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Abstract. In this paper, we present a generic topological and geomet-
rical framework for the digital reconstruction of complex contours from
labeled images. The proposed technique is based on combinatorial map
simplifications guided by digital straight segments. We illustrate the
genericity of the framework with a parallel contour reconstruction al-
gorithm.
Keywords. combinatorial maps, 2D contour recontruction, discrete ge-
ometry.

1 Introduction

Image processing algorithms often need to compute, to extract or to analyze
information contained in images. These information can be computed by de-
composing an image into regions and by extracting topological and geometrical
features from them. In this paper we present a generic algorithm to compute
discrete reconstructions of a multi-region image using combinatorial maps and
digital straight segments (DSS for short).

Indeed, DSSs play an important role in polygonalization of discrete object
contours [1–5]. Recognition algorithms are used to reconstruct a binary curve,
i.e. construct a polygonal representation of the digital curve (see Fig. 1). More
precisely, a classical approach is to decompose the digital curve into maximal
DSS and then to extract a representative edge per maximal DSS. If the problem
is quite simple if the contour is topologically equivalent to a circle (simple closed
curve) or to a point (simple open curve), problems arise when more complex
digital objects are considered such as branching, nested contours, . . .

In computer vision, many segmentation algorithm outputs are decomposi-
tions of the image into labeled regions such that pixels in a region have uniform
features (image intensities, texture characteristics,. . . ). To represent regions and
to be able to perform efficient operations on them, a topological data structure is
required in order to describes boundaries and adjacency information. There are
many different structures to represent the region boundaries of a given image, the
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first one being the Region Adjacency Graph (RAG) [6]. However, a RAG does
not describe all the information contained in the image (like multi-adjacencies
or inclusion relations). To represent all the information, several models based on
combinatorial maps were defined [7–10]. The main advantage of these models is
to describe the subdivision of regions into cells: vertices, edges and faces; and to
describe all the incidence and adjacency relations between these cells and thus
to represent the topology of the image.

In this paper, we present a generic discrete contour reconstruction algorithm
that uses both combinatorial maps to control and maintain the topology of the
reconstructed curves, and DSS recognition algorithms. The 2D combinatorial
map allows us to link DSS parameters to edges, and to merge two DSS by
removing a vertex, which gives a simple and efficient algorithm. Moreover, the
algorithm can be easily parallelized by adding mutexes on edges and use the
model to avoid concurrent access on a same vertex or a same edge. This shows
the interest of our approach.

In section 2, we first introduce DSS, DSS recognition algorithms and combi-
natorial maps. In section 3, we present the sequential reconstruction algorithm
of complex discrete contours, and the parallel approach in section 4. Section 5
finally presents some experiments.

2 Preliminaries

2.1 Digital Straight Segments and Digital Contour Reconstruction

In the literature, many DSS characterizations exist (see [5] or [11] for a complete
survey), we consider here a digital straight line (DSL) as the set of pixels (x, y) ∈
Z

2 satisfying:

µ ≤ ax − by < µ + |a| + |b| (1)

with a, b, µ ∈ Z. Hence, b/a is the DSS slope and µ its intercept. According to
[12], the resulting set of pixels is a 4−arc, which means that each pixel of the
DSL has exactly two 4-adjacent neighbors (see Fig. 1). A DSS is defined as a
finite connected subset of a DSL.

Based on this definition, a recognition problem may arise: given a set of grid
points, does there exists a DSS containing it ? In the literature, many algorithms
have been proposed [1–5]. In the following, we do not go further into algorithmic
details, we just focus on a main result: adding a new 4-adjacent pixel to a DSS,
deciding if the resulting set is still a DSS and updating the DSS parameters can
be done in constant time O(1). Hence, we have a simple greedy algorithm to
compute in linear time a discrete contour segmentation into maximal DSS (see
Fig. 1−b): we start from a pixel and choose a direction, then we add neighboring
4-adjacent pixels one by one. If the recognition test fails, we stop the current DSS
and start a new one. In this framework, even if some results exist concerning
the reconstruction into minimal number of DSS [13], some problems remain
concerning the choice of the starting point and of the direction. Note also that if
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(a) (b)

Fig. 1. Illustration of a DSS with parameters a = 1, b = 2 and µ = 0 (a) and an
example of the discrete curve reconstruction process (b).

the contour is complex (not a simple curve), such an algorithm cannot be used
directly.

