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Abstract

Increasing performance of quartz crystal oscillators
as well as predictability requirements when devel-
oping the devices need accurate analysis of noise
sources. Our work is devoted to understand how
an oscillator reacts to additive noise of an element
in the electronic circuit. Up to now, oscillator de-
signers often refer to the well-known Leeson’s model
to explain the shape of phase noise spectral density.
This physical model only allows one to obtain the
global phase noise spectrum. By considering each
noise source individually, we can obtain the compar-
ative contribution of the sources. Then AM and PM
noise source spectra can be related to the circuit ar-
chitecture.

The influence of an individual noise source can
be obtained from the differential equation describ-
ing the oscillator behavior. Nevertheless, setup of
the differential equation from the inspection of the
circuit involves lengthy and tedious algebraic calcu-
lations almost impossible to achieve by hand. By
using symbolic calculation capability of formal cal-
culus programs, it is possible to automatically derive
the differential equation of the oscillator including
noise sources from a SPICE netlist description of the
circuit. The resulting expressions can be edited un-
der the form of high level language code (Fortran, C,
...) which is eventually compiled and linked with the
numerical programs calculating the noise spectra.

This paper presents the method to construct the
differential equations in a fully automatic way re-
gardless of the studied oscillator circuit.

Introduction

Equation derivation of the differential equation
of the oscillator behavior, including noise source is

very tedious, and involves lengthy calculations. It is
carried out in four distinct steps summarized below:
• The first step of the process is to reduce the

electronic circuit of the oscillator, including in-
dividual noise sources, to a canonical form.
This step is the only one which is dependent
of the studied oscillator. The three next steps
are done once and for all.

• The second step is to obtain the system of
equations governing the oscillator behavior
from the canonical form of the circuit. This
system represents the oscillation condition.

• The third step concerns the algebraic resolu-
tion of the previous system. A straightforward
demonstration to prove the general form is pro-
posed.

• The fourth step presents the method used to
transform the initial ODE under the form of
an integrodifferential equation suitable for the
use of an asymptotic pertubation method.

This paper is devoted to the algorithmic con-
struction of this ODE, valid for one transistor oscil-
lator.

First step: Reduction to a canonical
form

We consider a quartz oscillator circuit with one
transistor as, shown for example, in figure (1). The
additive noise sources of the circuit components are
represented by a current generator.
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Figure 1. Oscillator circuit
The transistor is represented [4] by the large sig-

nal y-parameter equivalent circuit shown in figure
(2). The 4 admittances Yi, Yr, Yf , Yo permit to mod-
elize the nonlinear behavior of the component. Their
value depend on the input voltage u, on the output
voltage v and on the pulsation ω (s = jω).

u

v v

Ii Yi Yr.V Yf.U Yo Io

u

Figure 2. y-parameter representation of the tran-
sistor

The admittances Yi, Yr, Yf , Yo can be expressed
under the form (1), functionsGi, Ci, Gr, Cr, Gf , Cf , Go, Co
are calculated [1] for a given bias and temperature

condition by using the electrical simulator SPICE
[5][9], they are available under the form of a table.

Yi(|u|) = Gi(|u|) + sCi(|u|) (1a)

Yr(|v|) = Gr(|v|) + sCr(|v|) (1b)

Yf (|u|) = Gf (|u|) + sCf (|u|) (1c)

Yo(|v|) = Go(|v|) + sCo(|v|) (1d)

The equivalent noise sources Ii, Io modelize the
noise of the transistor. Thermal noise source mean
square current is given by (2a), where k is the Boltz-
mann’s constant, T the absolute temperature, Gi
(or Go) the component conductance, q the electron
charge, Ic the DC collector current and ∆f the ef-
fective bandwith. Voltages u and v are calculated in
the steady state without noise.

I2
i = 4kTGi(|u|)∆f + 2qIc∆f (2a)

I2
o = 4kTGo(|v|)∆f + 2qIc∆f (2b)

Basically the method consists in reducing the
oscillator circuit to an equivalent canonical circuit
whose calculus can be done once and for all.

