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Abstract: A straightforward method to simulate high–Q quartz crystal oscillator is derivedin this paper. The
oscillator circuit is expressed under a canonical5–terminal network which can be easily handled. The oscillator
behavior is then described under the form of a nonlinear characteristic polynomial whose coefficients are functions
of the circuit components and of the oscillation amplitude. The steady state oscillation amplitude and frequency
are determined by solving the polynomial in the frequency domain.
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Introduction

We have developped [9][10][2][3][4] a symbolic–
numeric method to simulate high–Q quartz crystal os-
cillator. This method is based on rewritting the ampli-
fier part of the oscillator under a reduced form. To ob-
tain this reduced form, the transistor is replaced by an
equivalent admittance circuit, then each component of
the circuit is progressively integrated into this equiv-
alent circuit. Finally, the oscillation condition can be
easily stated.

Although this method gives accurate simulation
results, it has two drawbacks. The first one is the num-
ber of equations to manage, indeed, at each step of the
reduction, the relations between both equivalent cir-
cuits have to be saved. The second problem is that we
are not sure that every oscillator circuit can be anal-
ysed by this method.

The work described here was initiated to over-
come these problems while saving the efficiency of
our initial method. The oscillator is now separated
into 3 parts (Fig. 1): the quartz crystal resonator, the
active component (transistor) and a5–terminal net-
work which links the two previous elements.

The paper is organized as follow: we first recall
the standard equivalent circuit of the resonator and de-
fine a large signal equivalent circuit for the transis-
tor. Next, we show that the networkN can always
be expressed under a canonical form. Thus, the trans-
formation in the so–called reduced form of an oscil-
lator becomes straighforward. The oscillation condi-
tion and characteristic polynomial are then obtained,
which lead eventually to the equation system which

represents the oscillator behavior with respect to all
circuit components. N

Quartz Network Transistor
Figure 1: 5–terminal representation of a quartz crystal
oscillator.

1 Resonator equivalent circuit

The classical equivalent circuit of a quartz crystal res-
onator is shown in Fig. 2 [5][6]. It comprises a mo-
tional arm (Rq, Lq, Cq) in parallel with a capacitance
(Cp). The resonator behavior is characterized by the
series resonant frequencyfq, the inductanceLq, the
series resistanceRq, and the parallel capacitanceCp.

Some high precision simulation needs to take into
account the isochronism defect of the quartz crystal
resonator. In that case, the actual resonant frequency
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Figure 2: Equivalent circuit of the resonator.

f ′

q depends on the drive level [7] according to the law:

f ′

q = fq (1 + aPa) (1)

Pa = Re {Zq} 〈i
2

q〉 (2)

wherePa is the active power within the crystal,a is
the isochronism effect parameter of first order and〈i2q〉
is the mean square value of the current through the
crystal. The capacitanceCq has to be replaced byC ′

q

which is calculated fromf ′

q andLq (Eq. 3).

C ′

q =
1

4π2Lqf ′2
q

(3)

2 Transistor equivalent circuit

The transistor is modelled [6] by a large signal admit-
tance parameter circuit (Fig. 3). The4 admittancesyi,
yr, yf andyo enable to modelize accurately the non-
linear behavior of the component.
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Figure 3:y–parameter representation of a transistor.

From their definition, it results thatyi andyf de-
pend on the input voltageu while yr andyo depend
on the output voltagev (4)–(7). The8 functionsg•
and c• are calculated [1] for a given bias and tem-
perature conditions by using the electrical simulator
SPICE [11]. They can be represented under the form
of a table or computed at run time.

yi (|u|) = gi (|u|) + s ci (|u|) (4)

yr (|v|) = gr (|v|) + s cr (|v|) (5)

yf (|u|) = gf (|u|) + s cf (|u|) (6)

yo (|v|) = go (|v|) + s co (|v|) (7)

3 Processing of the5–terminal net-
work

The theory of network circuits proves that anyn–
terminal passive network can be represented by
n (n − 1) /2 admittances connected between eachn
terminal nodes. An example is given in Fig. 4 for
somen–terminal networks.
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Figure 4: Representation of somen–terminal net-
works.

