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This paper proposes an implementation in Maple language of the Kirchhoff's third law and its dual, the so-called Kirchhoff's fourth law. These laws, stated in graph theory language, allows one to compute symbolically any network functions of linear passive circuits.

Introduction

Symbolic analysis for analog circuits has received quite some research interest over the last ten years. In numerical simulation, the values of all circuit elements are given and the circuit response to an input excitation is calculated in numerical form. In symbolic computation, the circuit elements are represented by symbols and the desired network characteristic is derived in finite terms (or in physicist language: as an analytic expression).

This paper focuses more particularly on the symbolic computation of network functions of linear passive circuits. The computation of network functions in symbolic forms is a starting point for tolerance analysis, fault diagnosis, behavioral model generation, statistical circuit analysis, optimization and the associated calculation of component values. In brief, symbolic computation can be very useful in all applications which involve the repeated evaluation of a circuit's characteristics.

This paper proposes an implementation in Maple language of the computation of any network functions (E/I, E/E, I/E, I/I) of linear passive circuits by means of the so-called Kirchhoff's "third and fourth laws" [START_REF] Weinberg | Network Analysis and Synthesis[END_REF]. These laws allows one to express network functions, in a very concise way, in terms of trees enumerations. The symbolic computation of network functions is closely related to the computation of the inverse of a nodal admittance matrix. Both of problems are efficiently solved by tree enumeration methods [START_REF] Lin | Symbolic Network Analysis[END_REF] [START_REF] Chen | Graph Theory and its Engineering Applications[END_REF].

Section 2 recalls some definitions of graph theory which are necessary to understand the statement of the Kirchhoff's laws. Sections 3 and 4 give the statement of the third and fourth Kirchhoff's laws. The proofs of these laws can be found in [START_REF] Weinberg | Kirchhoff's "third and fourth laws[END_REF](with minor corrections [START_REF] Weinberg | Correction to "kirchoff's third and fourth laws[END_REF]). Two hand calculations of these laws are detailed on sections 5 and 6. Finally, sections 7 and 8 present the algorithm and propose a practical implementation of the Kirchhoff's third and fourth laws.

Graph Theory

Some definitions of graph theory are recalled in this section. The terminology is standard except for the terms split-tree and co-split-tree. These new terms are proposed by the authors to give an uniform statement of the third and fourth Kirchhoff's laws.

• Graph: A graph (or network) consists of a set of nodes together with a set of edges that connect the nodes.

Graph Edge Node

• Tree: A tree is any set of edges that connects all the nodes but does not form any loop.

• Cotree: The cotree of a tree is its complement, i.e. the set of all edges of the graph that do not appear in the tree.

Tree Cotree

• Loop: A loop is any set of edges that forms a closed path.

• Coloop: The coloop of a loop is its complement, i.e. the set of all edges of the graph that do not appear in the loop.

Loop Coloop

• Split-tree: A splittree (split into trees) is any set of edges whose removal would disconnect a graph into two trees.

• Co-split-tree: The cosplittree of a splittree is its complement or the remaining two trees, i.e. the set of all edges of the graph that do not appear in the splittree.

Splittree CoSplittree

The definition of a split-tree must not be confused with a cutset which is a set of edges whose removal would disconnect a graph. Similarly, the definition of a co-split-tree must not be confused with a two-tree which is a set of edges obtained by deleting an edge from a tree.

Kirchhoff 's "Third Law"

Given any connected resistance network G, if a voltage generator E l is inserted in a branch R l , then the current I k through any branch R k is given [START_REF] Weinberg | Network Analysis and Synthesis[END_REF] by Eq. 1.

I k = N kl D E l (1) 
N kl = +/- loops(R k ,R l ) Rm∈coloop R m (2) 
D = cotrees(G) Rm∈cotree R m (3) 
• How to read the expression of D:

The summation is carried out over all the cotrees of the network. A term in the summation is the product of all the edges (resistances) of a cotree.

• How to read the expression of N :

The algebraic summation is carried out over all the loops that include as its edges both R k and R l . The associated sign of the term is positive if the directions of I k and E l , along the loop, are in the same sense.