In our framework, we consider a reconstruction based on a union predicate
between two adjacent DSS. More precisely, a naive algorithm to decide if the
union of two DSS S and T (i.e. the union of the two grid point sets) is a
DSS or not can be done in O(|T |). Note that more complex algorithms using
preimages [3] can be design to obtain a computational cost in O(log (α)) where
α corresponds to largest side of the bounding box containing S and T .

2.2 Combinatorial Maps

A combinatorial map is a mathematical model of space subdivision represen-
tation based on planar map [14, 15]. The subdivision of a 2D topological space
is a partition of the space into 3 subsets whose elements are cells of 0, 1 and
2 dimension (respectively called vertices, edges and faces, and noted i -cell for a
i -dimensional cell).

Intuitively a 2D combinatorial map (or 2-map) is constructed by decomposi-
tions and splits of a 2D object into faces, edges and vertices. The basic element of
a 2-map is called a dart (sometimes called half-edge in 2D). Each dart is incident
to a vertex, an edge and a face. Darts are linked together with two one-to-one
mappings β1 and β2 which keep the structure of the subdivision: β1 connects
one dart belonging to an edge to the dart of the next edge of the same face; β2

connects one dart belonging to an edge to the dart of the other face of the same
edge (see example Fig. 2). When two darts d1 and d2 are such that βi(d1) = d2

(1 ≤ i ≤ 2), we say that d1 is i -sewn to d2.

Definition 1 (2D combinatorial map [16]). A 2D combinatorial map is a
triplet M = (D,β1, β2) where:

1. D is a finite set of darts;
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Fig. 2. 2D combinatorial map example. (a) A 2D object. (b) Corresponding combina-
torial map. Darts are represented by numbered black arrows (to represent the orienta-
tion). Two darts 1-sewn are drawn consecutively, and two darts 2-sewn are concurrently
drawn and in reverse orientation. (c) Corresponding subdivision made of 5 vertices, 6
edges and 3 faces (by counting the infinite face). We use sometimes this representation
instead of drawing all the darts of the map as in (b) to make figures lighter.

2. β1 is a permutation1 on D;

3. β2 is an involution2 on D;

Combinatorial maps encode subdivisions and incidence relations between all
the different cells of the space, and so represent the topology of this space.
Thanks to this model and its implementation [10], we can directly (i.e. in O(1))
retrieve all the different relations by darts and one-to-one mappings. We note
v(d) (resp. e(d), f(d)) for the vertex (resp. edge, face) incident to dart d.

Moreover, several operations exist which allow to modify a combinatorial
map. The main operation used in this paper is the removal of a i -cell, called i -
removal operation, which removes the i -cell and merges the two incident (i+1)-
cells. The i -removal operation is possible only for degree3 one or two cell. Indeed,
otherwise it is not possible to decide how to connect cells around the removed
cell. Thanks to combinatorial maps, it is possible to test in O(1) if the degree of
a vertex is 2 (see [17, 10] for more details on removal operations and algorithms).

In this work, we use combinatorial maps to describe regions contained in a
labeled image. Regions of such image are the maximal sets of 4-connected pixels
with same label. Note that we can consider any type of image and use the color
of each pixel as a label.

Moreover, we use the cellular framework that decomposes the digital space
pixels into linels, pointels and faces [5]: linels are one dimensional elements sep-
arating two pixels and pointels are zero dimensional elements between linels.

1 A permutation on a set S is a one-to-one mapping from S onto S.
2 An involution f on a set S is a one-to-one mapping from S onto S such that f = f−1.
3 The degree of a i-cell c is the number of distinct (i+1)-cells incident to c.
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3 The Sequential Algorithm for 2D Image Contour

Reconstruction

The main principle of the sequential algorithm, presented in Algorithm 1, is first
to compute a combinatorial map where each edge corresponds to a linel between
two pixels belonging to two different regions (by using algorithm presented in
[10]). Then we scan the vertices of the map and remove each degree two vertex
such that the union of both edges incident to the vertex is still a DSS.

Algorithm 1: Sequential discrete reconstruction of contours of a labeled
image.

Input: A labeled image I.
Output: A discrete reconstruction of contours of I.

