
HAL Id: hal-00345260
https://hal.science/hal-00345260

Submitted on 8 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of a parametric quartz crystal oscillator by
the symbolic harmonic method

Nicolas Ratier, Michaël Bruniaux, Serge Galliou, Rémi Brendel

To cite this version:
Nicolas Ratier, Michaël Bruniaux, Serge Galliou, Rémi Brendel. Simulation of a parametric quartz
crystal oscillator by the symbolic harmonic method. 20th European Frequency and Time Forum
(EFTF), Mar 2006, Braunschweig, Germany. pp.CD. �hal-00345260�

https://hal.science/hal-00345260
https://hal.archives-ouvertes.fr

Simulation of a parametric quartz crystal oscillator

by the symbolic harmonic method

N. Ratier,∗ M. Bruniaux, S. Galliou, and R. Brendel
Institut FEMTO–ST, département LPMO & LCEP, CNRS UMR 6174

32 avenue de l’Observatoire, F-25044 Besançon, France

The Symbolic Harmonic Analysis (SHA) method is a frequency domain approach for computing
the steady state of ultra stable quartz crystal oscillators. First, we present a general method to
convert a set of differential equations into a system of non-linear algebraic equations that can
be solved for the periodic steady state solution. Then, we apply this method to simulate the
behavior of a parametric quartz crystal oscillator currently being developed at FEMTO–ST/LCEP.
This oscillator uses a 10 MHz quartz resonator and a 20 MHz signal derived from the oscillator
nonlinearities is used to pump a varactor-diode. The quartz resonator time constant induces too
long simulation time with classical integration methods. So that the symbolic harmonic analysis
offers a good alternative to quickly obtain the periodic steady state. Simulation results are compared
with experimental data.

I. INTRODUCTION

The work described in this paper presents the lat-
est development of a simulation method to determine
in real time the steady–state solution of ultra–stable
crystal oscillators.

Usually the method used to simulate this kind of cir-
cuit is the so–called ”harmonic–balance” method [1].
Roughly, this numerical method amounts to compute
the behavior of the linear part of the circuit in the
frequency domain and the nonlinear part in the time
domain. The name stems from an approach based on
current balancing between the linear and nonlinear
parts.

In our method, by using symbolic calculation, the
system of nonlinear differential equations describing
the oscillator circuit is replaced by a system of non-
linear equations of Fourier coefficients whose solution
is an approximation of the steady–state response of
the circuit. The harmonic analysis method imposes
the steady–state conditions through a Fourier expan-
sion of the unknown functions. This method in which
the simulation time no longer depends on the tran-
sient is used to develop a real time simulation tool for
ultra–stable oscillator circuits.

The main drawback of symbolic methods lies in the
fact that they usually involve a very large number of
terms. The first part of the paper proposes a solu-
tion based on “tree parsing” to solve this problem,
while the second part applies the method to simulate
a parametric oscillator.

∗
Electronic address: nicolas.ratier@lpmo.edu

II. PRINCIPLE OF THE SYMBOLIC
HARMONIC ANALYSIS METHOD

P (T0) denotes the set of all periodic functions of
bounded variation with period T0. The system of dif-
ferential equations under consideration is of the form
(Eq. 1) where u ∈ P (T0) is the stimulus waveform, x
is the unknowns waveform to be found and f is con-
tinuous and real.

f(x, x′, u) = 0 (1)

If the solution x exists, is real, and belongs to P (T0),
it can be written as a Fourier series (Eq. 2) where
ω0 = 2π/T0.

x(t) = X0+

∞
∑

k=1

Xk cos(kω0t)+

∞
∑

k=1

X−k sin(kω0t) (2)

Since x ∈ P (T0) and u ∈ P (T0) imply x′ ∈ P (T0) and
f(x, x′, u) ∈ P (T0), by substituting x, its derivative
and u into f , the resulting equation can be written
under a Fourier series form (Eq. 3).

f(x, x′, u) = F0 +

∞
∑

k=1

Fk cos(kω0t)+

∞
∑

k=1

F−k sin(kω0t)

(3)
By using the orthogonality of sinusoidal functions,
(Eq. 3) can be rewritten as a system of nonlinear
equations (Eq. 4), one for each harmonic defined by
the assumed solution. Then the nonlinear system (4)
can be solved numerically to obtain the Fourier coef-
ficients Xk of the unknowns.

Fk(Xk) = 0 for all k ∈ Z (4)

Nevertheless, even by truncating the Fourier series,
a direct application by symbolic calculation of the
method described above to build the nonlinear sys-
tem leads to an exponential growth of the number of
terms.

