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We study the semilinear wave equation in canonical form with nonLipschitz nonlinearity by using the recent theories of generalized functions. We investigate solutions to the Goursat problem. We turn this non-Lipschitz Goursat problem with irregular data into a biparameter family of problems. The first parameter replaces the problem by a family of Lipschitz problems and the second one regularizes the data. Finally the family of problems is solved in an appropriate biparametric (C, E, P) algebra.

Introduction

The distribution theory has some limitations when nonlinear problems are considered. The theories of algebras of generalized functions [START_REF] Colombeau | Elementary introduction to new generalized functions[END_REF], [START_REF] Grosser | Geometric theory of generalized functions with applications to general relativity[END_REF], which form at least presheaves of differential algebras, seem to be an efficient tool to overcome these limitations. They have already been used to solve many nonlinear and irregular problems. For example, in the case of singular data and Lipschitz nonlinearity, a method consists in replacing the given problem with a one-parameter family of smooth problems and has been successfully used in [START_REF] Delcroix | Topology on Asymptotic Algebras of Generalized Functions and Applications[END_REF], [START_REF] Marti | Non linear Algebraic Analysis of Delta Shock wave solutions to Burger's Equation[END_REF], [START_REF] Marti | A non linear Goursat problem with irregular data[END_REF], [START_REF] Oberguggenberger | Multiplication of Distributions and Applications to Partial Differential Equations[END_REF] among other references. With similar techniques, various type of nonlinearities are considered in [START_REF] Nedeljkov | Generalized solution to a semilinear wave equation[END_REF], [START_REF] Shatah | Geometric Wave Equations[END_REF].

The main purpose of this paper is to establish the existence of a global solution for the non-Lipschitz Goursat problem (P f orm ):

∂ 2 u ∂x∂y = F (•, •, u) (for example F (•, •, u)) = |u| p , p integer, p ≥ 2)
, in the case of irregular data given along the characteristic curve C: (Ox), and along a monotonic curve γ of equation x = g (y). We want to investigate solutions to this nonlinear problem with distributions or other generalized functions as data. This justifies to search for solutions in algebras containing the space of distributions which are invariant under nonlinear functions, in addition. To do this, we use some regularization processes and cutoff techniques described in the framework of (C, E, P)-algebras of Marti, [START_REF] Marti | Fundamental structures and asymptotic microlocalization in sheaves of generalized functions[END_REF], [START_REF] Marti ; C | Sheaf Structures and Applications[END_REF], [START_REF] Marti | Multiparametric Algebras and Characteristic Cauchy Problem. Non-linear algebraic analysis and applications[END_REF], [START_REF] Marti | Non linear Algebraic Analysis of Delta Shock wave solutions to Burger's Equation[END_REF], [START_REF] Marti | A non linear Goursat problem with irregular data[END_REF] which are an improvement and generalization of the algebras of J.-F. Colombeau [START_REF] Colombeau | Elementary introduction to new generalized functions[END_REF], [START_REF] Grosser | Geometric theory of generalized functions with applications to general relativity[END_REF]. These algebras are designed to admit multiparametric families of smooth functions as representatives of generalized functions.

The mentioned irregular problem remains in general unsolvable in classical functional spaces. To overcome this difficulty, we replace Problem (P f orm ) by a family of Lipschitz problems [START_REF] Devoue | Generalized solutions to a non Lipschitz Cauchy problem[END_REF]. The general process is the following. A first parameter, ε, permits to regularize the non-lipschitz case, a second parameter, ρ, makes the regularization of the data in singular case. By means of these regularizations, we define an associated generalized problem (P gen ) and we study his solvability.