After grounding the supply voltage V cc, the re-
duction process starts by performing all the elemen-
tary transforms like series or parallel associations of
admittances. Then, the electronic circuit is progres-
sively reduced by using recursively either one of the 6
transformations represented in Fig. 3. At each step
of the reduction process, a new circuit component is
introduced into the amplifier. The initial amplifier is
the transistor itself (see Fig. 2).

Ybc

Yr.V Yf.UYoYi

VU

Ibc

Ii Io Yr.V Yf.UYoYi

VU

YceIi Io Ice

U

Yr.V Yf.UYoYi

V

Ii Io

Ic

Yc

Io’

Yr.V Yf.UYoYi VU Ii Io

Ye Ie

V

Yr.V Yf.UYoYi

U

Ii Io

Ib

Yb

U V

Yr.V Yf.UYoYiYbeIbe Ii Io

Parallel Base Emitter Parallel Base Collector Parallel Collector Emitter

Series Base Series Emitter Series Collector

Yi’ Yr’.V’ Yf’.U’Yo’

U’ V’

Ii’

Figure 3. The 6 transformations for circuit reduction
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• The Y -parameters Y
′
i , Y

′
r , Y

′
f , Y

′
o of the new equivalent circuit are expressed in terms of the former ones

Yi, Yr, Yf , Yo and the admittance to be introduced (Table 1). The initial Y -parameters are the nonlinear
representation of the transistor (Equ. 1).

Table 1. Admittance equations

Yi, Yr, Yf , Yo

Parallel
Base-Emitter

Y ′i = Yi + Ybe
Y ′r = Yr
Y ′f = Yf
Y ′o = Yo

Parallel
Collector-Emitter

Y ′i = Yi
Y ′r = Yr
Y ′f = Yf
Y ′o = Yo + Yce

Parallel
Base-Collector

Y ′i = Yi + Ybc
Y ′r = Yr − Ybc
Y ′f = Yf − Ybc
Y ′o = Yo + Ybc

Series
Base

Y ′i = YiYb
Yi+Yb

Y ′r = YrYb
Yi+Yb

Y ′f =
YfYb
Yi+Yb

Y ′o =
YoYb+(YiYo−YrYf )

Yi+Yb

Series
Collector

Y ′i =
YiYc+(YiYo−YrYf )

Yo+Yc

Y ′r = YrYc
Yo+Yc

Y ′f =
YfYc
Yo+Yc

Y ′o = YoYc
Yo+Yc

Series
Emitter

Y ′i =
YiYe+(YiYo−YrYf )
Yi+Yr+Yf+Yo+Ye

Y ′r =
YrYe−(YiYo−YrYf )
Yi+Yr+Yf+Yo+Ye

Y ′f =
YfYe−(YiYo−YrYf )
Yi+Yr+Yf+Yo+Ye

Y ′o =
YoYe+(YiYo−YrYf )
Yi+Yr+Yf+Yo+Ye

• The input and output noise sources I
′
i , I

′
o are expressed in terms of the former ones Ii, Io (Table 2). The

initial noise current source is the noise of the transistor (Equ. 2).

Table 2. Noise equations

Ii, Io

Parallel
Base-Emitter

(
I ′i
I ′o

)
=

(
1 0
0 1

)(
Ii
Io

)
+

(
Ibe
0

)

Parallel
Collector-Emitter

(
I ′i
I ′o

)
=

(
1 0
0 1

)(
Ii
Io

)
+

(
0
Ice

)

Parallel
Base-Collector

(
I ′i
I ′o

)
=

(
1 0
0 1

)(
Ii
Io

)
+

(
Ibc
−Ibc

)

Series
Base

(
I ′i
I ′o

)
=

(
Yb

Yi+Yb
0

− Yf
Yi+Yb

1

)(
Ii
Io

)
+

(
Yi

Yi+Yb
Ib

Yf
Yi+Yb

Ib

)

