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Abstract

The calculation of the oscillation condition is one of the
main points of oscillator analysis. Its determination in finite
term allows one to calculate the steady state amplitude and
frequency of the oscillator.

Symbolic solutions provide an additional insight into the
behavior of the circuit. As an example the sensitivity of the
oscillator to parameter change can be expressed in an exact
form. Numerical solutions are not as helpful as symbolic
solutions in the design stage.

We present a technique, based on the gyrator transfor-
mation, to set up the nonlinear equation network in a form
suitable to be solved with analytical methods.

We develop a symbolic program based on this technique.
As an example, the symbolic program is applied to compute
the exact expression of the steady state frequency and ampli-
tude of the Van der Pol oscillator and the Colpitts oscillator.

Introduction

Oscillators circuit generate the signals that are used as
the time or phase reference. There are essential components
in almost any electronic circuit.

Our aim is to build a symbolic program dedicated to the
analysis of oscillators. There are many reasons why one may
be interested in symbolic results. In the oscillator special
case the most important ones are as follows :

• Giving the exact contribution of a circuit element to the
frequency or amplitude variation.

• Computing exactly the effect of a noisy element on the
frequency stability.

Once the nonlinear equation system of the network is ob-
tained, the finite term solution can be found by two different
methods:

• Harmonic balance like method. Harmonic balance is
well established as a solving method for nonlinear cir-
cuits driven by one or more periodic inputs. This
method is suitable to study the steady state frequency
and amplitude of the oscillation.
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• Volterra and Wiener theories of nonlinear systems. This
method is based on the transformation of the nonlinear
circuit into a sum of linear circuits [5][6]. Then, the
resulting linear circuit can be analyzed by graph theo-
retical methods. This method is suitable to study the
transient behavior of the oscillator.

The technique used to determinate the network equa-
tions must be chosen carefully with the previous solving
method in mind. We choose to implement the gyrator trans-
formation method which is mathematically equivalent to the
modified nodal analysis technique but conceptually superior.

Gyrator Transformation

Most of the computer programs used to analyze elec-
tronic circuits are based on the well-known modified nodal
analysis (MNA) method [7]. This method allows a straight
and systematic generation of the network equation.

Nevertheless, we choose to implement the gyrator trans-
formation method as a pre–process of the MNA method. The
use of gyrator has been known for a long time by circuit the-
orists [4] but seems to be of little use in practice. Even so,
the gyrator method has many advantages over the modified
nodal analysis method.

• At the opposite of the modified nodal analysis, the gy-
rator method does not need a separate handling of the
branch currents into the voltage (controlled or indepen-
dent) sources. Each unknown current is replaced by an
unknown voltage.

• Most important topological [1] (or graph theoretical)
methods assume that the admittance matrix of a lin-
ear network contains only RLC elements and voltage-
controlled current sources (VCCS).

In the gyrator method, all circuit elements are converted
into voltage-controlled current sources1. That is, all
linear n–terminal network will contain only RLC and
VCCS type elements.

• The calculation of frequency domain sensitivity is dif-
ficult to handle with the MNA method because many
additional nodes must be added [1]. With the gyra-
tor method all sensitivities are expressed with respect

1Any admittance can be seen as a VCCS where the controlled voltage is
taken beetween the two node of the VCCS itself.



to voltage-controlled current sources, consequently, no
additional node is needed.

• From a programming point of view, the uniformity
of the approach allows to write the symbolic program
which sets up the network equation in a very concise
way.

The key element of the gyrator-nodal method is the (neg-
ative) gyrator circuit shown in Fig. (1). The gyrator trans-
forms branch currents into nodal voltages, the fundamental
relation connecting both variables are :

I1 = gV34 (1)

I3 = gV12 (2)

In the particular case where the node 4 is connected to
ground, each gyrator adds one auxiliary node having the volt-
age with respect to ground being proportional to the current
of the transformed branch.
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Figure 1. Negative gyrator circuit

The independent voltage source is expressed in terms of
gyrator and VCCS under the form shown in Fig. (2).
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Figure 2. Equivalent circuit of independant source voltage

The equivalent circuit of the controlled-source2, not in-
cluding VCCS, is represented in Fig. (3) next page.

The only admittance type which does not posses a direct
admittance matrix is the mutually-coupled inductance. Its
equivalent circuit is shown in Fig. (4).

