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Abstract

The behavior of a quartz crystal oscillator can be
described by a nonlinear characteristic polynomial
whose coefficients are function of the circuit parame-
ters. Solving the polynomial in the frequency domain
leads to the steady state oscillation amplitude and
frequency. In the time domain, it gives the oscillator
signal transient.
Deriving the characteristic polynomial from the cir-
cuit description involves lengthy and tedious alge-
braic calculations if they are performed by hand.
They may be now performed by using the symbolic
manipulation capabilities of commercially available
softwares. However, symbolic analysis using brute
force method inevitably leads to an explosion of
terms in equations. The paper will present a fully
automatic method for generating the coding of an
oscillator characteristic polynomial directly from the
SPICE description netlist.
The code thus generated is eventually compiled and
takes place in an oscillator library. Then it is linked
with the numerical main program that solves the
polynomials. Solutions to overcome problems related
to automatic symbolic calculations are presented and
discussed. It is shown that the method used leads to
concise and efficient code.

Introduction

Applications such as orbitography or atomic clock
processing need more and more stable quartz crystal
oscillators. This paper presents the actual state of a
computer program especially designed to accurately
simulate the behavior of these oscillators. Our pro-
gram is composed of three distinct parts. Only the
first part is exposed in this paper.
• This first part consists in putting into equations

the behavior of the oscillator. More precisely, it
shows how to build the Fortran program describ-
ing the characteristic polynomial starting from

the SPICE netlist of the circuit. We have devel-
oped a Maple program to complete the topolog-
ical analysis of the circuit, to process the equa-
tions and to generate the Fortran code.

• The second part concerns the numerical calcu-
lus of the steady state feature of the oscillator,
i.e. its amplitude and frequency. How to rep-
resent the nonlinear characteristic of the tran-
sistor? How to process the isochronism defect
of the resonator ? Which algorithms are to be
used to compute the roots ? These questions are
treated in Ref. [1][2].

• The third part concerns the time domain anal-
ysis of the oscillator. The characteristic polyno-
mial represents a nonlinear differential equation
which modelizes the behavior of the oscillator
in the time domain. Because of the high quality
factor, this equation is quite difficult to solve.
Which method is to be used to solve this equa-
tion? Which form the characteristic polynomial
has to be given to treat the problem? These
questions are analyzed in Ref. [3].

Oscillation condition: Theory

The transistor is represented [4] by the equiva-
lent circuit as in figure (1). The 4 admittances
Yi, Yr, Yf , Yo permit to modelize the nonlinear be-
havior of the component. Their value depend on
the input voltage u, on the output voltage v and
on the pulsation ω (s = jω) (Eq. 1) . The func-
tions Gi, Ci, Gr, Cr, Gf , Cf , Go, Co are calculated [1]
for given bias and temperature conditions by using
the electrical simulator SPICE [5][8], they are repre-
sented under the form of a table.

Yi(|u|) = Gi(|u|) + sCi(|u|) (1)

Yr(|v|) = Gr(|v|) + sCr(|v|)
Yf (|u|) = Gf (|u|) + sCf (|u|)
Yo(|v|) = Go(|v|) + sCo(|v|)
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Figure 1: y-parameter representation of the transis-
tor

The main goal is to reduce the circuit of the quartz
oscillator to a canonical sketch easily analysable. We
have defined 6 transformations (Fig. 2) which allow
to reduce progressively the electronic circuit. At each
step of the reduction process, a new admittance is
integrated into the sketch of the amplifier. The initial
amplifier is the transistor itself (Fig. 1).

The y-parameter of the new equivalent circuit are
expressed in terms of the initial amplifier component

and of the integrated admittance (Table 1 2nd col-
umn). The input and output voltages of the new
circuit (U ′, V ′) are expressed in terms of the former

ones (U, V ). The 4th column of table 1 gives the ma-
trix A which relates the voltages (U ′, V ′) to (U, V ),
i.e. (U ′, V ′)t = A(U, V )t. The initial voltages (U, V )
are the voltages (u, v) accross the transistor itself
(Fig. 1).

The reduction process of an admittance into the am-
plifier circuit leads to one of the three configurations
relating the quartz to the amplifier. The sketch of
these three configurations is given in figure 3. By per-
forming the matrix product of the successive trans-
formations, the voltages (U, V ) of the amplifier (Fig
1) are expressed in terms of the transistor input and
output voltages (u, v).
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U V
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Yq
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Figure 3: Reduced forms of an oscillator

The application of Kirchhoff’s law to both input and
output parts of each circuit leads to the three follow-
ing relations (Eq. 2).

B.E.

{
(Yi + Yq)U +YrV = 0
YfU +YoV = 0

(2)

B.C.