M ← combinatorial map where each edge corresponds to a linel of I ;
foreach dart d of M do

if the degree of v(d) is 2 then
let e1 and e2 the two edges incident to v(d);
if e1 ∪ e2 is a DSS then

Remove v(d);
update DSS attributes of the new edge;

The main loop of Algorithm 1 considers each dart successively, and processes
only degree two vertices. Indeed vertices with degree greater than 2 are at the
junction of several branches and thus cannot be removed. During this loop, if
the current vertex is removed, we jump over removed darts and continue the
loop with the next dart.

At the end of the algorithm, we have considered each vertex of the map, and
we have removed the ones such that the union of both incident edges is still a
DSS. This allows us to prove that each edge in the resulting combinatorial map
is a maximal DSS, since no more vertex can be removed.

The key point of Algorithm 1 is that each operation used in the main loop is
a local process, and that each adjacency and incidence relations can be retrieved
directly in O(1) thanks to our model. This gives us a generic algorithm and
allows us to easily parallelized this method.

Fig. 3 illustrates each step of Algorithm 1: first we consider an input labeled
image (Fig. 3a), in Fig. 3b the initial combinatorial map where each edge cor-
responds to a linel between two pixels with different labels, and in Fig. 3c one
result obtain at the end of the algorithm where each edge corresponds to one
maximal DSS.

As discussed in section 2, the 2D discrete reconstruction depends on the
starting point, and here, on the order in which vertices are processed in the
main loop of Algorithm 1. If darts are processed locally, i.e. if the dart at step i
is adjacent to the dart at step i−1, we obtain similar on simple closed curves as
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Fig. 3. Example of 2D discrete reconstruction of contours of a labeled image. (a) A
labeled image with 4 regions (plus the infinite region R0). (b) Initial combinatorial
map where each edge of the map corresponds to a linel between two pixels with differ-
ent labels. (c) Result obtain after the discrete reconstruction. Each edge of this map
corresponds to one maximal DSS.

(a) (b) (c)

Fig. 4. 3 possible results of 2D discrete reconstruction of contours of the same labeled
image (image given in Fig. 3a). Results can be different for the shape of DSS, but can
also be different in number of DSS. (a) and (b) Two results with 13 vertices, 16 edges
(and thus 16 DSS) and 5 faces. (c) One result with 14 vertices, 17 edges and 5 faces.

with the classical greedy techniques detailed in the preliminaries. Using the union
predicate and since the combinatorial map data structure supports constant time
access to darts, we can easily introduce a randomization on the for each loop
with the idea to overcome or distribute error propagations. Each resulting map
is composed of maximal DSS in the sense that the union of two adjacent DSS
is no more a DSS. However, depending on the order of processed vertices, DSS
can be different, and moreover the number of DSS can also be different (like for
example the map shown in Fig. 4b which contains 16 DSS and the map shown
in Fig. 4c which contains 17 DSS). A discussion on this point is addressed in the
conclusion.

4 The Parallel Algorithm for 2D Image Contour

Reconstruction

The main idea of the parallel algorithm, is to split the main loop of the sequential
one into several loops, and execute each loop in parallel using threads. Since the
processing of a vertex is local to the two incident edges, this parallelization can
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be achieved easily just by adding mutexes on edges to avoid concurrent accesses.
Algorithm 2 details the pseudo-code executed by each thread independently.

Algorithm 2: Parallel discrete reconstruction: one thread algorithm.

Input: A combinatorial map M where each edge corresponds to a linel of the
image;
L a list of darts to process.

Output: Sub-part of M corresponding to L is modified such that each edge
corresponds to one maximal DSS.

Let P a stack of darts to consider latter;
foreach dart d of L ∪ P do

if the degree of v(d) is 2 then
let e1 and e2 the two edges incident to v(d);
take if possible the mutex m1 associated to e1 (resp. m2 associated to
e2);
if both mutexes m1 and m2 are not taken then

Push d in P ;
Release the taken mutex;

else

if e1 ∪ e2 is a DSS then
Remove v(d);
update DSS attributes of the new edge;

Release mutexes m1 and m2;

The main loop of this algorithm is very similar to Algorithm 1 one. We can
point out two main differences: firstly, the list of darts to process is now only
a part of the whole darts of the map since other darts are processed by other
threads. Secondly, we have added particular process to avoid conflict due to
concurrent access. For that, we try to take the mutexes associated to edges e1

and e2. If both mutexes are taken, we have a guaranty that there is no other
thread processing a vertex incident to either edge e1 or e2. Note that mutexes
are taken in non-blocking mode to avoid inter-blocking situations.

