
HAL Id: hal-00345217
https://hal.science/hal-00345217

Submitted on 8 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A symbolic-numeric method to analyse high-Q quartz
crystal oscillators in frequency domain

Nicolas Ratier, Michaël Bruniaux, Rémi Brendel

To cite this version:
Nicolas Ratier, Michaël Bruniaux, Rémi Brendel. A symbolic-numeric method to analyse high-Q
quartz crystal oscillators in frequency domain. 2nd International Conference on Precision Oscillations
in Electronics and Optics (IEEE/POEO’2005), Sep 2005, Yalta, Crimea, Ukraine. pp.205-208. �hal-
00345217�

https://hal.science/hal-00345217
https://hal.archives-ouvertes.fr


A SYMBOLIC-NUMERIC METHOD TO ANALYSE HIGH-Q QUARTZ 
CRYSTAL OSCILLATORS IN FREQUENCY DOMAIN 

 
Nicolas Ratier, Mickaël Bruniaux, Rémi Brendel 

 
Institut FEMTO-ST, Département LPMO, 

32 avenue de l’Observatoire, 25000 Besançon, France 
Phone: (33)3 81 85 39 99, Fax: (33)3 81 85 39 98, e-mail: nicolas.ratier@lpmo.edu 

 
 

Abstract-We present a symbolic-numeric method dedicated to the simulation of ultra stable quartz oscillators 
entirely in the frequency domain including the nonlinear parts of the circuit. The main idea is to replace, by sym-
bolic computation, the nonlinear differential system describing the oscillator by a system of nonlinear equations 
of Fourier coefficients whose solution is an approximation of the steady-state solution. This paper explains how 
to face the two main difficulties of this symbolic computation: the processing of nonlinear components and the 
management of large number of coefficients. 
Keywords: quartz crystal oscillator, simulation, symbolic-numeric.  
 

INTRODUCTION 
 

The method described here consists in replacing the whole circuit connected to the 
quartz by a nonlinear dipole whose impedance depends on the current amplitude evaluated at 
the resonator frequency. It can be shown that the knowledge of this nonlinear dipole is suffi-
cient to determine the oscillator behaviour. Next, the computation of the dipole characteristics 
is performed in a symbolic way from the circuit equations including the semiconductor ele-
ments. Then our symbolic program automatically generates an efficient numerical code to 
compute the oscillator behaviour. 
 

PRINCIPLE OF THE SYMBOLIC METHOD 
 

The Colpitts oscillator shown in Fig. 1 is used to illustrate the method described in this 
paper. The equivalent circuit of the transistor is the regular Ebers-Moll static model [1]. The 
equivalent circuit of the quartz crystal resonator includes a motional branch (Rq, Lq, Cq) in 
parallel with a capacitance Cp. 

 
Fig. 1 –  Colpitts oscillator 

 
The component values of the circuit and the resonator are given in Table 1. 
 



Table 1 – Amplifier component and resonator values 
    
R1 36800 Ω R3 1769,2 Ω C1 151,65 pF fq 5 MHz 

R2 35290 Ω Vcc 15 V C2 148 pF Rq 670 Ω 
 
The motional branch of the quartz is replaced by a sinusoidal current source of ampli-

tude a and frequency fq. The current source allows one to defined the nonlinear dipole Rd(a) 
and Ld(a), both functions of the loop current amplitude a. The knowledge of Rd(a) and Ld(a) 
is sufficient to determine the behaviour of the oscillator [2].  

 
Fig. 2 – Dipolar representation of the oscillator  

 
The system of equations that models the electronic circuit is done symbolically by the 

Modified Nodal Method (MNM) [3]. If the circuit contains n nodes and nv voltage-defined 
branches, then the n–1 nondatum node voltages and the nv voltage-defined branch currents 
become the unknown circuit variables. The set of modified nodal equations are obtained by 
applying the KCL (Kirchhoff’s Current Law) to each nondatum node and including the nv 
voltage-defined branch relations. That leads to the algebraic-differential system (1)-(4). 
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The sinusoidal current source ensures periodic signals in the whole circuit, so we as-

sume a solution, for the unknowns V1(t), V2(t), V3(t) and I1(t), of the following form where 
I1(t) is the current trough the voltage generator Vcc. 