{
(Yi + Yq)U +(Yr − Yq)V = 0
(Yf − Yq)U +(Yo + Yq)V = 0

C.E.

{
YiU +YrV = 0
YfU +(Yo + Yq)V = 0

It is important to recall that the three systems of
equations (2) are not linear because the transistor y-
parameters depend on the input or output voltage u
or v. By equating the ratios V/U in each system of
equation, one obtains the relation that should be sat-
isfied by the admittances Yα to ensure the coherence
of the systems of Eq. (2).

Table 2: Characteristic polynomial equations

Configuration Yi, Yr, Yf , Yo
Base Emitter (YiYo − YrYf ) + YoYq = 0
Collector Emitter (YiYo − YrYf ) + YiYq = 0
Base Collector (YiYo − YrYf )

+ (Yi + Yr + Yf + Yo)Yq = 0

By replacing each admittance by its numerator and
denominator, the equations given in table 1, that we
call ”characteristic fraction”, take the form (3).

∑∏
P∑
P

= 0 (3)

The characteristic polynomial is then
∑∏

P . Each
term P is expressed under the form of a function of
previous relations until reaching the first coefficients
which are expressed in terms of the circuit elements
Rα, Lα, Cα. Equations (2) permit to compute the
gain v/u of the oscillator, that is to compute v for
a given u. When each of the circuit elements is re-
placed by its numerical value, then the characteristic
polynomial is a function of the variables (u, s = jω).
As an example, the characteristic polynomial of the
Colpitts oscillator is plotted in Fig. (4). Each curve
represents the imaginary part vs. the real part of
the characteristic polynomial with respect to the fre-
quency for different amplitude values.
The numerical calculation of the variables u and ω
which nullify the imaginary part and the real part
of the characteristic polynomial determines the fre-
quency and the amplitude of the oscillation. This al-
gorithm uses data calculated by the SPICE program
and needs the determination of the first derivative
of the characteristic polynomial. The corresponding
algorithm used to solve these equations is described
in [2].
Because the characteristic polynomial coefficients are
expressed as functions of all the circuit components,
it is possible for the program to calculate the in-
fluence of a change of any component value on the
oscillation amplitude and frequency as well as on the
resonator excitation level. In the same way, it is pos-
sible to get the sensitivity of these quantities to small
component variation.

2



Yr.V Yf.U YoYi

Yb

VU

Yr.V Yf.U YoYi

Ye

U V

Yo’Yf’.U’Yi’ Yr’.V’

V’U’

Series Collector

Yr.V Yf.U YoYi

Yc

U V

V

Yr.V Yf.U YoYi Yce

U

Yr.V Yf.U YoYi

Ybc

U VU

Yr.V Yf.U YoYiYbe

V

Parallel Base Emitter Parallel Base Collector Parallel Collector Emitter

Series Base Series Emitter

Figure 2: The 6 transformations for circuit reduction
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Figure 4: Colpitts oscillator characteristic polynomi-
als

In addition of the rated value the user can specify
the tolerance and the temperature coefficient of each
component in the input data file. This allows the
program to calculate the induced dispersion and to
perform worst case analysis. The temperature be-
havior of the resonator is described by the four co-
efficients of the frequency temperature curve cubic
regression so that the frequency variation can be cal-
culated over a given temperature range.

Oscillation condition: Practice

Each reduction step defines a set of 4 equations which
express the new admittances Yi, Yr, Yf , Yo with re-
spect to the previous ones. In concrete terms, when

the oscillator is fully reduced, one obtains a list of
equations of the form (4). The functions fi, fr, ff , fo
correspond to the equations of the table 1, the func-
tion g corresponds to those of table 2.





Y ′i = Gi + sCi
Y ′r = Gr + sCr
Y ′f = Gf + sCf
Y ′o = Go + sCo

(4)

· · ·



Yi = fi(Yi, Yr, Yf , Yo)
Yr = fr(Yi, Yr, Yf , Yo)
Yf = ff (Yi, Yr, Yf , Yo)
Yo = fo(Yi, Yr, Yf , Yo)

Char Poly = Numerator of g(Yi, Yr, Yf , Yo)

To determine the characteristic polynomial, it is nec-
essary to express the numerator and the denominator
of the admittances at each reduction step. How to
organize those calculations in practice?

Minimal algebraic expression of the
characteristic polynomial

Writing the equations under the form (4) allows a
concise and efficient code [6][7] but may hides possi-
ble algebraic simplifications.

