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Abstract

This paper presents the method used to derive the
oscillation condition by using symbolic calculus. The
program is based on the full nonlinear Barkhausen
criterion method. The behaviour of an oscillator is
described by a complex polynomial called the char-
acteristic polynomial. This polynomial enables us to
calculate the steady state features of the oscillation
as well as the differential equation for transient anal-
ysis in the time domain.

The literal determination of this characteristic poly-
nomial involves lengthy algebraic calculations and
cannot be done by hand as soon as the electronic
oscillator circuit involves too many components. We
recently developed a formal calculus program allow-
ing to automatically obtain all necessary equations
for oscillation analysis. We propose new methods to
calculate them in an optimal form.

Introduction

Accurate analysis of an actual oscillator behaviour
requires heavy calculus even for the simplest oscil-
lator structure. Designers need automatic tools to
determine oscillation frequency, amplitude and sen-
sitivity to parameters change. We developed such a
simulation tool dedicated to the modeling of quartz
oscillators.

This paper presents the actual state of a computer
program especially designed to accurately simulate
the behaviour of quartz crystal oscillators. The plan
of the paper is as follows. The first section recalls the
method employed to derive the oscillation condition.
Reader should consult [3][2][1] where all the explana-
tion are carried out with complete detail. The second
section describes the main problem arising when the
oscillation condition is computed by symbolic calcu-
lus. The next two sections are devoted to the solution
of this problem.

Oscillation condition derivation

The transistor is modelled by a large signal admit-
tance parameter two-port circuit. The y-parameters
of which have a real and an imaginary part both
being nonlinear functions of the signal amplitude
(Fig. 1)(Eq. 1).

yn = gn + sCn with n = i, r, f, o (1)
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Figure 1: y-parameter representation of a transistor

The numerical values of the y-parameter are calcu-
lated at run time by using the electrical simulator
SPICE [5][7]. These values depend on the amplitude
and, of course, on bias and temperature conditions
[3].
A quartz crystal oscillator can be reduced to the
canonical form represented in Fig. 2 by using a few
number of transformations [6].

Yq

U V

Yi Yr.V Yf.U Yo

Figure 2: Reduced form of an oscillator

These transformations are divided into three groups.
The first one is composed of elementary transforma-
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tions on the circuit admittances like series, paral-
lel combinations or Kennelly’s transforms. Figure 3
shows one of the elementary transformation.

(2)

Y1 Y2 Y3

(1)

Figure 3: Elementary transformation of the circuit

Equations 2 represents the associated relationship.

Y1
∆
=
N1

D1

Y2
∆
=
N2

D2
(2)

Y3 =
N1N2

N1D2 +D1N2

The second group is made up by transformations in-
volving the y-parameter equivalent circuit and the
admittances around it. Figure 4 represents an ex-
ample of these transformations.

Yr.V Yf.U YoYi

VU
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Figure 4: Elementary transformation of the circuit

After such a reduction, the components of the new
y-parameter equivalent circuit are expressed in terms
of the initial circuit component, as shown by (3).

Y
′
i

∆
=
N ′i
D′i

=
NiD1 +DiN1

DiD1

Y
′
r

∆
=
N ′r
D′r

=
NrD1 −DrN1

DrD1

Y
′
f

∆
=
N ′f
D′f

=
NfD1 −DfN1

DfD1
(3)

Y
′
o

∆
=
N ′o
D′o

=
NoD1 +DoN1

DoD1

U ′ = U

V ′ = V

The third and last group involves only the y-
parameter equivalent circuit. If the quartz is not con-
nected between the base and the collector of the y-
parameter equivalent circuit, it is necessary to swap
two of the terminals of the amplifier. Figure 5 illus-
trates that kind of transformation.

Yo’Yf’.U’Yi’

U’

Yr’.V’

V’ (2)

c

(1)

U
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Yi

c

b
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a b

Figure 5: Elementary transformation of the circuit

The representative equations of this transformation
are given by (4).

Y
′
i

∆
=
N ′i
D′i

=
Ni
Di

Y
′
r

∆
=
N ′r
D′r

=
−NiDr −DiNr

DiDr

Y
′
f

∆
=
N ′f
D′f

=
−NiDf −DiNf

DiDf
(4)

Y
′
o

∆
=
N ′o
D′o

=
NiDrDfDo + · · ·+DiDrDfNo

DiDrDfDo

U ′ = U − V
V ′ = −V

All the transformations described above are repeated
until the final reduced form shown in figure 2 is ob-
tained. Under this form, the oscillation condition
can be written:

YiYo − YfYr + (Yi + Yr + Yf + Yo)Yq = 0 (5)
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In terms of the numerator Nα and denominator Dα

of the admittance Yα, the oscillation condition takes
the following form:

(NiDrDfNo −DiNrNfDo)Dq

+(NiDrDfDo +DiNrDfDo

+DiDrNfDo +DiDrDfNo)Nq = 0 (6)

Each term of the relation is expressed under the form
of a function of previous relation until reaching the
first coefficients which are expressed in terms of the
circuit elements Rα, Lα, Cα. The polynomial (6) has
the general form (7). Each coefficient ak of the poly-
nomial is expressed as a function of the component
value of the circuit

K∑

k=0

aks
k = 0 (7)

When the characteristic polynomial coefficients are
defined, it is possible to obtain the steady state fre-
quency and amplitude of the oscillation. To this end,
the Laplace’s variable s is changed into the harmonic
variable jω, this splits equation (7) into two equa-
tions, one for the real part (Eq. 8), the other one for
the imaginary part (Eq. 9).