Series
Collector

(
I ′i
I ′o

)
=

(
1 − Yr

Yo+Yc

0 Yc
Yo+Yc

)(
Ii
Io

)
+

(
Yr

Yo+Yc
Ic

Yo
Yo+Yc

Ic

)

Series
Emitter

(
I ′i
I ′o

)
=

(
Yf+Yo+Ye
Ys+Ye

− Yi+Yr
Ys+Ye

−Yf+Yo
Ys+Ye

Yi+Yr+Ye
Ys+Ye

)(
Ii
Io

)
+

(
− Yi+Yr
Ys+Ye

Ie

−Yf+Yo
Ys+Ye

Ie

)
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• The input and output voltages U
′
, V
′

are expressed in terms of the former ones U, V . (Table 3). The
initial voltage are the voltage (u, v) across the transistor itself (Fig. 2).

Table 3. Voltage equations

U, V

Parallel
Base-Emitter

(
U ′

V ′

)
=

(
1 0
0 1

)(
U
V

)
+

(
0 0
0 0

)(
Ii
Io

)
+

(
0
0

)

Parallel
Collector-Emitter

(
U ′

V ′

)
=

(
1 0
0 1

)(
U
V

)
+

(
0 0
0 0

)(
Ii
Io

)
+

(
0
0

)

Parallel
Base-Collector

(
U ′

V ′

)
=

(
1 0
0 1

)(
U
V

)
+

(
0 0
0 0

)(
Ii
Io

)
+

(
0
0

)

Series
Base

(
U ′

V ′

)
=

(
Yi+Yb
Yb

Yr
Yb

0 1

)(
U
V

)
+

(
1
Yb

0

0 0

)(
Ii
Io

)
+

( − 1
Yb
Ib

0

)

Series
Collector

(
U ′

V ′

)
=

(
1 0
Yf
Yc

Yo+Yc
Yc

)(
U
V

)
+

(
0 0
0 1

Yc

)(
Ii
Io

)
+

(
0

− 1
Yc
Ic

)

Series
Emitter

(
U ′

V ′

)
=

(
Yi+Yf+Ye

Ye
Yr+Yo
Ye

Yi+Yf
Ye

Yr+Yo+Ye
Ye

)(
U
V

)
+

( 1
Ye

1
Ye

1
Ye

1
Ye

)(
Ii
Io

)
+

( 1
Ye
Ie

1
Ye
Ie

)

Yq

Base Emitter
Configuration

Configuration
Base Collector

Configuration
Collector Emitter

U

Yq Ii Yi Yr.V Yf.U Yo Io

V
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Ii Yi Yr.V Yf.U Yo Io

U V

Figure 4. Reduced forms of an oscillator

The reduction process go on until no more RLC
admittance remains outside of the amplifier circuit.
When the reduction process is completed, the res-
onator may occupy one of the three basic configura-
tions shown in figure (4).

Second step: Oscillation condition

Assuming that n reduction steps were needed
to reduce the circuit, the application of Kirch-
hoff’s law to both input and output parts of each
of the 3 circuits in figure (4) leads to equation
(3). According to the configuration, the coefficients
{Q11, Q12, Q21, Q22} are equal either to 0 or 1. :

[(
Y

(n)
i Y

(n)
r

Y
(n)
f Y

(n)
o

)
+ Yq

(
Q11 Q12

Q21 Q22

)](
U (n)

V (n)

)
= −

(
I

(n)
i

I
(n)
o

)

with

(
Q11 Q12

Q21 Q22

)
=

(
1 0
0 0

)
Base Emitter

=

(
1 −1
−1 1

)
Base Collector

=

(
0 0
0 1

)
Collector Emitter

(3)

Remember that the three systems of (3) are not
linear because the transistor Y -parameters depend
on the input or output voltages u or v.