• A direct simplification of the polynomial, by
deleting all the intermediate variables, leads to
the loss of the advantages of the encapsulation
method. Moreover, it will take a too long com-
puting time, even in the case of a quite simple
oscillator.
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Table 1: Transformation equations

Yi, Yr, Yf , Yo Yi, Yo, Ys,∆ (U, V )

Parallel
Base-Emitter

Y ′i = Yi + Ybe
Y ′r = Yr
Y ′f = Yf
Y ′o = Yo

Y ′i = Yi + Ybe
Y ′o = Yo
Y ′s = Ys + Ybe
∆′ = ∆ + YoYbe

(
1 0
0 1

)

Parallel
Collector-Emitter

Y ′i = Yi
Y ′r = Yr
Y ′f = Yf
Y ′o = Yo + Yce

Y ′i = Yi
Y ′o = Yo + Yce
Y ′s = Ys + Yce
∆′ = ∆ + YiYce

(
1 0
0 1

)

Parallel
Base-Collector

Y ′i = Yi + Ybc
Y ′r = Yr − Ybc
Y ′f = Yf − Ybc
Y ′o = Yo + Ybc

Y ′i = Yi + Ybc
Y ′o = Yo + Ybc
Y ′s = Ys
∆′ = ∆ + YsYbc

(
1 0
0 1

)

Serie
Base

Y ′i = YiYb
Yi+Yb

Y ′r = YrYb
Yi+Yb

Y ′f =
YfYb
Yi+Yb

Y ′o =
YoYb+(YiYo−YrYf )

Yi+Yb

Y ′i = YiYb
Yi+Yb

Y ′o = YoYb+∆
Yi+Yb

Y ′s = YsYb+∆
Yi+Yb

∆′ = ∆Yb
Yi+Yb

(
Yi+Yb
Yb

Yr
Yb

0 1

)

Serie
Collector

Y ′i =
YiYc+(YiYo−YrYf )

Yo+Yc

Y ′r = YrYc
Yo+Yc

Y ′f =
YfYc
Yo+Yc

Y ′o = YoYc
Yo+Yc

Y ′i = YiYc+∆
Yo+Yc

Y ′o = YoYc
Yo+Yc

Y ′s = YsYc+∆
Yo+Yc

∆′ = ∆Yc
Yo+Yc

(
1 0
Yf
Yc

Yo+Yc
Yc

)

Serie
Emitter

Y ′i =
YiYe+(YiYo−YrYf )
Yi+Yr+Yf+Yo+Ye

Y ′r =
YrYe−(YiYo−YrYf )
Yi+Yr+Yf+Yo+Ye

Y ′f =
YfYe−(YiYo−YrYf )
Yi+Yr+Yf+Yo+Ye

Y ′o =
YoYe+(YiYo−YrYf )
Yi+Yr+Yf+Yo+Ye

Y ′i = YiYe+∆
Ys+Ye

Y ′o = YoYe+∆
Ys+Ye

Y ′s = YsYe
Ys+Ye

∆′ = ∆Ye
Ys+Ye

(
Yi+Yf+Ye

Ye
Yr+Yo
Ye

Yi+Yf
Ye

Yr+Yo+Ye
Ye

)

• The development of a recursive program locat-
ing identical expressions would be very difficult,
and would have a complexity in time of expo-
nential type.

The transformation equations, table 1 column 2,
show the origin of the problem. Each group of
transformations have a lot of identical terms and
contain ”-” signs. For example, the expressions
of Yi, Yr, Yf , Yo using the series transformation are
pretty complex but their sum is rather easy to han-
dle, since a lot of terms vanishes.

Solution

The problem is solved if there exists a change of
variables so that all the transformations only con-
tain ”+” signs. This condition guarantees that no
subsequent algebraic simplification is possible. This
change of variable exists (5) and in addition it gives
remarkable properties to the transformation equa-
tions. Each variable Ys et ∆ is a function of |u| and
|v|.

Yi = Yi (5)

Yo = Yo

Ys = Yi + Yr + Yf + Yo

∆ = YiYo − YrYf

The transformation equations with the new variables
Yi, Yo, Ys,∆ are given in table 1, column 3. A careful
examination of the equations shows that:

• Those equations only contain ”+” signs which
is precisely the property looked for.

• The transformation equations using Yi, Yo, Ys,∆
are more compact than those using Yi, Yr, Yf , Yo.

• The transformation equations are divided into
two groups: parallel and series. The equations
of each group are symmetrical with respect to
the admittances Yi, Yo, Ys.

With these new variables, the characteristic polyno-
mial expressions are written in Table 3.