N∑

i=0

αi (u)ωi = 0 (8)

M∑

i=0

βi (u)ωi = 0 (9)

The numerical calculation of the variables u et ω
which satisfy both equations (8, 9) determines the
frequency and the amplitude of the oscillation. This
resolution uses data calculated by the SPICE pro-
gram and needs the determination of the first deriva-
tives of equations (8, 9). The numerical zero finding
algorithm used to solve these equations is described
in [1].
Because the characteristic polynomial coefficients are
expressed as functions of all the circuit components,
it is possible for the program to calculate the in-
fluence of a change of any component value on the
oscillation amplitude and frequency as well as on the
resonator excitation level. In the same way, it is pos-
sible to get the sensitivity of these quantities to small
component variation.
In addition of the rated value the user can specify
the tolerance and the temperature coefficient of each
component in the input data file. This allows the
program to calculate the induced dispersion and to
perform worst case analysis. The temperature be-
haviour of the resonator is described by the four co-
efficients of the frequency temperature curve cubic
regression so that the frequency variation can be cal-
culated over a given temperature range.

Setting the problem

After the circuit is read, the numerator and the de-
nominator of each admittance of the circuit is given
a name. That define the first coefficients.

B1 = sC1

B2 = 1

· · · = · · ·
B2l = R4 (10)

During the reduction process, expression of the new
admittances are generated as a function of the pre-
vious coefficients.

B2l+1 = B2l+1 (B1, B2, . . . , B2l) = B1B4 +B2B3

B2l+2 = B2l+2 (B1, B2, . . . , B2l+1) = B2B4

· · · = · · ·
B2n = B2n (B1, B2, . . . , B2n−1) = · · · (11)

When all the reductions have been performed, the
equivalent circuit has the reduced form shown in fig-
ure 2. The oscillation condition gives the last coeffi-
cient:

B2n+1 = (B81B84B86B87−B82B83B85B88)B90 + · · ·
(12)

The equation B2n+1 = 0 can be written in the form
of a polynomial of the Laplace’s variable s:

K∑

k=0

aks
k = 0 (13)

The main problem is to compute the four following
expressions from the coefficients B1, B2, . . . , B2n+1.

P =
∑N
i=0 αi (u)ωi ∂P/∂ω

Q =
∑N

i=0 βi (u)ωi ∂Q/∂ω

The easiest way is to substitute recursively each
Bi by their expression in the last coefficient
B2n+1. By this method, we obtain the polyno-

mial
∑K
k=0 aks

k = 0 where each coefficient is ex-
pressed as a function of the component of the circuit
Rα, Lα, Cα. Unfortunately, the full development of
the polynomial coefficient leads to too intricate ex-
pression even in simple oscillator structures.
A better way is to express the coefficients of an ad-
mittance newly defined as a function of the coeffi-
cient previously defined. This method is detailed in
the following example. Suppose that the admittance
Y3 is generated after the parallel reduction of the
admittance Y1 and Y2.

Y3 = Y1+Y2

=
· · ·

a2s2 + a1s+ a0
+

· · ·
b3s3 + b2s2 + b1s+ b0

=
· · ·

c5s5 + c4s4 + c3s3 + c2s2 + c1s+ c0
(14)
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This reduction process involve the definition of six
new coefficients c0, c1, . . . , c5 (Eq. 15).

c0 = a0b0

c1 = a1b0 + a0b1

c2 = a2b0 + a1b1 + a0b2 (15)

c3 = a2b1 + a1b2 + a0b3

c4 = a2b2 + a1b3

c5 = a2b3

This method has the following major drawback: The
degree of the polynomial increases at each reduction
step. The consequence is that the number of new co-
efficients defined during one step increases with the
number of transformations already done. This expo-
nential increase limits the complexity of the oscillator
circuit which can be treated.
The method proposed here will computes in the same
time the real and the imaginary part of the equation
(7 or 13). The first derivatives ∂P/∂ω, ∂Q/∂ω are
calculated from these coefficients. These values are
calculated during the same step. This method will
be further explained in the next two sections. The
advantages over the previous method are:

• The number of coefficients increases linearly
with the number of reduction steps.

• These coefficient are coded in a efficient way.

• In consequence of it, the numerical calculation
of the four functions P,Q, ∂P/∂ω, ∂Q/∂ω is al-
most optimal.