The previous equation (3) involves reduced noise

sources (I
(n)
i , I

(n)
o ) and voltages (U (n), V (n)) at the

final step of the reduction process. To determine

the oscillation condition equation, one must express

the noise (I
(n)
i , I

(n)
o ) and the voltage (U (n), V (n)) in

terms of the voltage (u, v) across the transistor (Fig.
2) and the noise current of each circuit admittance
(Fig. 1).
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Tables (2) and (3) show that the equation built
during the reduction process has the form shown by
Eq. (4, 5). We will show, by recurrence, that they
can be written under the form (6, 7). The j indice

is summed over {i, o, 1, . . . , n}, the letters i and o
(resp. In et Out) represent the transistor noise and
the numbers 1 to n represent the component noise
(possibly null in the case of noiseless component).

(
I

(n)
i

I
(n)
o

)
=

(
A

(n)
11 A

(n)
12

A
(n)
21 A

(n)
22

)(
I

(n−1)
i

I
(n−1)
o

)
+

(
B

(n)
1

B
(n)
2

)
In (4)

(
U (n)

V (n)

)
=

(
C

(n)
11 C

(n)
12

C
(n)
21 C

(n)
22

)(
U (n−1)

V (n−1)

)
+

(
D

(n)
11 D

(n)
12

D
(n)
21 D

(n)
22

)(
I

(n−1)
i

I
(n−1)
o

)
+

(
E

(n)
1

E
(n)
2

)
In (5)

The form used in Eq. (6), allows one to re-

place the recurrence relation using (I
(n)
i , I

(n)
o ) and

(U (n), V (n)) by a recurrence relation using the co-

efficient K
(n)
j , F (n), L

(n)
j . Thes equations expresses

(I
(n)
i , I

(n)
o ) and (U (n), V (n)) directly in terms of (u, v)

and Ij .

(
I

(n)
i

I
(n)
o

)
=

{i,o,1,...,n}∑

j

(
K

(n)
1j

K
(n)
2j

)
Ij (6)

(
U (n)

V (n)

)
=

(
F

(n)
11 F

(n)
12

F
(n)
21 F

(n)
22

)(
u
v

)
+

{i,o,1,...,n}∑

j

(
L

(n)
1j

L
(n)
2j

)
Ij (7)

Third step: Transient state ODE

The previous calculus allowed us to obtain the
system (3, 6, 7) which expresses the voltages u and
v in terms of the circuit component and their as-
sociated noise source. We will show now that the
resolution of these equations with respect to u and v
leads to equations (8, 9).

u =

∑
j(Cj +DjYq)Ij

A+BYq
(8)

v =

∑
j(Ej + FjYq)Ij

A+BYq
(9)

Proof

The resolution of equations (3, 6, 7) involves only
simple algebraic operations. The calculus, and in
particular the proof that there is no term in Y 2

q re-
quire about 5 hand written pages.

The proof can be done by using computer al-
gebra system (CAS like Maple V.4, Mathematica,
Reduce, ...).

Fourth step: Transient calculation
ODE

The previous section showed that the oscillation

condition has the general form (10, 11). The fac-
tor A,B,Cj , Dj , Ej , Fj are rational functions in the
Laplace’s variable s and Yq is the admittance of the
resonator.

(A+BYq)u =
∑

j

(Cj +DjYq)Ij (10)

(A+BYq)v =
∑

j

(Ej + FjYq)Ij (11)

The nonlinear ordinary differential equation
given the oscillation signal can be obtained by re-
placing the Laplace’s variable s by the differential
operator d/dt in Equ. (10, 11). Then, this ODE
could be solved by using usual numerical methods.
Unfortunately, these algorithms generally fail to con-
verge in a reasonable computing time because of the
high quality factor of the quartz oscillator circuits.