The additional parameters g: g1, g2, . . . does not appear
in the final solution. Consequently, they may be arbitrarily
assigned any literal name or finite value, real or complex
other than zero.
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VCVS Voltage–Controlled Voltage Source
CCCS Current–Controlled Current Source
VCCS Voltage–Controlled Current Source
CCVS Current–Controlled Voltage Source
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Figure 4. Equivalent circuit of mutually–coupled inductance

Demonstrating Examples

We apply our symbolic analysis program on two well-
known examples : the Van der Pol and the Colpitts oscillator.

Van der Pol Oscillator

Fig. (5) shows a Van der Pol oscillator. The resonator
is reduced to its series resonant branch (Rq , Lq, Cq). The
nonlinear gain of the amplifier is

V2 = AV1(1 − εV 2
1 ) (3)

εA*V1^3A*V1 -

Rq Lq Cq

R

V1 V2

V2

i

Figure 5. Van der Pol oscillator.

The symbolic program parses the Spice netlist of the cir-
cuit and determines the nonlinear literal expression of the
voltage equations. This leads to the literal expression of the
current i(t) across R (Eq. 4).

AR
di(t)

dt
− 3εAR3i2(t)

di(t)

dt
(4)

−R
di(t)

dt

−Rq

di(t)

dt
− Lq

d2i(t)

dt2
−

i(t)

Cq

= 0

When using high–Q series resonant circuit, the loop cur-
rent in the oscillator is almost perfectly sinusoidal. Using the
technique of harmonic balance, the current i(t) is assumed to
have a solution of the form

i(t) = I cos(ωt) (5)

This expression is substituted into Eq. (4). The equa-
tion resulting from the sine terms represents the frequency
equation (Eq. 6).

Lqω
2
−

1

Cq

= 0 (6)
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Figure 3. Equivalent circuit of controlled sources

The equation resulting from the cosine terms represents
the amplitude equation (Eq. 7).

3

4
εAR3I2 + R(1 − A) + Rq = 0 (7)

The steady state frequency and amplitude (ω, I) ob-
tained from Eq. (6) and Eq. (7) corresponds to those given in
[2].

Colpitts Oscillator

Fig. (6) shows a simplified Colpitts oscillator already
studied by Frerking [3]. The crystal is represented by its se-
ries resistance R and an equivalent inductance L. To make
the comparison easier, we used the same notation as Frerk-
ing.
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Figure 6. Colpitts oscillator.

The circuit of Fig. (6) is drawn again without the bias
circuit in Fig. (7). The current ib is given by Eq. (8) where
V0 is the base bias voltage.

ib = Ir exp
[ q

KT
(V1(t) + V0)

]

(8)
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Figure 7. Equivalent circuit of Colpitts oscillator.

The symbolic program parses the Spice netlist of the cir-
cuit and determines the nonlinear literal expression of the
voltage equation (Eq. 9) where A(V1)(t) = e

q

KT
(V1(t)+V0).
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+
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dt

{
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}
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The voltage V1(t) is assumed to have a solution of the
form (Eq. 10).

V1(t) = E cos(ωt) (10)



This expression is substituted into Eq. (9). The terms un-
der the forms exp(x cos(ωt)) are expanded using the identity
(Eq. 11) where Im(x) represents the modified Bessel func-
tion of the first kind and order m.

exp(x cos(ωt)) = I0(x) + 2

∞
∑

n=1

In(x) cos(ωt) (11)

The equation resulting from the sine terms represents the
frequency equation (Eq. 12) .
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The equation resulting from the cosine terms represents
the amplitude equation (Eq. 13).
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The steady state frequency and amplitude (ω, E) are ob-
tained from Eq. (12) and Eq. (13). These results were ob-
tained by Frerking [3] with considerable manipulations. The
used of symbolic program with a suitable nodal method and
resolution process finds again the same result, but above all
gives the possibility to study much more complex circuits.

Conclusion

The symbolic program we present in this paper allows
to determine the nonlinear network equation in a very uni-
form way. It implements the gyrator transformation method
which has many advantages over the classical modified nodal
analysis method.

Our program gives the finite term expression of the
steady state oscillation amplitude and frequency directly
from the Spice description netlist of the oscillator.

We compare our result on the Van der Pol and Colpitts
oscillator for which the steady state frequency and amplitude
can be obtained by hand after considerable manipulations.

In the case of more complex oscillators, which involve
more components, the finite term solution expression could
be inextricable. Even so, it is possible to obtain the exact de-
pendency of one or a few circuits component by substituting
all the other component names by their numerical value.

Now we will focus on the implementation of the Wiener
method, where the very nice property of the gyrator transfor-
mation will be fully exploited.
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