The method proposed to overcome this difficulty is
to rewrite each differential equation of the system as
a binary tree so that each node involves only one al-
gebraic operation. Then the trees are progressively
reduced in harmonic (i.e. Fourier series) form from
the bottom to the top: at each node new coefficients
expressed in function of the previous ones are gener-
ated. Eventually, it remains only a Fourier series with
manageable coefficients.

The mapping of differential equations into binary
trees is defined by the following abstract syntax: the
UNKNOWN terminals are elements of the unknown vector
x(t) and the FUNCTION terminals are either constants
or functions already in harmonic form, as the stimulus
waveform u(t) does.

type odeTree =
SUM of odeTree * odeTree

| PROD of odeTree * odeTree

| POWER of odeTree * INTEGER
| DIFF of odeTree

| EXP of odeTree
| COS of odeTree

| SIN of odeTree
| UNK of UNKNOWN

| FCT of FUNCTION

Because only EXP, COS and SIN functions of Fourier
series can be expanded into Fourier series, the gram-
mar accepts only these transcendental functions. Any
other transcendental function (log, tan, ...), inverse of
a function, and composite function are rejected. To
fit all ODE to the given grammar, one proceeds by
introducing an additional unknown to the equation
system, which transforms the initial differential equa-
tion system into an algebro–differential system. This
handling is trivial as shown in the following example.

· · · + tan V1 + · · · + arccosV2 + · · · = 0 (5)

becomes

· · · + H1 + · · · + H2 + · · · = 0 (6)

H1 cosV1 = sin V1 (7)

cosH2 = V2 (8)

The latter equations are now recognized by the gram-
mar. The same method can be directly applied to the
inverse of a function and to the composite functions.

III. EVALUATION OF UNK, FCT, SUM, PROD, DIFF,
EXP, COS, SIN NODES

Once the tree of the differential equation is built,
each node of the tree can be progressively reduced (or
evaluated). Assuming that V1(t) is an unknown func-
tion of the differential system and R1 is a parameter,
the reduction is performed as follow:

• UNK(V1(t)) is replaced by its Fourier series lim-
ited to N terms, i.e. it returns:

A00V1

+ A01V1 cos wt + B01V1 sin wt
+ A02V1 cos 2wt + B02V1 sin 2wt
+ A03V1 cos 3wt + B03V1 sin 3wt

• FCT(R1) is already under the right form, so it is
replaced by itself.

• SUM(S1,S2) with

S1 = A00S1 + A01S1 cos wt
+ B01S1 sin wt + ...

S2 = A00S2 + A01S2 cos wt

+ B01S2 sin wt + ...

is reduced by generating new coefficients

TT1 = A00S1 + A00S2
TT2 = A01S1 + A01S2

TT3 = B01S1 + B01S2
... = ...

and returns:

TT1 + TT2 cos wt + TT3 sin wt + ...

• PROD(S1,S2), DIFF(S1) are reduced in the same
way as SUM(S1,S2), but with a bit more com-
plex generated coefficients.

• The “harmonization” of EXP(S1), COS(S1) and
SIN(S1) functions is explained in [2]. The so-
lution of this problem is quite similar to the
harmonization of ODE. A binary tree is con-
structed and new coefficients are generated as
a function of the previous ones during the tree
parsing. Each transcendental function has a dif-
ferent associated tree.

IV. EVALUATION OF POWERS (POWER)

Given x and n, where x is a Fourier series and n is
a positive integer, we study the problem of comput-
ing symbolically POWER(x,n), or xn, efficiently. Here,
“multiplication” means multiplication of series. Al-
though we are concerned with multiplication of pow-
ers of x, the problem can be reduced to addition, since
the exponents are additive. This leads to the following
abstract formulation:

An addition chain for the integer number n is a
sequence of integers

a0 = 1, a1, a2, . . . , ar = n (9)

with the property that, for all i = 1, 2, . . . , r:

ai = aj + ak, for somek 6 j < i (10)

This means that each exponentiation in the chain can
be evaluated by multiplying two of the previous ex-
ponentiation results. The optimal way to compute xn

by multiplication is given by the addition chain for n
having the smallest length r. The smallest length r
for which an addition chain for n exists is denoted by
l(n).

Despite numerous work in this area, the determi-
nation of a minimal–length addition chain generating
the desired exponent is still an open problem is math-
ematics. The weaker problem to compute l(n) is nei-
ther solved. However, a lower and a upper bounds of
l(n) are known.

dlog2 ne 6 l(n) 6 blog2 nc + ν(n) − 1 (11)

where dlog2 ne is the ceiling of x (smallest integer
greater than or equal to x), blog2 nc is the floor of x
(greatest integer less than or equal to x) and ν(n) is
the number of 1’s in the binary representation of n.

