + ∂f ∂R d ′ Ṙd ′ + ∂f ∂ε : ε + ∂f ∂ε p : εp + ∂f ∂ζ ζ    ( τ d ′ =τ d ,R d ′ =R d ) = 0 (86)
is also identically fulfilled and, like for the endochronic theory, it does not permit to compute λ ≥ 0. Hence, the condition that the so-called limit function is equal to zero has to be invoked and this leads to [START_REF] Auricchio | Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity[END_REF]:

λ = ζ =        0 if f < 0 n: ε 1+ N ( M -f )+(D 2 +H iso ) M 2G f if 0 ≤ f ≤ M (87)
where M , N > 0. It can be proved that when f tends to M , the expression of the plastic multiplier of a classical plasticity model with linear kinematic and isotropic hardening is retrieved. Moreover, if H iso = 0 an asymptotic value of τ d exists, and is equal to 2 3 σ y + M .

Conclusions

A common theoretical framework between Prandtl-Reuss models and endochronic theory as well as NLK hardening and generalized plasticity models was constructed. All models were defined assuming generalized normality. It was therefore proved that a unique mathematical structure, based on the notions of pseudo-potential and generalized normality, was able to contain plasticity models traditionally formulated by other approaches. In particular, no extension of the generalized standard class of materials had to be introduced to describe NLK hardening and generalized plasticity models. This approach allowed several comparisons, that have clarified the relationships and analogies between these, a priori different, plasticity theories.

can still be defined by (A.7). In this case, φ * is proper, convex, lower semicontinuous and is equal to the conjugated φ * of φ = cl conv φ , where φ is the greatest proper convex lower semi-continuous function majorized by φ (Rockafellar, 1969, pp. 52, 103-104). (6) A function φ : X → (-∞, ∞] is positively homogeneous of order 1 if and only if ∀y ∈ X, ∀ρ ∈ (0, ∞), φ (ρy) = ρφ (y) (A.10)

The epigraph of such functions is a cone (Rockafellar, 1969, pg. 30 ).

Given φ : X → (-∞, ∞], the following three statements are equivalent: (i) φ is proper, convex, lower semi-continuous and positively homogeneous of order 1 (ii) The Legendre-Fenchel conjugate φ * of φ is the indicator function of a non-empty, convex and closed set Ē, i.e. The equivalence between (i) and (ii) can be proved by showing that φ * has no values other than 0 and +∞ (Rockafellar, 1969, pg. 114). The set where φ * = 0 is non-empty, convex and closed since φ is proper, convex and lower semi-continuous. The equivalence between (ii) and (iii) follows from the definition of Legendre-Fenchel transform, support functions and indicator functions.

Remark. If φ fulfils conditions in (i), then for any x where φ is subdifferentiable, φ (x) = φ * * (x) = x * •x with x * ∈ ∂φ(x)

Proof: from the equivalence between (i) and (ii), the conjugated of φ is the indicator function of a closed convex set Ē and x * ∈ Ē since φ is subdifferentiable at x by assumption. Then, use Eq. (A.9) and recall by (ii) that φ * (x * ) = 0. (7) Let φ : X → (-∞, +∞] be a proper, convex, lower semi-continuous function, positively homogeneous of order 1. Then: (i) from item (6), its conjugate φ * is the indicator function of a non- 

  2 3 σ y ζ for any function ξ(ζ). Conversely, for the modified Prandtl-Reuss model the amount of mechanical dissipation depends, for a given function g(ζ), on the choice of ξ (ζ). Figure 3b reports the case of generic functions g(ζ) and ξ(ζ).

  Figure 3c and 3d correspond to ξ(ζ) = 0 and to the case where the modified model is equal to the classical one, respectively.

  that tr εp ′ = 0 and ζ′ ≥ εp ′ (60) which corresponds to the pseudo-potential of a modified Prandtl-Reuss model, in the case ξ (ζ) = dξ(ζ) dζ = 0 (see Eqs. (32)).

  φ * (y * ) = IĒ (y * ) = if y * ∈ Ē (iii) φ isthe support function of a non-empty, convex and closed set Ē, i.e. φ (y) = I * Ē (y) = sup y * ∈ Ē (y * •y)

Fig. 1 .

 1 Fig. 1. Classical Prandtl-Reuss model. Tension-compression case. a) Projection of the pseudo-potential effective domain D on the εp ′ , ζ′ -plane. This set is indicated by D. b) Domain E associated with the dual pseudo-potential φ * .

Fig. 8 .

