
HAL Id: hal-00345200
https://hal.science/hal-00345200

Submitted on 8 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parsing Spice Netlists Using a Typed Functional
Language

Nicolas Ratier, Mahmoud Addouche, Daniel Gillet, Rémi Brendel

To cite this version:
Nicolas Ratier, Mahmoud Addouche, Daniel Gillet, Rémi Brendel. Parsing Spice Netlists Using a
Typed Functional Language. 4th WSEAS International Conference on Mathematical Methods and
Computational Techniques in Electrical Engineering, Dec 2002, Vouliagmeni, Athens, Greece. pp.453-
117. �hal-00345200�

https://hal.science/hal-00345200
https://hal.archives-ouvertes.fr


Parsing Spice Netlists Using a Typed Functional Language
N. RATIER, M. ADDOUCHE, D. GILLET, R. BRENDEL

Laboratoire de Physique et Métrologie des Oscillateurs
associé à l’Université de Franche–Comté

32 avenue de l’Observatoire, 25044 Besançon Cedex
FRANCE

nicolas.ratier@lpmo.edu http://www.lpmo.edu/~ratier

Abstract:- Parsing a Spice netlist is the first step of all circuit simulation programs. This part is usually done
by low-level coding techniques inC or Fortran language. The aim of this paper is to show the usefulness of
functional programming techniques to the needs of scientific computing.

Key-Words:- Spice Netlist, Parsing, Scanning, Functional Language.

1 Introduction
Despite a reasonably long history, functional tech-
niques are seldom used in numerical programs. This
is mainly because they remain relatively unknown to
the scientific computing community. However, each
time a problem involves trees, pattern-matching, or
is naturally expressed as recursive definitions, func-
tional languages are perfectly suitable.

In this paper we consider the problem of parsing
a Spice [3] netlist using a functional language. We
focus on the problem of transforming a netlist to an
intermediate form which can be easily turned into
any other syntax, for example the Matlab or Maple
syntaxes.

We choose theGentle[4] typed functional lan-
guage because it can be easily linked with C pro-
grams, transformed into adll , or compiled to make
a stand-alone executable. We assume that the reader
is acquainted with scanning and parsing techniques.

2 Program structure
The textual form of a Spice netlist is not adapted to
transformation treatments. Code transformation is
thus done in two successive steps:

• The first step transforms the netlist into ab-
stract syntax trees. The use of trees reflects
the netlist structures (subcircuit nesting, model
description, ...). The building of the abstract
syntax tree from the netlist involves the usual
simultaneous tasks:

1. Scanning: The lexical analyzer recog-
nizes Spice keywords and transforms the
input text into a sequence of tokens.

2. Parsing: A parser recognizes the syn-
tax and performs the semantic actions at-
tached to relevant grammars rules. They

are responsible for building the abstract
syntax tree.

• The second step generates code from a trans-
formed abstract syntax tree. All manipulations
are based on tree traversals and code transfor-
mation becomes tree transformation followed
by code generation:

1. Semantic analysis: Information about
identifiers may not be deduced from
the syntax only (for example, whether
a subcircuit has been declared or not,
...). These informations are found dur-
ing code transformation and recorded in
a symbol table.

2. Code transformation: Code transforma-
tion mainly flats subcircuit content. It as-
signs a unique name to subcircuit nodes
that are not formal parameters and to de-
vice names in the nested subcircuits.

3. Code generation: A valid Matlab code is
generated from the transformed abstract
syntax tree and the associated symbol ta-
ble.

If we want to change the generated code into
another syntax, say that ofMaple or Mathematica,
only the code generation part has to be changed.
This code is essentially pretty-printing code and is
very easy to write.

3 Implementation
3.1 Lexical analysis
We have usedflex [2] to generate the scanner which
recognizes lexical patterns in text. Certain Spice
features and our aim to write a simple and well



structured grammar led us to enlarge the role of the
lexical analyzer in three areas:

• treatment of the first line in the input file (in
Spice this is the title line),

• handling of continuation lines (a line may be
continued by entering a ”+” in column1 of the
following line),

• parsing of components values (this handles
scale factors to compute values such as
10kHz).

3.2 Abstract syntax
The so–called abstract syntax is perfectly suited as
a basis for the specification of program transforma-
tions, and is used as an intermediate program rep-
resentation. The abstract syntax is elaborated from
the Spice concrete syntax, and represented as a set
of ’type’ in Gentle.