Moreover, this method allows one to calculate ef-
ficiently the values of P,Q, ∂P/∂ω, ∂Q/∂ω without
knowing explicitly the expression of the coefficients
ak in equation (7).

Determination of the real and imagi-
nary part

The first coefficients defined (see Eq. 10) are function
of the Laplace’s variable s, so the splitting into real
and imaginary part is straightforward. Equations
(11) and (12) show that all the other equations have
the specific form of equation (16). In this particular
case, an efficient method to calculate symbolically
the real and imaginary part of the coefficient can be
used.

Bi+1 =
∑∏

k≤i
Bk (16)

Suppose that the real and the imaginary part of each
coefficient Bα is known up to the ith order.

<(B1),<(B2), . . . ,<(Bi), (17)

=(B1),=(B2), . . . ,=(Bi) are known (18)

It is possible to calculate the real and the imaginary
part of the coefficient Bi+1. We shall illustrate the
method on a concrete example. Consider the expres-
sion

Exp = B1B2B3 +B4B5 (19)

The method introduces new coefficient Cα. These
coefficient are calculated so that only one complex
multiplication is done in each step. In the case of
the previous expression, the result is:

C1 = <(B1)<(B2)−=(B1)=(B2)

C2 = <(B1)=(B2) + =(B1)<(B2)

C3 = C1<(B3)− C2=(B3)

C4 = C1=(B3) + C2<(B3) (20)

C5 = <(B4)<(B5)−=(B4)=(B5)

C6 = <(B4)=(B5) + =(B4)<(B5)

<(Exp) = C3 + C5

=(Exp) = C4 + C6

Notice that the real part and the imaginary part are
computed in the same time. Let us compare this
method with the more direct one.

<(Exp) = <(B1)<(B2)<(B3)−<(B1)=(B2)=(B3)

−=(B1)<(B2)=(B3)−=(B1)=(B2)<(B3)

+<(B4)<(B5)−=(B4)=(B5) (21)

=(Exp) = <(B1)<(B2)=(B3) + <(B1)=(B2)<(B3)

+=(B1)<(B2)<(B3)−=(B1)=(B2)=(B3)

+<(B4)=(B5) + =(B4)<(B5) (22)

Table 1 indicates the number of arithmetic operation
+ and ∗ needed to express the form B1B2 . . . Bi. The
two methods are compared for expressions of differ-
ent lengths.

Direct Proposed
Nb + Nb ∗ Nb + Nb ∗

B1 0 0 0 0
B1B2 2 4 2 4
B1B2B3 6 16 4 8
B1B2B3B4 14 48 6 12
B1B2B3B4B5 30 128 8 16

Table 1: Computation cost

Determination of the first derivatives

The first coefficients are necessarily defined as a func-
tion of ω and of the admittance of the circuit. So
their derivatives respect to ω can be easily calcu-
lated. Now suppose that the first derivative of each
coefficient Cα is known up to the ith order.

∂C1

∂ω
,
∂C2

∂ω
, · · · , ∂Ci

∂ω
(23)
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It is possible to calculate the derivative of the coeffi-
cient Ci+1 by expanding as follows.

∂Ci+1

∂ω
=
∂Ci+1

∂C1

∂C1

∂ω
+ · · ·+ ∂Ci+1

∂Ci

∂Ci
∂ω

(24)

One might think that the form of the ∂Ci/∂ω will be
extremely complicated. It is not the case because of
the specificity of our problem. From equations (20),
it easily follows that each coefficient Cα depends only
on four other coefficients. The consequence is that
the expression of the derivative will be quite simple.
We showed above an example. The expression of the
derivative D10 of the coefficient C10 is given by (26),
where all the coefficients C1, . . . , C9 and D1, . . . , D9

are known.

C10 = C3C5 − C4C6 (25)

D10 = D3C5 + C3D5 −D4C6 − C4D6 (26)

Conclusion

The works presented here highlights some problems
related to the complexity of the expressions to be
manipulated. The proposed methods allow an op-
timization of the calculus at the level of the topo-
logical analysis as well as for numerical calculation
of the required coefficients to the calculation of the
oscillation’s condition.
The fact that this optimization is not a simple calcu-
lation refinement that one can do without should be
stressed. The present method is necessary in order
to treat complex oscillator circuits. Indeed, we have
shown that with the previous method the complexity
of the calculus exponentially increases as a function
of the circuit components while the complexity of the
new method linearly increases.
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cillateurs à quartz ultrastables, Final report con-
tract 832/CNES/88/5374/00 (1991).

[5] L.W. Nagel, SPICE 2 : A computer program to
simulate semiconductor circuits, Memorandum
ERL-M520, Univ. of California, Berkeley (1975).

[6] N. Ratier, R. Brendel, T. Blin, G. Marianneau, P.
Guillemot, Non linear simulation of quartz crys-
tal oscillators, Proc. of 9th EFTF (1995).

[7] P. Tuinenga, SPICE - A guide to circuit sim-
ulation and analysis using PSpice, 2nd edition,
Prentice Hall, 1992.

5