 8 Fig. 8. NLK hardening model. Tension-compression case with g(ζ) = 1. a) Condition f ≤ 0 when R d ′ 1 = R d 1 = 0 and X d ′ = X d = D : (ε pβ). b) Condition f ≤ 0 when R d ′ = R d = 0 and dev τ d ′ = dev τ d = 2 3 σ y .

2 dξ dζ (ζ) = σ y (g(ζ) -1): the classical model is recovered.

A Appendix

The vector spaces considered in this paper are: (i) the space of second order tensors; (ii) the space of symmetric second order tensors S 2 ; (iii) the set of real scalars R = (-∞ + ∞); (iv) the cartesian product of a finite number of such spaces. They are all equipped with an Euclidian product, so they are always isomorph to the Euclidian vector space X = R n .

(1) A subset C of X is said to be:

(a) a convex set if (1 -λ) x+λy ∈C whenever x, y ∈C and 0 < λ < 1.

(b) a cone if λy ∈ C when y ∈ C and λ > 0.

(2) Let φ : X → (-∞, ∞] be an extended-real-valued function defined on the vector space X. Then, (a) the epigraph of φ is the set 

It can be proved that the condition of lower semi-continuity of φ is equivalent to have that the level set {y : φ (y) ≤ α} is closed in X for every α ∈ R (Rockafellar, 1969, pg. 51). As a result, when φ is a proper convex function with a (convex) effective domain D closed in X and φ is continuous relative to D, then φ is lower-semicontinuous (Rockafellar, 1969, pg. 52).

(3) Let X * be the dual of X. Since X = R n , then X * * = X and the duality product between x and x * elements of the dual vector spaces X and X * can be written as

The subdifferential set ∂φ(x) is the set of all subgradients x * at x:

The function φ is said to be subdifferentiable at x when ∂φ(x) is nonempty. (4) If a function φ : X → (-∞, ∞] is convex, proper, non-negative and such that φ(0) = 0, then the normality condition

x * belongs to the subdifferential set of φ at x, entails that x * •x ≥ 0.

Proof: Setting y = 0 in the inequality (A.4) entails that, for any x in the effective domain of φ, -φ(x) ≥ x * • (0 -x). Hence, by virtue of the non-negativity of φ, x * •x ≥ 0. (5) When a function φ : X → (-∞, ∞] is proper, convex and lower semicontinuous, the dual function φ * : X * → (-∞, ∞] , defined by the Legendre-Fenchel transform

is related to φ by a one-to-one correspondence, in the sense that for such a kind of functions, the conjugate φ * is in turn proper, convex and lower semi-continuous and φ * * = φ (Rockafellar, 1969, pg. 104).

Under these assumptions, it also holds:

Moreover, the following relationships are equivalent:

The supremum of the second term of this inequality is equal by definition to φ * (x * ) and occurs when y = x and therefore (iii) is the same as (i). Dually, (ii) and (iii) are equivalent. Remark 1. Under the previous assumptions, if φ ≥ 0 and φ(0) = 0, then (A.7) entails that φ * (0) = 0. Moreover, the identity φ * * = φ implies that φ(0) = sup y * ∈X * (-φ * (y * )), which in turn leads to φ * ≥ 0. Reciprocally, φ * ≥ 0 and φ * (0) = 0 entail that φ ≥ 0 and φ(0) = 0. Remark 2. If φ * is such that φ * ≥ 0 and φ * (0) = 0, then the normality condition (ii) implies that x * • x ≥ 0. Proof: Condition (ii) is equivalent to (i), with φ ≥ 0 and φ(0) = 0. Then, using the result of item 4, the non-negativity of x * • x follows.

Remark 3. The conjugate φ * of an arbitrary function φ : X → (-∞, ∞] empty, closed and convex set Ē. Hence, by using the definition (A.4), .11) where

, then the conjugated function φ * can be computed as follows:

The Legendre-Fenchel conjugate is the indicator function of 0 with respect to y * 1 plus the Legendre-Fenchel conjugate of φ(x 2 ), which is the indicator function of a non-empty, closed and convex set E. Hence,

In the particular case where E= {y * ∈ X * such that f (y * ) ≤ 0} , where f is a convex and smooth function, the normality condition at y * = x * , viz. x ∈ ∂I E (x * ), can be written as follows

These two last conditions are often replaced by .13) which are the classical loading-unloading conditions of plasticity, usually written with µ replaced by the plastic multiplier λ. The dependence of f on the argument x * is often omitted in order to simplify the notation. In the convex mathematical programming literature, (A.13) are known as Kuhn-Tucker conditions (see e.g. [START_REF] Luenberger | Linear and Nonlinear Programming[END_REF]).