The first situation is the case where F has a non Lipschitz non linearity and the data are regular. We replace F with a family of Lipschitz functions (F ε ) given by suitable cutoff techniques which gives rise to a family (P ε ) :

∂ 2 u ∂x∂y = F ε (•,
•, u) of regularized Lipschitz problems. Then, the classical successive approximation technique permits to obtain, for each ε, a global solution u ε to this nonlinear wave equation in canonical form [START_REF] Devoue | Sur les singularités de certains problèmes différentiels[END_REF], [START_REF] Devoue | On generalized solutions to the wave equation in canonical form[END_REF]. Using the precise estimates given in section 2, we build a (C, E, P)-algebra, stable under the family (F ε ), in which the class of (u ε ) is the expected solution of the generalized problem (P gen ). Thus, we obtain a global generalized solution, when the classical smooth solutions often break down in finite time [START_REF] Taylor | Partial Differential equations III[END_REF]. With regard to the regularization, we show that this solution depends solely on the class of the cutoff function as a generalized function, not on the particular representative. Moreover, if the initial problem (P f orm ) admits a smooth solution u satisfying appropriate growth estimates on some open subset Ω of R 2 , then this solution and the generalized one are equal in a meaning given in Theorem 28.

The second situation is the case of irregular data We replace the problem by a family P (ε,ρ) of regularized problems. As before, the parameter ε is used to render the problem Lipschitz, and ρ makes it regular. We build a biparametric algebra in which the generalized problem (P gen ) is solved. To prove the existence of solution, a biparametric representative is constructed from the existence of smooth solutions for each regularized Lipschitz problem. We also prove that the solution to the regularized problem, on some open subset Ω, is equal to the non-regularized one in a meaning given in Theorem 31.

In the examples we take advantage of our results to give a new approach of the blow-up problem. Using the Hadamard's finite-part and the previous results, we build a generalized solution to some regularized problem which is equal to the classical blow-up solution.

2 Algebras of generalized functions 2.1 The presheaves of (C, E, P)-algebras

Definitions

We refer the reader to [START_REF] Marti | Fundamental structures and asymptotic microlocalization in sheaves of generalized functions[END_REF], [START_REF] Marti ; C | Sheaf Structures and Applications[END_REF], [START_REF] Marti | Multiparametric Algebras and Characteristic Cauchy Problem. Non-linear algebraic analysis and applications[END_REF], [START_REF] Marti | Non linear Algebraic Analysis of Delta Shock wave solutions to Burger's Equation[END_REF] for more details. Take

• Λ a set of indices;

• A a solid subring of the ring K Λ , (K = R or C), that is A has the following stability property: whenever (|s λ |) λ ≤ (r λ ) λ (i.e. for any λ,

|s λ | ≤ r λ ) for any pair ((s λ ) λ , (r λ ) λ ) ∈ K Λ × |A|, it follows that (s λ ) λ ∈ A, with |A| = {(|r λ |) λ : (r λ ) λ ∈ A};
• I A an solid ideal of A with the same property;

• E a sheaf of K-topological algebras on a topological space X, such that for any open set Ω in X, the algebra E(Ω) is endowed with a family

P(Ω) = (p i ) i∈I(Ω) of seminorms satisfying ∀i ∈ I(Ω), ∃(j, k, C) ∈ I(Ω)×I(Ω)×R * + , ∀f, g ∈ E(Ω) : p i (f g) ≤ Cp j (f )p k (g).
Assume that

• For any two open subsets Ω 1 , Ω 2 of X such that Ω 1 ⊂ Ω 2 , we have I(Ω 1 ) ⊂ I(Ω 2 ) and if ρ 2 1 is the restriction operator E(Ω 2 ) → E(Ω 1 ), then, for each p i ∈ P(Ω 1 ), the seminorm p i = p i • ρ 2 1 extends p i to P(Ω 2 );

• For any family F = (Ω h ) h∈H of open subsets of X if Ω = ∪ h∈H Ω h , then, for each p i ∈ P(Ω), i ∈ I(Ω), there exists a finite subfamily Ω 1 , ..., Ω n(i) of F and corresponding seminorms p 1 ∈ P(Ω 1 ), ..., p n(i) ∈ P(Ω n(i) ), such that, for each u ∈ E(Ω),

p i (u) ≤ p 1 u |Ω1 + ... + p n(i) (u |Ωn(i) ).
Set

X (A,E,P) (Ω) = {(u λ ) λ ∈ [E(Ω)] Λ : ∀i ∈ I(Ω), ((p i (u λ )) λ ∈ |A|}, N (I A ,E,P) (Ω) = {(u λ ) λ ∈ [E(Ω)] Λ : ∀i ∈ I(Ω), (p i (u λ )) λ ∈ |I A |}, C = A/I A .
One can prove that X (A,E,P) is a sheaf of subalgebras of the sheaf E Λ and N (I A ,E,P) is a sheaf of ideals of X (A,E,P) [START_REF] Marti ; C | Sheaf Structures and Applications[END_REF]. Moreover, the constant sheaf

X (A,K,|.|) /N (I A ,K,|.|) is exactly the sheaf C = A/I A .
Definition 1 We call presheaf of (C, E, P)-algebra the factor presheaf of algebras over the ring C = A/I A A = X (A,E,P) /N (I A ,E,P) .