A term in the summation is the product of all the edges (resistances) of the associated coloop.

Kirchhoff 's "Fourth Law"

Given any connected conductance network G, if a current source I l is placed across any branch G l , then the voltage E k across any branch G k is given [START_REF] Weinberg | Network Analysis and Synthesis[END_REF] by Eq. 4.

E k = N kl D I l (4) 
N kl = +/- splittrees(G k ,G l ) Gm∈cosplittree G m (5) D = trees(G) Gm∈tree G m (6) 
• How to read the expression of D :

The summation is carried out over all the trees of the network. A term in the summation is the product of all the edges (conductances) of a tree.

• How to read the expression of N :

The algebraic summation is carried out over all the splittrees that include as its edges both G k and G l and so that G k and G l connect the two trees. The associated sign of a term is positive if the direction of E k and I l , connecting the two trees, are in the same sense. A term in the summation is the product of all the edges (conductances) of the associated two trees (cosplittree). Kirchhoff 's third law

The third Kirchhoff's law is illustrated in the network shown in Fig. 1. We want to express the current I 5 through the resistance R 5 in terms of the supply E 0 and the given resistances. The respective coloops of the previous subgraphs is given on Fig. 3. The trees and their associated cotrees are given in Fig. 7 and8. By inspection of subgraphs on Fig. 2, 3 and 8, the current I 5 is:

I 5 = +R 2 R 3 -R 1 R 4 R 3 R 4 R 5 + R 2 R 3 R 5 + • • • + R 0 R 1 R 3 E 0 (7)
6 Hand calculation of Kirchhoff 's fourth law

The fourth Kirchhoff's law is illustrated in the network shown in Fig. 4. We want to express the voltage E 5 across the resistance R 5 in terms of the supply I 0 and the given conductances. 
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Fig. 6: Co-split-trees of network in Fig. 4.

The trees and their associated cotrees are given in Fig. 7 and8. By inspection of subgraphs on Fig. 5, 6 and 7, the voltage E 5 is:

E 5 = +G 1 G 4 -G 2 G 3 G 0 G 1 G 2 + G 0 G 1 G 4 + • • • + G 2 G 4 G 5 I 0 (8)

Algorithm

The theoretical statements of the so-called third and fourth Kirchhoff's laws (Eq. 1 and 4) are intricate and one needs some time to get accustomed to it. At the opposite the algorithms [START_REF] Weinberg | Network Analysis and Synthesis[END_REF] to compute them are straitforward and lead to very concise Maple programs.

Computation of D

1. Compute the determinant of the nodal resistance matrix.

2. The denominator D is the complement of each term.

Computation of N 1. Choose those terms of D that contain R k and divide each of them by R k .

2. Choose those terms of D that contain R l and divide each of them by R l .

3. The numerator N is the common terms in these two sets. The signs of the terms are determined by inspection of the respective subgraphs.

Computation of D'

1. The denominator D' is the determinant of the nodal conductance matrix.

Computation of N 1. Choose those terms of D that contain G k and divide each of them by G k .

2. Choose those terms of D that contain G l and divide each of them by G l .

3. The numerator N is the common terms in these two sets. The signs of the terms are determined by inspection of the respective subgraphs.

Implementation

The two Maple programs given in this section are the core of the implementation of the Kirchhoff's third and fourth laws. The code almost litteraly the algorithms given in the previous section. 

Computation of third law (Eq. 1)

Imp1 is the resistance of the branch through which the voltage generator is inserted. Imp2 is the resistance of the branch through which the current is measured. G is the graph of the circuit.

KirchhoffThirdLaw := proc(Imp1,Imp2,G) local Tmp1,Tmp2,Tmp3,Tmp4,Num,Den: Tmp1 := CoTrees(G); Tmp2 := map(proc(x,y) if member(y, x) then x minus {y}: fi: end, Tmp1, Imp1); Tmp3 := map(proc(x,y) if member(y, x) then

x minus {y}: fi: end, Tmp1, Imp2); Tmp4 := Tmp2 intersect Tmp3; Den := convert(map(proc(x) convert(x,'*'): end, Tmp1),'+'); Num := convert(map(proc(x) LoopSign(Imp1,Imp2,x,G) *convert(x,'*'): end, Tmp4),'+'); RETURN(Num/Den): end:

Example

In order to illustrate the execution of this program, the circuit depicted in Fig. 1 is defined and analysed by the following Maple code. Vertices and edges are added to the graph using the commands addvertex, and addedge. Edge names must begin with the letter "e". Edges can be specified as sets or lists of vertices. A list indicates a directed edge, while a set indicates an undirected edge. Current and voltage sources as components though or across which current or voltage are mesured are defined by directed edges. 