However, the previous ODE can be solved by us-
ing perturbation methods dealing with equations of

the form
··
u +ω2

0u = f(x,
·
x, x
·
), with a ”small” per-

turbation function f at the right hand side. This
method is well suited to quartz oscillator analysis
because: it is well known that the higher the qual-
ity factor the closer the output signal to a sinusoid
whose frequency is determined by the motional part
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of the resonator, i.e. fq = 1/(2π
√
LqqCqq). The

algebraic manipulations have now to put the previ-
ous ODE under the form of a second order linear
harmonic differential equation (i.e.

··
u +ω2

qu) and a
small nonlinear integrodifferential right hand side.

The resonator is modeled by the classical equiv-
alent circuit shown in Fig. 5.

Yq
CqqLqqRqq

Cqp

Figure 5. Equivalent circuit of the resonator

The admittance Yq of the resonator is given by
12.

Yq = sCqp +
s/Lqq

s2 +
Rqq
Lqq

s+ ω2
q

, ω2
q =

1

LqqCqq
(12)

We will show that the oscillator equation (10, 11)
can be written under the form (13), where the am-
plitude of f is small. This allows to obtain the ODE
under a form suitable for the perturbation method.

··
u +ω2

0u = f(. . . ,

∫ ∫
udt2,

∫
udt, u,

du

dt
,
d2u

dt2
. . .)

(13)

Proof

The oscillation condition has the form

{
(A+BYq)u =

∑
j(Cj +DjYq)Ij

(A+BYq)v =
∑

j(Ej + FjYq)Ij
(14)

By replacing the expression of Yq given by Equ.
(12) one obtains:

(s2 +
Rqq
Lqq

s+ ω2
q)u = − Bp/Lqq

(A+BsCqp)
u (15)

+
∑

j

(Cj +DjYq)

(A+BsCqp)
Ij

(s2 +
Rqq
Lqq

s+ ω2
q )v = − Bp/Lqq

(A+BsCqp)
v

+
∑

j

(Ej + FjYq)

(A+BsCqp)
Ij

Remember that A,B,Cj , Dj , Ej , Fj are rational
functions of the Laplace’s variable s. Let D(s) be
the common denominator of Equ. (16), j vary from
1 to n.

Bs/Lqq
(A+BsCqp)

,
Cj

(A+BsCqp)
,

Dj

(A+BsCqp)
(16)

Let

N1(s) the polynomial
D(s)Bs/Lqq
(A+BsCqp)

(17a)

N2j(s) the polynomial
D(s)Cj

(A+BsCqp)
(17b)

N3j(s) the polynomial
D(s)Dj

(A+BsCqp)
(17c)

Likewise, let D
′
(s) be the common denominator

of Equ. (18), j vary from 1 to n.

Bs/Lqq
(A+BsCqp)

,
Ej

(A+BsCqp)
,

Fj
(A+BsCqp)

(18)

Let

N
′
1(s) the polynomial

D
′
(s)Bs/Lqq

(A+BsCqp)
(19a)

N
′
2j(s) the polynomial

D
′
(s)Ej

(A+BsCqp)
(19b)

N
′
3j(s) the polynomial

D
′
(s)Fj

(A+BsCqp)
(19c)

Despite their appearence, Equ. (17) and (19) are
no longer rational functions but polynomials because

of the definition of D(s) and D
′
(s). The previous

definitions leads to equations (20).

(s2 +
Rqq
Lqq

s+ ω2
q )u = −N1(s)

D(s)
u (20)

+
∑

j

N2j(s) +N3j(s)Yq
D(s)

Ij

(s2 +
Rqq
Lqq

s+ ω2
q )v = −N

′
1(s)

D
′
(s)

v

+
∑

j

N
′
2j(s) +N

′
3j(s)Yq

D(s)
Ij

For the perturbation method to be applicable,
the right hand side of equation (20) must be small.
To this end, one must identify the dominating term
Dks

k of the denominator D(s) and the dominating
term of the denominator D

′
(s) which can be written

under the form (21, 22).