We denote by [u λ ] the class in A(Ω) defined by the representative (u λ ) λ∈Λ ∈ X (A,E,P) (Ω).

Overgenerated rings

See [START_REF] Delcroix | Well posed differential problems in Algebras of Generalized Functions[END_REF].

Let B p = (r n,λ ) λ ∈ (R * + ) Λ : n = 1, .
.., p and B be the subset of (R * + ) Λ obtained as rational functions with coefficients in R * + , of elements in B p as variables. Define

A = (a λ ) λ ∈ K Λ | ∃ (b λ ) λ ∈ B, ∃λ 0 ∈ Λ, ∀λ ≺ λ 0 : |a λ | ≤ b λ .
Definition 2 In the above situation, we say that A is overgenerated by B p (and it is easy to see that A is a solid subring of K Λ ). If I A is some solid ideal of A, we also say that C = A/I A is overgenerated by B p .

Example 3 For example, as a "canonical" ideal of A, we can take

I A = (a λ ) λ ∈ K Λ | ∀ (b λ ) λ ∈ B, ∃λ 0 ∈ Λ, ∀λ ≺ λ 0 : |a λ | ≤ b λ .

Remark 4

We can see that with this definition B is stable by inverse.

Relationship with distribution theory

Let Ω an open subset of R n . The space of distributions D (Ω) can be embedded into A(Ω).

If (ϕ λ ) λ∈(0,1] is a family of mollifiers ϕ λ (x) = 1 λ n ϕ x λ , x ∈ R n , ϕ (x) dx = 1 and if T ∈ D (R n ),
the convolution product family (T * ϕ λ ) λ is a family of smooth functions slowly increasing in 1 λ . So we shall choose the subring A overgenerated by some B p of (R * + ) (0,1] containing the family (λ) λ , [START_REF] Delcroix | Remarks on the embedding of spaces of distributions into spaces of Colombeau generalized functions[END_REF], [START_REF] Oberguggenberger | Multiplication of Distributions and Applications to Partial Differential Equations[END_REF].

The association process

We assume that Λ is left-filtering for a given partial order relation ≺. We denote by Ω an open subset of X, E a given sheaf of topological K-vector spaces containing E as a subsheaf, a a given map from Λ to K such that (a (λ)) λ = (a λ ) λ is an element of A. We also assume that

N (I A ,E,P) (Ω) ⊂ (u λ ) λ ∈ X (A,E,P) (Ω) : lim E(Ω),Λ u λ = 0 . Definition 5 We say that u = [u λ ] and v = [v λ ] ∈ E(Ω) are a-E associated if lim E(Ω),Λ a λ (u λ -v λ ) = 0.
That is to say, for each neighborhood V of 0 for the E-topology, there exists

λ 0 ∈ Λ such that λ ≺ λ 0 =⇒ a λ (u λ -v λ ) ∈ V . We write u a ∼ E(Ω) v.
Remark 6 We can also define an association process between u = [u λ ] and T ∈ E(Ω) by writing simply

u ∼ T ⇐⇒ lim E(Ω),Λ u λ = T.
Taking E = D , E = C ∞ , Λ = (0, 1], we recover the association process defined in the literature (J.-F. Colombeau , [START_REF] Colombeau | Elementary introduction to new generalized functions[END_REF]).