Computation of fourth law (Eq. 4)

Adm1 is the conductance of the branch across which the current source is placed. Adm2 is the conductance of the branch across which the voltage is measured. G is the graph of the circuit.

KirchhoffFourthLaw := proc(Adm1,Adm2,G) local Tmp1,Tmp2,Tmp3,Tmp4,Num,Den: Tmp1 := Trees(G); Tmp2 := map(proc(x,y) if member(y, x) then

x minus {y}: fi: end, Tmp1, Adm1); Tmp3 := map(proc(x,y) if member(y, x) then

x minus {y}: fi: end, Tmp1, Adm2); Tmp4 := Tmp2 intersect Tmp3; Den := convert(map(proc(x) convert(x,'*'): end, Tmp1),'+'); Num := convert(map(proc(x) SplitTreeSign(Adm1,Adm2,x,G) *convert(x,'*'): end, Tmp4),'+'); RETURN(Num/Den): end:

Example

The circuit depicted in Fig. 4 

Conclusion

The unrecognized Kirchhoff's third and fourth laws have been recalled in this paper. These laws allow one to compute network functions, of linear passive circuits, in straight formulas. The statement of these two laws have been detailed as they are stated in a formalism which is unusual to most scientists from the electronics community. A very concise Maple program to compute them have been proposed. 
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Fig. 1 :Fig. 2 :

 12 Fig. 1: Bridge resistance example.

Fig. 3 :

 3 Fig. 3: Coloops of network in Fig. 1.

Fig. 4 :Fig. 5 :

 45 Fig. 4: Bridge conductance example.

>

  new(G): > addvertex({a,b,c,d},G): > addedge([b,a],names=eR0,G): > addedge({a,c},names=eR1,G): > addedge({a,d},names=eR2,G): > addedge({c,b},names=eR3,G): > addedge({d,b},names=eR4,G): > addedge([c,d],names=eR5,G): > KirchhoffThirdLaw(eR0,eR5,G); (-eR1*eR4+eR3*eR2)/(eR0*eR5*eR4 +eR3*eR0*eR1+eR2*eR4*eR0+eR4*eR3*eR2 +eR2*eR5*eR1+eR0*eR3*eR2+eR3*eR1*eR4 +eR3*eR1*eR2+eR3*eR5*eR4+eR0*eR5*eR2 +eR0*eR3*eR5+eR4*eR1*eR5+eR4*eR1*eR2 +eR3*eR5*eR2+eR0*eR1*eR5+eR0*eR1*eR4)

  is defined and analysed by the following Maple code. > new(G): > addvertex({a,b,c,d},G): > addedge([b,a],names=eG0,G): > addedge({a,c},names=eG1,G): > addedge({a,d},names=eG2,G): > addedge({c,b},names=eG3,G): > addedge({d,b},names=eG4,G): > addedge([d,c],names=eG5,G): > KirchhoffFourthLaw(eG0,eG5,G); (-eG3*eG2+eG1*eG4)/(eG0*eG1*eG2 +eG0*eG1*eG4+eG3*eG2*eG4+eG3*eG2*eG5 +eG3*eG1*eG5+eG0*eG1*eG5+eG0*eG2*eG5 +eG5*eG2*eG4+eG0*eG4*eG5+eG0*eG3*eG2 +eG0*eG3*eG4+eG3*eG1*eG2+eG0*eG3*eG5 +eG2*eG1*eG4+eG3*eG1*eG4+eG5*eG1*eG4)
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Fig. 7 :Fig. 8 :

 78 Fig. 7: Trees of network in Fig. 1 or 4.