One recognize in those last expressions the remark-
able properties that we have observed in the trans-
formation equations (Table 1).
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Table 3: Characteristique polynomial equations

Configuration Yi, Yo, Ys,∆
Base Emitter ∆ + YoYq = 0
Collector Emitter ∆ + YiYq = 0
Base Collector ∆ + YsYq = 0

Minimal degree characteristic polyno-
mial

The determination of the oscillator frequency is car-
ried out by computing the root of the characteristic
polynomial. The degree of this polynomial is about
20 for an oscillator of medium complexity (12 passive
components). The higher the degree the harder the
numerical calculus. On the contrary, because the os-
cillator frequency is close to the resonator frequency,
the location of the root is straightforward.
The value of the root is obviously not affected if one
multiplies the characteristic polynomial by another
arbitrary polynomial . This situation occurs when:

• There is a common factor in the numerator of
the characteristic fraction.

• There is a common root in the numerator and
denominator of the characteristic fraction.

The direct use of equations (4) leads to a character-
istic polynomial with high degree because of these
problems. We will show that a suitable representa-
tion of the admittance allows to suppress the artifi-
cial root of the characteristic polynomial.

Solution

The transformation equations, table 1, show that the
denominators of each transformation are identical.
We will show that this fact implies that, if the vari-
ables Yi, Yo, Ys,∆ are written under the form (6),

Yo =

NNo
DNo
NDo
DDo

, Yi =

NNi
DNi
NDi
DDi

, Ys =

NNs
DNs
NDs
DDs

,∆ =

NNd
DNd
NDd
DDd

(6)

then the property (7) occurs.

NDo = NDi = NDs = NDd

DDo = DDi = DDs = DDd
(7)

When no transform was performed, the admittances
of the amplifier Yi, Yo, Ys,∆ are written as equation
(8). The property (7) is true.

Yi = Gi + sCi (8)

Yo = Go + sCo

Ys = (Ci+ Co+ Cr + Cf)s

+ (Gi+Go+Gr +Gf)

∆ = (CiCo− CrCf)s2

+ (GiCo+ CiGo−GrCf − CrGf)s

+ (GiGo−GrGf)

(9)

Let us assume that the property is true from the

(n−1)th reduction. If the nth reduction is the series
transform, we have the following relation:

Y
(n)
i =

NNi
DNi
NDi
DDi

Ne
De +

NNd
DNd
NDd
DDd

NNs
DNs
NDs
DDs

+ Ne
De

P
=

NNi
DNi

Ne
De + NNd

DNd
NNs
DNs

+ Ne
De

NDs
DDs

=

NNiNeDNd+NNdDNiDe
DNiDeDNd

NNsDeDDs+NeNDsDNs
DNsDeDDs

(10)

By performing the same calculus for the variables
Yo, Ys,∆, we show that (7) is true for the series trans-
form. The reproduction of this calculus for the 5
others transformations shows that (7) is true for all
the transformations. Note that this demonstration
for the set of variables Yi, Yr, Yf , Yo is identical and
the property (7) remains true, i.e. NDi = NDr =
NDf = NDo and DDi = DDr = DDf = DDo.
The advantage of this representation may be easily
understood on the following simple example, where
we simply consider the particular case of the addition
of two admittances.

Y1 + Y2 =
NN1

DN1

ND1

DD1

+
NN2

DN2

ND2

DD2

=
NN1

DN1
+ NN2

DN2

ND1

DD1

=
NN1DN2+NN2DN1

DN1DN2

ND1

DD1

(11)

By taking the ”numerator” of this expression, one
obtains the following equation :

Char Poly = NN1DN2 +NN2DN1 (12)

Let us start again the characteristic polynomial cal-
culus, by using the standard representation of ad-
mittances, that is under the form of a rational func-
tion. Since the denominators are differents, i.e.
DN1ND1 6= DN2ND2, the sum of these two ad-
mittances may be written as (13).

Y1 + Y2 =
NN1DD1

DN1ND1
+
NN2DD2

DN2ND2
(13)

=
NN1DD1DN2ND2 +NN2DD2DN1ND1

DN1ND1DN2ND2

By taking the numerator of this expression, the char-
acteristic polynomial can be put under the following
form:

Char Poly = NN1DD1DN2ND2+NN2DD2DN1ND1

(14)
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The comparison between expressions (12) and (14)
shows that writing the admittances under the classi-
cal form (13) hides the common factors in the numer-
ators of admittances. Consequently, at each steps of
calculus, roots are added to the numerator. These
additional roots substantially increase the degree of
the characteristic polynomial.

Conclusion

We have proposed in this paper a general method to
analyse quartz oscillators. The use of formal calculus
allows to fully automatize this analysis. The software
that we have developed parses the input netlist of
the oscillator, identify and perform the impedance
transformations to reduce the initial structure to a
canonical form.
Applying the general oscillation condition gives the
symbolic form of the characteristic polynomial which
can eventually be used to analyse the oscillator be-
havior. The direct use of the transformation equa-
tions lead to polynomials of very high degree. We
have shown that it is possible to solve this problem
through a change of variable and an adequate repre-
sentation of the amplifier admittances.
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