Our SHA program use the following recursive al-
gorithm to compute xn for a Fourier series x and a
positive integer n. This algorithm is known as the
square–and–multiply algorithm [3]. The repeated ap-
plication of this algorithm amounts to decompose the
exponent into a sequence of squares and products. It
requires only one temporary storage x (and of course
the current partial result).

Power(x, n) =







x, if n = 1
Power(x2, n/2), if n is even
x × Power(x2, (n − 1)/2), if n is odd

(12)
The square–and–multiply algorithm is used for two
main reasons:

1. Although, it doesn’t lead to an optimal addition
chain, it is quite efficient. Compared to the or-
dinary method of multiplying x with itself n − 1
times, this algorithm uses only O(log2 n) multipli-
cations. (The number of multiplications required to
compute xnby the square–and–multiply algorithm
is exactly blog2 nc + ν(n) − 1).

2. Unlike optimal addition chains, the addition chains
computed by the square–and–multiply algorithm
have always a binary tree structure. So the com-
putation of xn by this algorithm is naturally inte-
grated into the SHA method as it is based on binary
trees representation.

For example, table I shows the application of the
square–and–multiply algorithm on x9 and x10. The
second column follows the application of the algorithm
giving the addition chains in reverse order, and the
third column gives the algebraic equivalent.

The computation of x9 and x10 are represented by
the following binary trees (Fig. 1). It should be noted
that each power of x has a different binary tree and
two closed powers, for example xn and xn+1, don’t

Power Algorithm Algebraic

x9 9, 8, 4, 2, 1 ((x2)2)2x
x10 10, 5, 4, 2, 1 ((x2)2x)2

TABLE I: Computation of x9 and x10

x

x

SQR

SQR

SQR

PROD

x

x

SQR

SQR

PROD

SQR

FIG. 1: Binary tree of x9 and x10

have closed binary trees at all. The trees are reduced
as explains in the previous section.

Table II illustrates the efficiency of the square–and–
multiply algorithm to compute xn. l(n) is the minimal
number of multiplications. For large n, the lower and
upper bounds and computed by inequality (Eq. 11).
l?(n) is the number of multiplications required by the
square–and–multiply algorithm. Results have to be
compared to the ordinary method of powering which
needs n − 1 multiplications.

n l(n) l?(n)

10 4 4
100 8 8
1000 10 6 l(n) 6 14 14
10000 14 6 l(n) 6 17 17
100000 17 6 l(n) 6 21 21
1000000 20 6 l(n) 6 25 25
10000000 24 6 l(n) 6 30 30
100000000 27 6 l(n) 6 37 37
1000000000 30 6 l(n) 6 41 41

TABLE II: Efficiency of the square–and–multiply algo-
rithm

V. APPLICATION: PARAMETRIC
OSCILLATOR

The symbolic harmonic method is applied to an-
alyze the forced–mode behavior of the parametric
quartz oscillator (PXO) shown in Fig. 2. The princi-
ple of this oscillator developed at FEMTO–ST/LCEP
is described in [4]. It uses a 10MHz quartz and a
20MHz pump Upmp coming from the second harmonic
at 20 MHz generated by a varactor-diode. For in-
stance the parameters of the oscillator are R1 = 100Ω,

Ub + Uvd(t) + R2

d

dt
(Cvd(t).Uvd(t)) + L.

d2

dt2
(Cvd(t).Uvd(t)) = (13)

−R1

d

dt
(Cvd(t).Uvd(t)) − R1Cq

d

dt
Uq(t) + Vp sin(2ωqt)

Uq(t) + RqCq

d

dt
Uq(t) + LqCq

d2

dt2
Uq(t) = (14)

−R1

d

dt
(Cvd(t).Uvd(t)) − R1Cq

d

dt
Uq(t) + Vp sin(2ωqt)

Cvd(t).H(t) = C0 vd (15)

1 +
Uvd(t)

φ0

= H
2(t) (16)

R2 = 300Ω, Ub = −1V , Upmp = 4.5V , and L is tuned
at 10MHz with the varactor–diode capacitance value.
The resonator is a 10MHz SC cut quartz crystal, ex-
hibiting a unloaded quality factor of about 1 106.

vdC

2R

R1

Ub

Q

Upmp

L

Uvd

FIG. 2: Quartz crystal Parametric oscillator

The voltage–capacitance relationship of a varactor–
diode is written [5] as Eq. (17), where Cvd 0 is the
diode capacitance at Uvd = 0 (typically a few tens
of picofarad), φ0 is the contact potential, and γ is
the fractional change in capacitance (γ = −1/2 for
abrupt junction, and γ = −1/3 for graded–junction
varactors).

