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Abstract—The Nonlinear Dipolar Method is dedicated to the simula-
tion of quartz crystal oscillator with high quality factor. In this method,
the oscillators is considered as a resonator connected across an ampli-
fier that behaves like a nonlinear dipole whose impedance evaluated at
resonator’s frequency depends on the current amplitude. This dipole
allows us to compute very quickly the behavior of the oscillator. The
computation time of the dipolar impedance by Spice is of the order of
a few seconds. To gain one order of magnitude in the simulation time
of the oscillator, this paper propose a modification of the Nonlinear
Dipolar Method by changing the dipolar impedance Spice’s calcula-
tion, that is the most time consuming part of the program, by a system
of equations obtained through a symbolic manipulation of the circuit
equations.

I. INTRODUCTION

We develop a method of analysis of quartz crystal oscilla-
tors with very high quality factor. The ultimate aim is to get
a real time analysis of this type of oscillators.

In a previous series of articles [1][2][3], we have devel-
oped a method, called Nonlinear Dipolar Method, which al-
lows to simulate quartz oscillator very efficiently. The cal-
culation needs only a few seconds for a Colpitts oscillator.

The most time consuming part of the dipolar method is
the calculation of the dipolar impedance Rd (a) and Ld (a)
where a is the loop current amplitude. The idea is to re-
place the previously performed calculation through a series
of Spice analysis, by a symbolic analyses of the circuit.

First, The circuit equations are generated by using the
Modified Nodal Method (MNM). Then, a symbolic har-
monic analysis of these equations is performed. Eventu-
ally, a system of nonlinear equations representing Rd (a) et
Ld (a) and rapidly resolvable is generated.

We start by recalling briefly in this paper the dipolar
method and in particular the calculation of Rd (a) et Ld (a).
We, then, present the new method that replaces the dipolar
impedance calculation by a symbolic harmonic analysis of
the equations.

II. NONLINEAR DIPOLAR METHOD

The nonlinear dipolar method is based on the fact that the
current through the motional branch of the quartz is almost
perfectly sinusoidal (because of its very high Q). Moreover,
the oscillator frequency is mainly determined by the reso-
nant frequency of the resonator.

Following [3], these two remarks permit to consider the
whole amplifier part (and capacity Cp) as a nonlinear dipole
(Rd, Ld) that depends only on the current amplitude as
shown in Fig. 1 right. In the following, by misuse of lan-
guage, we will call ”resonator” the motional branch of the
resonator, and ”amplifier” the amplifier in parallel with the
capacitance Cp.
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Fig. 1. Dipolar representation

The resonator is regarded as an impedance strongly vary-
ing with the frequency and slightly with amplitude (because
of the isochronism defect) while the amplifier is considered
to be a nonlinear dipole whose impedance strongly depends
on the current amplitude and weakly varying with frequency.

The knowledge of Rd (a) and Ld (a) allows us to com-
pute very quickly the steady state and transient amplitude
and frequency. The steady state amplitude a0 is obtained by
solving the implicit nonlinear Eq. (1)

Rq + Rd (a) = 0 (1)

The steady state frequency ω0 of the oscillation is given
by Eq. (2).

ω2
0 = ω2

q

(
1 − Ld (a0)

Lq

)
(2)

The current through the motional branch of the quartz is
written under the form i (t) = a (t) cos (ωqt + φ (t)) where
the amplitude a (t) and phase φ (t) are slowly varying func-
tions of time. The transient amplitude and frequency are ob-
tained by solving the first order differential equations (3, 4).

da

dt
= − a

2Lq
(Rq + Rd (a)) (3)

dφ

dt
= −Ld (a) ωq

2Lq
(4)



III. SPICE COMPUTATION OF Rd AND Ld

The determination of the equivalent single port network
for the amplifier is obtained by replacing the resonator with
a sinusoidal current source of amplitude a and frequency
equal to the resonator’s frequency fq as shown in Fig. 2.

Lq

Cq

Rq
Rd

Ld

Rd

Ldi

Fig. 2. Amplifier impedance determination

Then, a set of Spice transient analyses are performed at
various amplitudes. Next, a Fourier analysis of the voltage
across the amplifier is computed for each current amplitude
when the steady state is reached.

It is thus possible to calculate the equivalent resistance
Rd and inductance Ld as a function of the current amplitude
(The subscript ”d” stands for Dipole). Figs. 3 and 4 show
Rd and Ld as a function of the current amplitude a for the
Colpitts oscillator.
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Fig. 3. Amplifier resistance Rd(a)

The computation time of the curves Rd (a) and Ld (a) is
of the order of a few seconds. At each parameter change,
for example a variation of resistance value, the computation
must be redone. Our aim is to reduce the computation time
for the curves Rd (a) and Ld (a) to a few milliseconds. This
should allow to see, in real time, the influence of each circuit
component on the behavior of the oscillator.