It can be shown [12] that then (n − 1) /2 admit-
tancesYkl (k 6= l) can be computed using the follow-
ing formula:

Ykl =
1

2
(Sk + Sl − Skl) (8)

The admittanceSk is the driving–point admittance
when all the terminals exceptk are shorted and when
a voltage is applied to terminalk. These conditions
are represented in Fig. 5 on a5–terminal network for
k = 2.
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Figure 5: Computation or measurement of the admit-
tanceSk.

The admittanceSkl is the driving–point admit-
tance when all the terminals exceptk andl are shorted
and when the same voltage is applied to terminalsk
andl. These conditions are represented in Fig. 6 on a
5–terminal network fork = 2 andl = 4.

The computation of the driving–point admit-
tancesSk, Sl andSkl is straightforward by using topo-
logical methods. The common feature of these meth-
ods is that the network is represented by a graph that
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Figure 6: Computation or measurement of the admit-
tanceSkl.

resembles the network, and the calculation of any net-
work function is transformed into a subgraph enumer-
ation problem.

We recall some graph theory definitions: A tree
T of a graphG is a subgraph ofG if T is connected,
if T contains all nodes ofG and if T has no loops.
A tree–admittance product ofN is the product of the
admittances of a tree ofN .

The driving–point admittance of an RLC network
N is given [8] by (9) whereN∗ is derived fromN
by short–circuiting the two input terminals, and then
removing any short–circuited branches.

Y =
sum of all tree–admittance products ofN

sum of all tree–admittance products ofN∗

(9)
It is clear that the calculus of the sum of all tree–
admittance products is a disguised method to compute
the determinant of a node admittance matrix. As op-
posed to regular algebraic method to inverse the linear
equation system of node admittances, the final answer
of the determinant is here directly written down,i.e.
without cancellation of terms.

4 Reduced form of the amplifier
We have shown that the networkN and the transis-
tor part of an oscillator can always be represented
as in Fig. 7. The networks is replaced by the5 ×
(5 − 1) /2 = 10 equivalent admittancesY1, Y2, . . .,
Y10, and the transistor is substituted by grayed admit-
tancesyi, yr, yf andyo.

The canonical circuit in Fig. 7 can be transformed
into the reduced form shown in Fig. 8. Under this
form, the computation of the oscillation condition be-
comes trivial. We shall express the new coefficients
Yi, Yr, Yf andYo as functions of the transistor admit-
tancesy

i
, yr, yf , yo and of the network admittances.

The relation beetween the voltages(u, v) across
the transistor and the voltages(U, V ) across the res-
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Figure 8: Reduced form of the amplifier.

onator is calculated by writing nodal equations at
nodes 1 and 2. This leads to (10),

(

u
v

)

=

(

C11 C12

C21 C22

)(

U
V

)

(10)

with the following coefficients:

∆ = A11A22 − A12A21 (11)

C11 = (A22Y3 − A12Y5) /∆ (12)

C12 = (A22Y4 − A12Y6) /∆ (13)

C21 = (A11Y5 − A21Y3) /∆ (14)

C22 = (A11Y6 − A21Y4) /∆ (15)

The inverse of Eq. 10 is given here because it will be
used into the oscillation condition derivation section.
From the same nodal equations at nodes 1 and 2, or
by inverting (10), one can obtain:

(

U
V

)

=

(

B11 B12

B21 B22

)(

u
v

)

(16)

with the following coefficients:

δ = Y3Y6 − Y5Y4 (17)

B11 = (Y6A11 − Y4A21) /δ (18)

B12 = (Y6A12 − Y4A22) /δ (19)

B21 = (Y3A21 − Y5A11) /δ (20)

B22 = (Y3A22 − Y5A12) /δ (21)

The coefficientsAij are defined in both cases by the
following equations (Eq. 22–25).

A11 = Y8 + yi + Y3 + Y4 + Y9 (22)

A12 = yr − Y9 (23)

A21 = yf − Y9 (24)

A22 = Y10 + yo + Y6 + Y5 + Y9 (25)

By writing nodal equation at nodes 3 and 4, replacing
the voltages(u, v) by their expressions as a fonction
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Figure 7: Canonical form of the amplifier.

of (U, V ), and finally equating with node equations of
Fig. 8, one can express the relation between the am-
plifier admittances(Yi, Yr, Yf , Yo) and the transistor
admittances(yi, yr, yf , yo).