For example, a Spice netlist is a list of state-
ments and control lines. A statement is a list of
circuit components, model parameters or subcir-
cuit definitions. It is expressed in theGentle lan-
guage by defining the typeSTATEMENTwith five
constituents (calledfunctors): seq , component ,
model , subcircuit , nil . The complete defini-
tions of the ’type’NETLIST andSTATEMENTare:

’type’ NETLIST
seq(NETLIST,NETLIST)
statement(STATEMENT)
controlline(CONTROLLINE)
nil

’type’ STATEMENT
seq(STATEMENT,STATEMENT)
component(COMPONENT)
model(STRING,STRING,MODELPARAM)
subcircuit(STRING,

SUBCIRCUITNODE,
STATEMENT)

nil

’type’ COMPONENT
resistor(STRING,STRING,...)
...
mesfet(STRING,STRING,STRING,...)
callsubcircuit(STRING,

SUBCIRCUITNODE,
STRING)

The fifth line of the typeSTATEMENTmeans
that a subcircuit is composed of its name, the list
of subcircuit nodes, and its subcircuit content.

• We see here that the typeSTATEMENT
is recursive (aSTATEMENTcan contain a
STATEMENT), allowing to express naturally
that a subcircuit can be nested.

• Subcircuit definitions may contain anything
(other subcircuit definitions, device models,
. . .) but control lines. This is the reason why
the functorseq appears both in theNETLIST
andSTATEMENTtypes.

3.3 Translating concrete syntax into ab-
stract syntax

We now show how concrete syntax can be trans-
lated into abstract syntax. Concrete syntax is de-
scribed by grammar rules in machine-readable BNF
(Backus-Naur Form). It can parse exactly the same
class of language that thebison(or yacc) parser can
handle [1]. In brief, this means that it must be possi-
ble to tell how to parse any portion of an input string
with just a single token of look-ahead.

Consider the program fragment in Fig. 1. When
the source program is translated into an internal rep-
resentation, rules are selected by the parser accord-
ing to the given source. Each nonterminal gets an
output parameter that specifies the corresponding
abstract syntax. Terminal symbols appear in quotes
(i.e. ".end" ) or are introduced by token declara-
tions (likeRESISTOR) and fully defined in theflex
file. The tree, representing the abstract syntax, is
progressively built at each reduce step of the parser.

3.4 Symbol table
Our analyzer attaches a symbol table to the syntax
tree of a Spice netlist. This table holds the necessary
informations about identifiers (nodes list, subcircuit
and model names) used in the netlist. For exam-
ple, it manages efficiently the following features of
a Spice program:

• any device models or subcircuit definitions in-
cluded as part of a subcircuit definition are
strictly local,

• any element nodes not included on the
.SUBCKT line are strictly local, with the ex-
ception of0 (ground) which is always global.

A second and important property is the detection
of semantic errors such as definition of a subcircuit
already declared. The symbol table is mainly up-
dated during the subcircuits calls.

We use the strategy described in [4](ch 6.3.8) to
associate a meaning to each identifier. With this



’nonterm’ Netlist(-> NETLIST)
’rule’ Netlist(-> A) : DeclarationList(-> A) ".end"

’nonterm’ DeclarationList(-> NETLIST)
’rule’ DeclarationList(-> seq(B,nil)) :

Declaration(-> B)
’rule’ DeclarationList(-> seq(B,A)) :

DeclarationList(-> A) Declaration(-> B)

’nonterm’ Declaration(-> NETLIST)
’rule’ Declaration(-> statement(A)) : Statement (-> A)
’rule’ Declaration(-> controlline(A)) : ControlLine(-> A)

’nonterm’ Statement(-> STATEMENT)
’rule’ Statement(-> component(A)) : ElementStatement (-> A)
’rule’ Statement(-> component(A)) : SourceStatement (-> A)
’rule’ Statement(-> component(A)) : SemiconductorStatement(-> A)
’rule’ ...

’nonterm’ ElementStatement(-> COMPONENT)
’rule’ ElementStatement(-> resistor (N,A,B,C)) :

RESISTOR (-> N) Node(-> A) Node(-> B) Value(-> C)
’rule’ ElementStatement(-> inductor (N,A,B,C)) :

INDUCTOR (-> N) Node(-> A) Node(-> B) Value(-> C)
’rule’ ElementStatement(-> capacitor(N,A,B,C)) :

CAPACITOR(-> N) Node(-> A) Node(-> B) Value(-> C)

’token’ RESISTOR(-> STRING)

Fig. 1: Program fragment to translate concrete syntax into abstract syntax.

strategy, accessing the meaning of identifiers has the
same cost as in the case of a flat name space. It is
done in constant time because the symbol table is
implemented as a hash table.