IV. SYMBOLIC COMPUTATION OF Rd AND Ld

Our aim is to be able to calculate the curves Rd (a) and
Ld (a) as fast as possible for a given oscillator. The idea
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Fig. 4. Amplifier inductance Ld(a)

consists in replacing the previous Spice simulation by a sym-
bolic analysis of the circuit generating a system of equations
rapidly resolvable.

The equation setting is carried out in the following way.
First the motional part of the quartz is replaced by a sinu-
soidal current source of amplitude a and frequency fq. This
step is identical to the previous one. In addition, it ensures
periodic signals in the whole circuit.

Then, the system of equations that models the electronic
circuit is done symbolically by the Modified Nodal Method
(MNM) [4]. If the circuit contains n nodes and nv voltage–
defined branches, then the n − 1 nondatum node voltages
and the nv voltage–defined branch currents become the un-
known circuit variables. The set of modified nodal equa-
tions are obtained by applying the KCL (Kirchhoff’s Current
Law) to each nondatum node and including the nv voltage–
defined branch relations.

The circuit equations are, in general, a system of
algebraic–differential equations of the form (5).

f
(
x,

•
x, t

)
= 0 (5)

where x is the vector of the unknown circuit variables,
•
x

is the time–derivative of x, and f is, in general, a nonlinear
operator.

We assume a solution of the form (6) where a0, ak and
bl are constant vectors, only function of the circuit elements.
The constants (K,L) depend on the degree of the approxi-
mation chosen.

x = a0 +
K∑

k=1

ak coskωt +
L∑

l=1

bl sin lωt (6)

By substituting (6) into the given differential equation (5),
it is possible to write the system under the form (7). The con-
stant vectors a′

0, a′
m, b′

n are function of the constant vectors



a0, ak and bl. In the general case, M � K and N � L.

a′
0 +

M∑
m=1

a′
m cosmωt +

N∑
n=1

b′
n sinnωt = 0 (7)

The system (7) must be verified for all t, that leads to the
nonlinear system of equations (8) for the constant vectors
a0, ak and bl. The space dimension of F depends, among
other things, on the degree of the approximation chosen and
is in general much bigger than those of f . The system of
equation (8) can be seen as a kind of Fourier Transform of
the system (5).

F (a0,a1, . . .,am,b1, . . .,bn) = 0 (8)

Even in the case of a circuit of about 30 elements, the
nonlinear system (8) can be solved numerically very quickly
(ms). The amplitude a of the sinusoidal current source is a
parameter of the system. A simple calculation on the scheme
Fig. (2 right) shows that we can obtain Rd(a) and Ld(a)
from the solution of equation (9, 10), with (k, k′) respec-
tively the number of nodes (1′, 2′).

Rd (a) =
bk − bk′

a
(9)

Ld (a) =
ak − ak′

aωq
(10)

The passage from the form (5) to that of (8) is performed
by joining (or putting together) progressively the different
terms. The addition and multiplication cases are trivials.
The addition of two unknowns is also trivial and does not
increase the order of the series.

The multiplication of two unknowns (i.e. Fourier se-
ries) call out a sum of terms in cos kωt × cos lωt,
cos kωt× sin lωt et sin kωt× sin lωt. These products trans-
form to cos (k + l) ωt, sin (k + l) ωt, cos (k − l) ωt and
sin (k − l) ωt by classical trigonometric formulas. Con-
sequently, each multiplication between unknowns progres-
sively increases the degree of the series. Moreover, the high
frequency terms intervene in the expression with low fre-
quencies. One should then keep all the terms through the
calculation.

V. HOW TO MANAGE THE NONLINEAR COMPONENT ?

The semiconductor components deal with nonlinear terms
in the constitutive equations. As an example, the Ebers–
Moll static model [5] of the bipolar transistor involves the
exponential function of the voltage difference.

IBE =
IS

βF

(
eqVBE/kT − 1

)
(11)

IBC =
IS

βR

(
eqVBC/kT − 1

)
(12)

ICE = IS

(
eqVBE/kT − eqVBC/kT

)
(13)

The main problem is to express all the functions, for ex-
ample the exponential function
exp (a0 + a1 cos ωt + b1 sin ωt + a2 cos 2ωt + · · · ), in the
form of a Fourier series a′

0 + a′
1 cos ωt + b′1 sin ωt +

a′
2 cos 2ωt + · · · . Thereafter, this transform will be called

”to harmonize” a function. In the next section, it will be
shown how to harmonize all the common functions : the
transcendental functions, the inverse of a function and the
composite functions.