Yi = Y1 + Y2 + Y3(1 − C11) + Y5(1 − C21) (26)

Yr = −Y1 − Y3C12 − Y5C22 (27)

Yf = −Y1 − Y6C21 − Y4C11 (28)

Yo = Y1 + Y7 + Y6(1 − C22) + Y4(1 − C12) (29)

5 Oscillation condition derivation

We have shown that the circuit of a quartz crystal os-
cillator can be represented as shown in Fig. 9. The
resonator is connected across the amplifier part of the
oscillator which is itself composed of the networkN
and the transistor.
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Figure 9: Reduced form of the oscillator.

Under this reduced form, the derivation of the os-
cillation condition is straighforward. The application
of Kirchhoff’s law at both input and ouput parts of the

circuit (Fig. 9) leads to the following relations (30)–
(31).

(Yi + Yq)U + (Yr − Yq)V = 0 (30)

(Yf − Yq)U + (Yo + Yq)V = 0 (31)

5.1 Gain of the transistor
The system (30) and (31) gives two ways to compute
the gain of the transistor (ratiov/u). By replacing
into these equations the voltage(U, V ) as a fonction
of (u, v) (Eq. 16), the voltagev is expressed as a fonc-
tion of the voltageu. Obviously, these two equations
must give the same result.

v

u
= −

B11 (Yi + Yq) + B21 (Yr − Yq)

B12 (Yi + Yq) + B22 (Yr − Yq)
(32)

v

u
= −

B11 (Yf − Yq) + B21 (Yo + Yq)

B12 (Yf − Yq) + B22 (Yo + Yq)
(33)

5.2 Oscillator characteristic polynomial
The system (30) and (31) admits a nontrivial solution
only if its determinant is null, this gives the oscilla-
tion condition of the circuit (34). The admittancesYi,
Yr, Yf andYo are functions of the circuit components
(inside the networkN ) and of the transistor represen-
tative components (conductancesg• and capacitances
c•). The admittanceYq is expressed by its equivalent
circuit (Rq, Lq, Cq andCp).

YiYo − YfYr + (Yi + Yr + Yf + Yo)Yq = 0 (34)

Replacing the admittances by their expressions, which
are rational functions in the Laplace’s variables, leads
to the oscillator characteristic polynomial (35). Each
coefficient ak of this polynomial is expressed as a



function of the component value of the circuit. The
degreeK of the characteristic polynomial depends on
the component number and on the topology of the net-
work N .

K
∑

k=0

aks
k = 0 (35)

To obtain the steady state frequency and amplitude of
the oscillation, the Laplace’s variables is replaced by
the harmonic variablejω, this splits (35) into real and
imaginary part. One of the two equations 32 or 33
must be added to compute the voltagev as a function
of u.

K
∑

k=0

αk (u, v)ωk = 0 (36)

K
∑

k=0

βk (u, v)ωk = 0 (37)

−
B11 (Yi + Yq) + B21 (Yr − Yq)

B12 (Yi + Yq) + B22 (Yr − Yq)
=

v

u
(38)

The numerical calculation of the variablesu, v and
ω which satisfies the system (36)–(38) determines
the frequency and the amplitude of the oscillation.
The numerical computation is independent of the time
constants of the circuit. If the designer would evi-
dence relative frequency changes of about∆f/f ≃
10−6, the isochronism defect of the resonator can be
taken account by modifying its equivalent circuit.

6 Conclusion

The core of the analysis of an oscillator circuit is
done by computing the10 equivalent admittances of
the canonical form described here, and by simulating
the4 equivalent admittances of the transistor. All the
other computations are common to all oscillator cir-
cuits with one transistor and can be thus coded once
for all.

The characteristic polynomial coefficients are ex-
pressed as functions of all circuit components. There-
fore, the influence of a change of any component value
on the oscillation amplitude and frequency as well as
on the resonator excitation level can be directly calcu-
lated.

In addition, if tolerance and temperature coeffi-
cient are assigned to each component, our method can
be used to perform efficient worst case analysis and to
simulate the signal sensitivity at a given temperature
with respect to every circuit component.
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