Cvd = C0 vd

(

1 +
Uvd

φ0

)γ

(17)

The circuit is described by the system of ordinary dif-
ferential equations (Eq. 13) to (Eq. 16). The “har-
monization” of Eq. 17 is done by introducing an ad-
ditional unknown function H(t). The equation of the
varactor diode, for γ = −1/2 is then replaced by the
two Eq. 15 and 16.

The unknowns of the system are the voltages across
the varactor Ucd(t) and the quartz series capacitance
Uq(t), the capacitance Cvd(t) and the additional func-
tion H(t). H(t) doesn’t have any physical meaning.
The previous ODE system is then solved by SHA
method by replacing all unknowns by Fourier series,
building and reducing ODE trees. The resulting equa-
tions involving Fourier coefficients of the unknowns
are then solved numerically. The varactor voltage Uvd

versus time in plotted in Fig. 3.

−5

−4

−3

−2

−1

 0

 1

 2

 4.5 4.6 4.7 4.8 4.9 5

V
ol

ta
ge

 U
vd

 (
V

)

Time (µs)

FIG. 3: SHA Simulation of the varactor–diode voltage Uvd

versus time.

Fig. 4 shows experimental results performed in
forced mode [6]. Theoretical results are in good agree-
ment with experimental ones, although theoretical im-
provements still have to be done. The simulated curve
plotted in Fig. 3 is computed in a few seconds. Nu-
merical computation of the system (Eq. 13 to Eq. 16)
done by usual techniques [6] need a few hours and give
results not as good as the SHA method.

−4

−3

−2

−1

 0

 1

 2

 4.5 4.6 4.7 4.8 4.9 5

V
ol

ta
ge

 U
vd

 (
V

)

Time (µs)

FIG. 4: Experimental varactor–diode voltage Uvd versus
time.

VI. CONCLUSIONS

The principle of a symbolic–numeric method to an-
alyze ultra–stable oscillators, presented in this paper
and [2], allows one to replace a system of nonlinear dif-
ferential equations by a system of nonlinear equations
of Fourier coefficients, whose solution is an approxi-
mation of the steady–state solution. The method has
been successfully applied to simulate a parametric os-
cillator.

A solution based on trees to manage the large num-
ber of coefficients inherent to symbolic computation
has been proposed. At the opposite of all other har-
monic methods, the linear and the nonlinear parts of
the differential equation are processed in an uniform
way in the Fourier domain.

Using symbolic computation technique is not com-

mon in the electronics circuit community, and in the
time–frequency domain, whereas it proved its ability
to solve quickly and efficiently the difficult problem of
the simulation of quartz crystal oscillators. The gain
in terms of computing time is in the order of decades
for usual oscillator circuits.

The calculation times to solved the equations gen-
erated in the last step of the method is independent
on the length of transients, because the symbolic har-
monic method imposes the steady–state conditions by
virtue of Fourier expansion of the unknowns.

No mention has been made about how to solve the
system of nonlinear equations generated in the last
step of the symbolic harmonic method. The resulting
system is highly nonlinear and sparse. Efforts are cur-
rently made to develop specific and efficient numerical
algorithms in this direction.

[1] K. S. Kundert, J. K. White, and A. Sangiovanni-
Vincentelli, Steady–State Methods for Simulating Ana-
log and Microwave Circuits (Kluwer Academic Pub-
lishers, 2003).

[2] N. Ratier, M. Bruniaux, S. Galliou, and R. Brendel, in
Proc. of the 19th European Frequency and Time Forum
(EFTF) (Besançon, France, March 2005), pp. 413–418.

[3] D. E. Knuth, The art of computer programming, Vol
II. Seminumerical algorithms (Addison–Wesley, 1998),
ISBN 0-201-89684-2.

[4] V. Komine, S. Galliou, and A. Makarov, IEEE Trans.
Ultrason., Ferroelect., Freq. Contr. 50, 1656 (2003).

[5] L. Blackwell and K. Kotzebue, Semiconductor
Diode Parametric Amplifiers (Englewood Cliffs, N.J,
Prentice–Hall, 1961).

[6] S. Galliou, R. Brendel, N. Ratier, M. Bruniaux,
P. Abbe, and G. Cibiel, in Proc. of the 19th Euro-
pean Frequency and Time Forum (EFTF) (Besançon,
France, March 2005), pp. 408–412.