3.5 Code transformation
We have just described how a source program is
translated into an internal representation (abstract
syntax tree). We now discuss how the internal repre-
sentation is translated into a target code. The map-
ping is specified in exactly the same way as within
the parser, with the exception that abstract syntax
now becomes an input parameter that controls rule
selection. It can be viewed as the opposite work of
parsing.

A fragment of the code transformation part is
given in Fig. 2. The code generation for resistance
is called byA_Resistor (with the necessary pa-
rameters) which is basically pretty-printing code.

The subcircuit call A_Subcircuitcall
statement is more difficult to process. For example,
its treatment must be aware that the order of lines

is arbitrary: a subcircuit can be called before it is
defined in the netlist.

4 Efficiency
We can make a quantitative estimation of our pro-
gram by counting the number of code lines exclud-
ing whitelines and comments. The following table
illustrates the efficiency of functional programming
in term of compactness.

Abstract syntax 44 lines
Concrete syntax 110 lines
Symbol table 111 lines
Code transformation 145 lines

It is interesting to compare the same compu-
tation written in Gentle and in C language. The
Spice3f4 source filesubckt.c handles imbedded
".subckt" definitions (replacing formal nodes,
flat device and node names, ...) is954 lines long.
The same task is managed by our program with only
261 lines.



’action’ A_Netlist(NETLIST)
’rule’ A_Netlist(seq(A,nil)) : A_Netlist(A)
’rule’ A_Netlist(seq(A,B)) : A_Netlist(B) A_Netlist(A)
’rule’ A_Netlist(statement (A)) : A_Statement(A)
’rule’ A_Netlist(controlline(A)) : A_Controlline(A)

’action’ A_Statement(STATEMENT)
’rule’ A_Statement(seq(A,nil)) : A_Statement(A)
’rule’ A_Statement(seq(A,B)) : A_Statement(B) A_Statement(A)
’rule’ A_Statement(component(A)) : A_Component(A)
...

’action’ A_Component(COMPONENT)
’rule’ A_Component(resistor(N,A,B,C)) : A_Resistor(N,A,B,C)
’rule’ A_Component(inductor(N,A,B,C)) : A_Inductor(N,A,B,C)
’rule’ A_Component(capacitor(N,A,B,C)) : A_Capacitor(N,A,B,C)
...
’rule’ A_Component(mesfet(N,A,B,C,D)) : A_Mesfet(N,A,B,C,D)
’rule’ A_Component(subcircuitcall(N,A,B)) : A_Subcircuitcall(N,A,B)

Fig. 2: Program fragment to transform an abstract syntax tree.

5 Conclusion
We have tried to demonstrate the applicability of
modern functional programming to the needs of sci-
entific computing. A program to parse a Spice
netlist and transform it into another syntax have
been written with only410 code lines. Moreover,
to change the syntax of the generated code only a
very straightforward part of the program has to be
rewritten.

In the context of writing source analysis and
transformation programs, the key to the efficiency
of functional programming is that it provides a very
natural representation of abstract syntax trees. Es-
pecially tree traversals and rewriting are well ex-
pressed with the pattern matching facility.

We have shown that functional programming
provides clear, readable and semantically very pow-
erful code. For many problems, it is much more
productive than theC/C++ language. To summa-
rize, it has the following advantages for all source
transformation related tasks:

• less time and effort is required to write the pro-
gram,

• the resulting implementation is easier to main-
tain and modify.

References:
[1] Charles Donnelly and Richard Stallman.Bi-

son, The YACC-compatible Parser Generator,
November 1995. version 1.25.

[2] Vern Paxson. Flex, A fast scanner generator,
March 1995. version 2.5.

[3] T. Quarles, A.R. Newton, D.O. Pederson, and
A. Sangiovanni-Vincentelli.Spice 3 User Man-
ual. Department of Electrical Engineering and
Computer Sciences, University of California,
1993. version 3f4.

[4] Friedrich Wilhelm Schröer.The GENTLE Com-
piler Construction System. R. Oldenbourg Ver-
lag, 1997. ISBN 3-486-24703-4.