D -singular support

Assume that

N A D (Ω) = (u λ ) λ ∈ X (Ω) : lim λ→0 u λ = 0 in D (Ω) ⊃ N (Ω). Set D A (Ω) = [u λ ] ∈ A(Ω) : ∃T ∈ D (Ω), lim λ→0 (u λ ) = T in D (Ω) .
D A (Ω) is clearly well defined because the limit is independent of the chosen representative; indeed, if (i λ ) λ ∈ N (Ω) we have lim

λ→0 D (R) i λ = 0.
D A (Ω) is an R-vector subspace of A(Ω). Therefore we can consider the set O D A of all x having a neighborhood V on which u is associated to a distribution:

O D A (u) = {x ∈ Ω : ∃V ∈ V(x), u| V ∈ D A (V )} , V(x)
being the set of all neighborhoods of x.

Definition 7 The D -singular support of u ∈ A(Ω), denoted singsupp D (u) = S A D A (u), is the set S A D A (u) = Ω\O D A (u).

Algebraic framework for our problem

Set E = C ∞ , X = R d for d = 1, 2, E = D and Λ a set of indices, λ ∈ Λ.
For any open set Ω, in R d , E(Ω) is endowed with the P(Ω) topology of uniform convergence of all derivatives on compact subsets of Ω. This topology may be defined by the family of the seminorms

P K,l (u λ ) = sup |α|≤l P K,α (u λ ) with P K,α (u λ ) = sup x∈K |D α u λ (x)| , K Ω and D α = ∂ α1+...+α d ∂z α1 1 ...∂z α d d for z = (z 1 , . . . , z d ) ∈ Ω, l ∈ N, α = (α 1 , ..., α d ) ∈ N d .
Let A be a subring of the ring R Λ of family of reals with the usual laws. We consider a solid ideal I A of A. Then we have

X (Ω) = {(u λ ) λ ∈ [C ∞ (Ω)] Λ : ∀K Ω, ∀l ∈ N, (P K,l (u λ )) λ ∈ |A|}, N (Ω) = {(u λ ) λ ∈ [C ∞ (Ω)] Λ : ∀K Ω, ∀l ∈ N, (P K,l (u λ )) λ ∈ |I A |}, A(Ω) = X (Ω)/N (Ω).
The generalized derivation

D α : u(= [u ε ]) → D α u = [D α u ε ] provides A(Ω) with a differential algebraic structure. Example 8 Set Λ = (0, 1]. Consider A = R Λ M = (m λ ) λ ∈ R Λ : ∃p ∈ R * + , ∃C ∈ R * + , ∃µ ∈ (0, 1], ∀λ ∈ (0, µ], |m λ | ≤ Cλ -p
and the ideal

I A = (m λ ) λ ∈ R Λ : ∀q ∈ R * + , ∃D ∈ R * + , ∃µ ∈ (0, 1], ∀λ ∈ (0, µ], |m ε | ≤ Dλ q . Set E M (Ω) = X (Ω). The sheaf of factor algebras G (•) = E M (•)/N (•) is called the sheaf of simplified Colombeau algebras. A R d = G R d is the simplified Colombeau algebra of generalized functions.
We have the analogue of theorem 1.2.3. of [START_REF] Grosser | Geometric theory of generalized functions with applications to general relativity[END_REF] for (C, E, P)-algebras. We suppose here that Λ is left filtering and give this proposition for A R 2 , although it is valid in more general situations. Proposition 9 Assume that the set B, introduced in Definition 2, is stable by inverse and that there exists

(a λ ) λ ∈ B with lim Λ a λ = 0. Consider (u λ ) λ ∈ X (R 2 ) such that ∀K R 2 , (P K,0 (u λ )) λ ∈ |I A | . Then (u λ ) λ ∈ N (R 2 ).
We refer the reader to [START_REF] Delcroix | Well posed differential problems in Algebras of Generalized Functions[END_REF], [START_REF] Delcroix | algebras : Overgeneration and 0 thorder estimates[END_REF] for a detailed proof.