D(s) = Dks
k +

deg(D)∑

i=0
i 6=k

Dis
i (21)

D
′
(s) = D

′
ks
k +

deg(D)∑

i=0
i 6=k

D
′
is
i (22)

In practice, the modulus of each term in the sums
(21, 22) is computed in the steady state of the noise-
less oscillator [2][7][8]. Then, the equation (20) takes
the form (23):
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



(s2 +
Rqq
Lqq

s+ ω2
q )(Dks

k +
∑deg(D)

i=0
i6=k

Dis
i)u = −N1(s)u+

∑
j (N2j(s) +N3j(s)Yq)Ij

(s2 +
Rqq
Lqq

s+ ω2
q )(D

′
ks
k +

∑deg(D
′
)

i=0
i6=k

D
′
is
i)v = −N ′1(s)v +

∑
j (N

′
2j(s) +N

′
3j(s)Yq)Ij

(23)

System (23) can be written under the form (24).





(s2 +
Rqq
Lqq

s+ ω2
q )u = −(s2 +

Rqq
Lqq

s+ ω2
q )

∑deg(D)
i=0
i6=k

Dis
i

Dksk
u− N1(s)

Dksk
u+

1

Dksk
∑

j (N2j(s) +N3j(s)Yq)Ij

(s2 +
Rqq
Lqq

s+ ω2
q )v = −(s2 +

Rqq
Lqq

s+ ω2
q )

∑deg(D
′
)

i=0
i6=k

D
′
is
i

D
′
ks
k

v − N
′
1(s)

D
′
ks
k
v +

1

D
′
ks
k

∑
j (N

′
2j(s) +N

′
3j(s)Yq)Ij

(24)
System (24) takes the form (25). Since (D(s), N1(s), N2j(s), N3j(s)) and (D(s), N

′
2(s), N

′
2j(s), N

′
3j(s)) are

polynomials in the s variable, the 2 equations of the system (24) are of the form (25).





(s2 + ω2
q )u = −Rqq

Lqq
su− (s2 +

Rqq
Lqq

s+ ω2
q )

∑deg(D)
i=0
i6=k

Dis
i

Dksk
u− N1(p)

Dkpk
u+

1

Dksk
∑

j (N2j(s) +N3j(s)Yq)Ij

(s2 + ω2
q )v = −Rqq

Lqq
sv − (s2 +

Rqq
Lqq

s+ ω2
q )

∑deg(D
′
)

i=0
i6=k

D
′
is
i

D
′
ks
k

v − N
′
1(p)

D
′
kp
k
v +

1

D
′
ks
k

∑
j (N

′
2j(s) +N

′
3j(s)Yq)Ij

(25)

The previous system is of the form (26), this
ODE describes the oscillator behavior and can be
solved by asymptotic method. Even in the case of
quite simple oscillator, the coefficients a and b may
have a fairly tedious expansion.





(s2 + ω2
q )u =

∑
i

aisiu+
∑

j=1...n

∑
i

bijs
i
jIj

(s2 + ω2
q )v =

∑
i

aisiv +
∑

j=1...n

∑
i

bijs
i
jIj

(26)

Conclusion

We have proposed an algorithm to obtain the or-
dinary differential equation of the oscillator behavior,
including the individual noise sources. All the equa-
tions necessary for this computation are detailed.

The use of formal calculus allows us to fully auto-
mate this analysis. The software we have developed
parses the oscillator input netlist, identifies and per-
forms the topological reduction as well as all compu-
tations of the equation.

Moreover, the formal calculus approach offers a
great flexibility because it can be decided which vari-
able must be replaced by its numerical value or which
one should be maintained in its literal form.

Numerical resolution of the obtained nonlinear
ODE by using asymptotic method allows us to ob-
tain oscillator steady state features, transient signal
signal as well as amplitude and phase noise spectra
[3]. So, this program gives the user an efficient and

powerful analysis tool for quartz crystal oscillator de-
sign.
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