If at least one mutex cannot be taken, the current vertex cannot be processed
because incident edges can change (if the other thread removes its current ver-
tex). Thus, we need to re-test this vertex later to consider the case if the adjacent
vertex is not removed by the other thread. For that, the vertex is pushed in a
stack of vertices to consider later.

5 Experiments

We have implemented both algorithms, sequential and parallel, and run some
experiments to compare times required by both versions. Our experiments were
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Fig. 5. Lena labeled image used for our experiments, and the resulting reconstruction.

made with an “Intel Core2 Duo CPU” at 2.20GHz, with 1.5 mega-bytes of mem-
ory and 4 kilo-bytes of cache. We have used six segmented images: Airplane,
Baboon, Cornouaille, Goldhill, Lena (see Fig. 5) and Peppers. The size of
each image is 512 × 512 pixels, except Cornouaille which is 256 × 256 and
Goldhill which is 720 × 576. Number of regions in each image is respectively
6360, 6704, 5409, 8005, 6197 and 5764.

Fig. 6. Two zooms in image of Fig. 5: the first one on the left eye of Lena, and the
second one on the hat. Points show the extremities of DSS, linels are drawn in grey,
and DSS in black.

Fig. 6 shows two zooms of the discrete reconstruction of Lena. We can re-
mark that there are many small DSS due to small regions in the labeled image
(sometimes regions made of only one pixel). We can improve the reconstruction
by removing these small regions in a pre-processing step.

Table 1 gives the times taken by our methods (values are average made on
20 tests for each image). First column gives the time required to compute the
initial combinatorial map where each edge corresponds to a linel. Second and
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third columns give the times required to compute the discrete reconstruction by
the sequential and parallel algorithm. In average, the gain of the parallel method
is about 32%. This gain is already important, furthermore we hope obtain better
results by using processor with more cores or by using computer with several
processors.

Table 1. Times in mili-seconds taken to compute the first combinatorial map (Ext.),
to compute the discrete reconstruction by the sequential (Seq.) and parallel (Par.)
algorithm. The last column (Speed-up) gives the percentage of gain of the parallel
method on the sequential one.

Ext. Seq. Par. Speed-up

Airplane 216 35 22 35%
Baboon 234 60 42 30%
Cornouaille 72 17 11 34%
Goldhill 316 89 63 28%
Lena 180 39 26 32%
Peppers 240 41 27 34%

Lastly, we can notice that the time required by the computation of the first
combinatorial map take the most important part of the global process. To im-
prove this step, we can for example use algorithms bases on precodes [10]. Fur-
thermore, a perspective is to propose a parallel algorithm to extract this initial
combinatorial map.

6 Conclusion

In this paper, we have presented an algorithm which allows to compute the dis-
crete contour reconstruction of any labeled image. By using a combinatorial map
which describes the image, we use cells of the subdivision to add DSS parameters,
and we use incident and adjacency relations to merge two DSS when it is possi-
ble. This gives a simple and efficient algorithm. Moreover, since all processes are
local, the algorithm can easily be parallelized with independent threads sharing
the same map. Our experiments show that the gain of the parallel algorithm
is about 32% with a “Intel Core2 Duo CPU”. Since our algorithm is fully par-
allel, the speed of our method will be improved by using future generation of
processors with more cores.

As a consequence our framework genericity, this work allows to use other
types of reconstruction (e.g. polygonalization, approximation. . . ). Indeed, the
principle is always the same: start from the initial map which represents all the
linels, and simplify it by testing one (or several) geometrical criterion. More-
over, we can easily add the notion of critical points (vertices that cannot be
removed) by marking these particular vertices and do not process them during
our algorithm.
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Another advantage of our method is the possibility to process vertices in any
order. This can be easily achieved by adding a step which sort vertices of the
initial combinatorial map in a specific order. This allows to consider different
orders and to overcome problems that could appear during the DSS reconstruc-
tion. For example, we can use random orders to obtain results which can be
statistically studied. Another example is to sort vertices depending on the angle
between adjacent edges, in order to begin by considering vertices between align
edges, and consider at the end of the process salient angles. Lastly, we plan to
extend this method in 3D by using 3D combinatorial maps [18].
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