Definition 10 Let Ω be an open subset of R 2 , Ω = Ω × R ⊂ R 3 . Assume that Λ = Λ 1 × Λ 2 , λ = (ε, υ) ∈ Λ 1 × Λ 2 . Let F ε ∈ C ∞ (Ω , R).
We say that the algebra A (Ω) is stable under the family (F ε ) ε if the following two conditions are satisfied:

• For each K R 2 , l ∈ N and (u λ ) λ ∈ X (Ω)
, there is a positive finite sequence C 0 ,..., C l , such that

P K,l (F ε (•, •, u λ )) ≤ l i=0 C i P i K,l (u λ ). • For each K R 2 , l ∈ N, (v λ ) λ and (u λ ) λ ∈ X (Ω), there is a positive finite sequence D 1 ,..., D l such that P K,l (F ε (•, •, v λ ) -F ε (•, •, u λ )) ≤ l j=1 D j P j K,l (v λ -u λ ). Remark 11 If A (Ω) is stable under (F ε ) ε then, for all (u λ ) λ ∈ X (Ω) and (i λ ) λ ∈ N (Ω), we have (F ε (•, •, u λ )) λ ∈ X (Ω); (F ε (•, •, u λ + i λ ) -F ε (•, •, u λ )) λ ∈ N (Ω).

Generalized operator associated to a stability property

For each f ∈ C ∞ R 2 we define H λ (f ) = F ε (•, •, f ) : C ∞ R 2 → C ∞ R 2 , f → ((x, y) → F ε (x, y, f (x, y))) .
Clearly, the family

(H λ ) λ maps C ∞ R 2 Λ into C ∞ R 2 Λ and allows to define a map from A R 2 into A R 2 . For u = [u λ ] ∈ A R 2 , ([F ε (., ., u λ )]
) is a well defined element of A(R 2 ) (i.e. not depending on the representative (u λ ) λ of u). This leads to the following:

Definition 12 If A R 2 if stable under (F ε ) ε , the operator 
F : A R 2 → A R 2 , u = [u λ ] → [F ε (., ., u λ )] = [H λ (u λ )]
is called the generalized operator associated to the family (F ε ) ε . See [START_REF] Delcroix | Well posed differential problems in Algebras of Generalized Functions[END_REF].

Definition 13 Let F ∈ C ∞ (R 3 , R) and f ε ∈ C ∞ (R), we define F ε (x, y, z) = F (x, y, zf ε (z)). The family (F ε ) ε is called the family associated to F via the family (f ε ) ε . If A R 2 if stable under (F ε ) ε , the operator F : A R 2 → A R 2 , u = [u λ ] → [F ε (., ., u λ )] = [H λ (u λ )]
is called the generalized operator associated to F via the family (f ε ) ε .

Generalized restriction mappings

Assume that Λ = Λ 1 × Λ 2 , λ = (ε, ρ) ∈ Λ 1 × Λ 2 . Set g ∈ C ∞ (R). For each f ∈ C ∞ R 2 set L λ (f ) : C ∞ (R) → C ∞ (R) , g → (y → f (g(y), y)) ; R λ (f ) : C ∞ (R) → C ∞ (R) , g → (x → f (x, g(x))) . The families (L λ ) λ , (R λ ) λ map C ∞ R 2 Λ into (C ∞ (R)) Λ .

Definition 14

The smooth function g is compatible with first side restriction (resp. second-restriction) if

∀ (u λ ) λ ∈ X (R 2 ), (u λ (g(•), •)) λ ∈ X (R) ; ∀ (i λ ) λ ∈ N (R 2 ), (i λ (g(•), •)) λ ∈ N (R), (resp. ∀ (u λ ) λ ∈ X (R 2 ), (u λ (•, g(•))) λ ∈ X (R) ; ∀ (i λ ) λ ∈ N (R 2 ), (i λ (•, g(•))) λ ∈ N (R)). Clearly, if u = [u λ ] ∈ A(R 2 ) then [u λ (g(•), •)] (resp. [u λ (•, g(•))]
) is a well defined element of A(R) (i.e. not depending on the representative of u.) This leads to the following: Definition 15 If the smooth function g is compatible with first side restriction (resp. second side restriction), the mapping

L g : A R 2 → A (R) , u = [u λ ] → [u λ (g(•), •)] = [L λ (u λ )] (resp. R g : A R 2 → A (R) , u = [u λ ] → [u λ (•, g(•))] = [R λ (u λ )] )
is called the generalized first side restriction (resp. second side restriction) mapping associated to the function g.