VI. HARMONIZATION OF TRANSCENDENTAL PRIMARY

FUNCTIONS

Transcendental primary functions are the functions exp,
cos, sin. We also include improperly the functions cosh and
sinh. Let α and β be :

α = am cos mωt or α = bm sin mωt (14)

β =
∑
k �=m

ak cos kωt +
∑
k �=m

bk sin kωt (15)

Let us recall the addition formulas of function for com-
pleteness

exp (α + β) = exp α exp β (16)

cos (α + β) = cos α cos β − sin α sin β (17)

sin (α + β) = sin α cos β + cos α sin β (18)

cosh (α + β) = cosh α cosh β + sinhα sinhβ (19)

sinh (α + β) = sinh α cosh β + cosh α sinhβ (20)

Consequently, recursive application of the latter equations
(16 to 20) shows that to harmonize the transcendental pri-
mary functions, it is sufficient to know how to harmonize
the following functions:

exp (z cos θ) exp (z sin θ)
cos (z cos θ) cos (z sin θ)
sin (z cos θ) sin (z sin θ)
cosh (z cos θ) cosh (z sin θ)
sinh (z cos θ) sinh (z sin θ)

The harmonic expansion of exp (z cos θ) and exp (z sin θ)
are well known. There are expressed in Fourier series,
whose coefficients are Bessel functions Ik (z) of the second
kind and of integer order [6].

exp (z cos θ) = I0 (z) + 2
∞∑

k=1

Ik (z) cos (kθ)

exp (z sin θ) = I0 (z) + 2
∞∑

k=1

(−)k
I2k+1 (z) sin {(2k + 1) θ}

+ 2
∞∑

k=1

(−)k
I2k (z) cos (2kθ)



The harmonic expansion of cos (z cos θ) and sin (z sin θ)
are expanded in Fourier series, whose coefficients are Bessel
functions Jk (z) of the first kind and of integer order [6].

cos (z cos θ) = J0 (z) + 2
∞∑

k=1

(−)k
J2k (z) cos (2kθ)

cos (z sin θ) = J0 (z) + 2
∞∑

k=1

J2k (z) cos (2kθ)

sin (z cos θ) = 2
∞∑

k=1

(−)k
J2k+1 (z) cos {(2k + 1) θ}

sin (z cos θ) = 2
∞∑

k=1

J2k+1 (z) sin {(2k + 1) θ}

The harmonic expansion of cosh (z cos θ) and sinh (z sin θ)
are calculated from the expansion of the exponential. Note
the symmetry of cos, sin equations and those of cosh, sinh.

cosh (z cos θ) = I0 (z) + 2
∞∑

k=1

I2k (z) cos (2kθ)

cosh (z sin θ) = I0 (z) + 2
∞∑

k=1

(−)k
I2k (z) cos (2kθ)

sinh (z cos θ) = 2
∞∑

k=1

I2k+1 (z) cos {(2k + 1) θ}

sinh (z sin θ) = 2
∞∑

k=1

(−)k
I2k+1 (z) sin {(2k + 1) θ}

All the previous expansions converge well with a few
number of terms (typically 3) when z is less than 1.

VII. HARMONIZATION OF THE OTHER FUNCTIONS

For all the other transcendental function (log, tan, arccos,
. . .) one proceeds by introducing a supplementary unknown
to the equations system. This transforms the initial differ-
ential equation system Eq. (5) into an algebraic–differential
system. This handling is trivial as shown in the following
example

· · · + tan V1 + · · · + arccos V2 + · · · = 0

becomes

· · · + H1 + · · · + H2 + · · · = 0
H1 cos V1 = sinV1

cos H2 = V2

The latter equations are well written under the harmo-
nized forms. The same method can be directly applied to
the inverse of a function and to the composite functions.

VIII. CONCLUSION

We have presented in this paper an extension of the dipo-
lar method. Our aim is to reduce by one order of magnitude
the simulation time of the main characteristics of the ultra-
stable quartz oscillators.

We have seen how to replace the Spice simulation by a
symbolic calculation. This method leads to two difficulties:
The treatment of the nonlinear components and the manipu-
lation of very numerous coefficients.

We have given the set of equations that permit to manipu-
late symbolically the nonlinear terms including the standard
functions, allowing thus to treat all the semiconductor com-
ponents.

A direct application of the exposed equations in this paper
leads to an exponential increase of the number of terms in
the equations. An efficient method for manipulating these
coefficients is currently being derived.
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