 
V1(t) := A00V1 + A01V1*cos(  omega*t) + B01V1*sin(  omega*t) 
               + A02V1*cos(2*omega*t) + B02V1*sin(2*omega*t) 
V2(t) := A00V2 + A01V2*cos(  omega*t) + B01V2*sin(  omega*t) 
               + A02V2*cos(2*omega*t) + B02V2*sin(2*omega*t) 
V3(t) := A00V3 + A01V3*cos(  omega*t) + B01V3*sin(  omega*t) 
               + A02V3*cos(2*omega*t) + B02V3*sin(2*omega*t) 
I1(t) := A00I1 + A01I1*cos(  omega*t) + B01I1*sin(  omega*t) 
               + A02I1*cos(2*omega*t) + B02I1*sin(2*omega*t) 

 



By substituting the assumed solution and its derivative into the given differential system 
(1)-(4), it is possible to write the system under the following form where the parameters 
TT229, …, TT572 are all functions of the previous A00V1, …, B02I1. 
 

Equ01 := TT229 + TT230*cos(  omega*t) + TT231*sin(  omega*t) 
               + TT232*cos(2*omega*t) + TT233*sin(2*omega*t) 
Equ02 := TT416 + TT417*cos(  omega*t) + TT418*sin(  omega*t) 
               + TT419*cos(2*omega*t) + TT420*sin(2*omega*t) 
Equ03 := TT557 + TT558*cos(  omega*t) + TT559*sin(  omega*t) 
               + TT560*cos(2*omega*t) + TT561*sin(2*omega*t) 
Equ04 := TT568 + TT569*cos(  omega*t) + TT570*sin(  omega*t) 
               + TT571*cos(2*omega*t) + TT572*sin(2*omega*t) 

 
The amplitude a of the sinusoidal current source is a parameter of the system. A simple 

calculation shows that Rd(a) and Ld(a) can be obtained as shown in (5) and (6). 
 

a
VBaRd

101)( =  (5) 

 
q

q a
VAaL

ω
101)( =  (6) 

The steady state amplitude a0 is obtained by adding the nonlinear equation (7) to the dif-
ferential system (1)-(4). 

  (7) 0)( =+ aRR dq

The steady state frequency of the oscillation is given by Eq. (8). 0ω
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HOW TO ACHIEVE A LINEAR COMPLEXITY? 
 

A direct and naive application of the method to build the nonlinear system leads to an 
exponential growth of the term number in the expressions of TT229, …, TT572. A second 
problem is the reduction into a series form of the exponential functions. 

A solution to the problem of the exponential growth of the term number is to replace in 
a first step each differential equation by a binary tree, (for instance, the binary tree of Eq. (3) 
is shown in Fig. (3)), then to parse the tree to progressively reduce it under a series form from 
the bottom to the top. 

 
Fig. 3 – Binary tree of  Eq.  (3)  

 
At the beginning, all the leaves are under a series form. During the reduction process, at 

each node new coefficients expressed in function of the previous ones will be generated. At 
the final step, only a Fourier series with manageable coefficients will remain. 



The management of the exponential function is quite similar to the previous one. It is 
based on the construction of a binary tree and the generation of new coefficients in function of 
the previous ones during the tree parsing. Here, The construction of the tree is based on the 
addition formulae of exponential. As an example, the binary tree for exponential function is 
shown in Fig. (4). Of course, each transcendental function will have its own associated tree.   

 
Fig. 4 – Binary tree of exponential function  

 
The reduction of the nodes has been previously explained. The reduction of the leaves is 

based on the associated Bessel series expansion of exponential function (9) and (10) where 
Ik(z) are the Bessel functions of the second kind and of integer order. 
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Once the differential equation system is transformed into a sparse nonlinear equation 
system of the Fourier coefficient of the unknowns, it can be solved by numerical method. The 
solution for the Colpitts oscillator studied is given in Table 2. 
 
Table 2 – Fourier coefficients of the unknowns 

 

 A00 A01 B01 A02 B02 
V1(t) 4.948 0.887 0.948 0.055 0.512 
V2(t)  15 –1.327e–15 –6.229e–16 –1.046e–15 –1.351e–15 
V3(t)  4.669 0.524 1.008 0.053 0.537 
I1(t) –0.277e–3 1.519e–5 2.756e–5 –6.620e–6 1.730e–5 
 

CONCLUSION 
 

A solution based on tree parsing to manage the large number of coefficients inherent to 
symbolic computation has been proposed. Unlike all other harmonic methods, the linear and 
the nonlinear parts of the differential equation of the circuit are processed in an uniform way 
in the Fourier domain. The numerical simulation times of the equations generated in the last 
step of this method is independent on the circuit time constants, because our harmonic method 
imposes the steady-state conditions by virtue of Fourier expansion of the unknowns. 
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