Remark 16

The previous process generalizes the standard one defining the restriction of the generalized function u

= [u λ ] ∈ A R 2 to the manifold {x = g (y)} (resp. {y = g (x)}). Proposition 17 If function g is c-bounded (for each K R it exists K R such that g(K) ⊂ K )
then the function g is compatible is compatible with first side restriction (resp. second side restriction).

Take (u λ ) λ (resp. (i λ ) λ ) in X (R 2 ) (resp. N (R 2 )
) and set v λ (y) = u λ (g(y), y). We have

p K,0 (v λ ) ≤ p K ×K,0 (u λ ) P K,1 (v λ ) ≤ p K ×K,(1,0) (u λ ) p K,1 (g) + p K ×K,(0,1) (u λ ) .
By induction we can see that for each K R, and each l ∈ N, p K,l (v λ ) is estimated by sums or products of terms like

p K ×K,(n,m) (u λ ) for n + m ≤ l, or p K,k (g) for k ≤ l, then p K,l (v λ ) is in |A|. Similarly, setting j λ (t) = i λ (g(y), y) leads to p K,l (j λ ) ∈ |I A |. Then (u λ (g(•), •)) λ (resp. i λ (g(•), •)) belongs to X (R) (resp. N (R)).

A generalized differential problem associated to the classical one

Our goal is to give a meaning to the differential Goursat problem formally written as

(P f orm )        ∂ 2 ∂x∂y u = F (•, •, u), u| (Ox) = ϕ, u| γ = ψ,
where F a nonlinear function of its arguments may be non Lipschitz, γ the manifold {y = g (x)}, ψ, ϕ are data may be as irregular as distributions. We don't have a classical surrounding in which we can pose (and a fortiori solve

) the problem. Set θ ∈ C ∞ (R) define by θ (x) = 0. Let (φ ε ) ε ∈ (C ∞ (R)) Λ1 .
In the sequel, by means of regularizing processes we will define an associated problem to (P f orm ).

(P gen )        ∂ 2 u ∂x∂y = F(u) R θ (u) = ϕ, L g (u) = ψ
where u is searched in some convenient algebra A R 2 , F the generalized operator associated to F via the family (f ε ) ε , R θ and L g are defined as previously, ψ, ϕ being some given element in A (R) In terms of representatives, and thanks to the stability and restriction hypothesis, solving (P gen ) amounts to find a family (u λ ) λ ∈ X (R 2 ) such that

       ∂ 2 u λ ∂x∂y (x, y) -F ε (x, y, u λ (x, y)) = i λ (x, y) u λ (x, 0) -ϕ λ (x) = j λ (x) , u λ (g(y), y) -ψ λ (y) = l λ (y)
where

(i λ ) λ ∈ N R 2 , (j λ ) λ , (l λ ) λ ∈ N (R). Suppose we can find u λ ∈ C ∞ R 2 verifying (P λ )        ∂ 2 u λ ∂x∂y (x, y) = F ε (x, y, u λ (x, y)) u λ (x, 0) = ϕ λ (x) , u λ (g(y), y) = ψ λ (y) then, if we can prove that (u λ ) λ ∈ X (R 2 ), u = [u λ ] is a solution of (P gen ). Let (h ε ) ε ∈ (C ∞ (R)) Λ1 . If v = [v λ
] is another solution of (P gen ) obtain by the family (H ε ) ε associated to F via the family (h ε ) ε , this implies

       ∂ 2 (v λ -u λ ) ∂x∂y (x, y) -(H ε (x, y, v λ (x, y)) -F ε (x, y, u λ (x, y))) = a λ (x, y) v λ (x, 0) -u λ (x, 0) = b λ (x) , v λ (g(y), y) -u λ (g(y), y) = c λ (y) where (a λ ) λ ∈ N R 2 and (b λ ) λ , (c λ ) λ ∈ N (R). We have to prove that (v λ -u λ ) λ ∈ N (R 2
) if we intend to prove that the solution of (P gen ) in the algebra A R 2 does not depend on the representative of class [f ε ] in a subalgebra of A (R).

Estimates for a parametrized regular problem

We study the following Goursat problem

(P f orm )        ∂ 2 u ∂x∂y = F (•, •, u), u| (Ox) = ϕ, u| γ = ψ,
where γ is the curve of equation x = g(y), ϕ and ψ are the Goursat data which will be specified later. The function F may be non Lipschitz (in u).

We are going to replace (P f orm ) with a family (P ε,ρ ) of regularized problems

(P ε,ρ )        ∂ 2 u ε,ρ ∂x∂y (x, y) = F ε (x, y, u ε,ρ (x, y)), u ε,ρ (x, 0) = ϕ ρ (x), u ε,ρ ((g (y) , y)) = ψ ρ (y), (1) 
where F ε is Lipschitz and ϕ ρ and ψ ρ regular. In the following sections, we shall describe how construct these functions and give an algebraic interpretation of the results. But first, we are going to prove that (P ε,ρ ) has a unique smooth solution under the following assumption

(H ε,ρ )      a) g ∈ C ∞ (R), g ≥ 0, g(R) = R b) F ε ∈ C ∞ (R 3 , R), ∀K R 2 , sup (x,y)∈K;z∈R |∂ z F ε (x, y, z)| = m K,ε < +∞ c) ϕ ρ and ψ ρ ∈ C ∞ (R).
(H) Following [START_REF] Devoue | Sur les singularités de certains problèmes différentiels[END_REF], one can prove that (P ε,ρ ) is equivalent to the integral formulation

P ε,ρ : u ε,ρ (x, y) = u 0,ε,ρ (x, y) + D(x,y,gη) F ε (ξ, ζ, u ε,ρ (ξ, ζ))dξdζ, (2) where u 0,ε,ρ (x, y) = ψ ρ (y) + ϕ ρ (x) -ϕ ρ (g(y)), with D(x, y, g) =        {(ξ, η) : g(y) ≤ ξ ≤ x, 0 ≤ η ≤ y} if g(y) ≤ x and 0 ≤ y, {(ξ, η) : x ≤ ξ ≤ g(y), 0 ≤ η ≤ y} if g(y) ≥ x and 0 ≤ y, {(ξ, η) : x ≤ ξ ≤ g(y), y ≤ η ≤ 0} if g(y) ≥ x and y ≤ 0, {(ξ, η) : g(y) ≤ ξ ≤ x, y ≤ η ≤ 0} if g(y) ≤ x and y ≤ 0. Theorem 18 Under Assumption (H ε,ρ ), Problem (P ε,ρ ) has a unique solution in C ∞ (R 2 ).
We refer the redear to [START_REF] Devoue | Sur les singularités de certains problèmes différentiels[END_REF], [START_REF] Devoue | Generalized solutions to a non Lipschitz Cauchy problem[END_REF] for a detailed proof. The main idea consists in a Picard's procedure to define a sequence of successive approximations.

u n,ε,ρ (x, y) = u 0,ε,ρ (x, y) + D(x,y,g) F ε (ξ, ζ, u n-1,ε,ρ (ξ, ζ))dξdζ.
From the assumptions, putting v n,ε,ρ = u n,ε,ρ -u n-1,ε,ρ , we can prove that

v n,ε,ρ ∞,K λ,η ≤ Φ λ,ε,ρ m λ,ε [m λ,ε (g(λ) -g(-λ)) λ)] n n! when K λ = [g(-λ), g(λ)] × [-λ, λ] , with m λ,ε = sup (x,y)∈K λ ; t∈R ∂F ε ∂z (x, y, t) and Φ λ,ε,ρ = F ε (•, •, 0) ∞,K λ + m λ,ε u 0,ε,ρ ∞,K λ .
Finally the sequence u n,ε,ρ converges uniformly on any compact set to

u ε,ρ = u 0,ε,ρ + n≥1 v n,ε,ρ
which verifies P ε,ρ . Gronwall's lemma gives the uniqueness of u ε,ρ . Moreover, we have the estimate

u ∞,K ≤ u ε,ρ ∞,K λ ≤ u 0,ε,ρ ∞,K λ, + Φ λ,ε,ρ m λ,ε exp[m λ,ε (g(λ) -g(-λ)) λ)]. (3) 

Case of regular data

We study the non Lipschitz Goursat problem (P f orm ) when the data are given along the characteristic curve C: (Ox), and along a monotonic curve γ of equation x = g (y).

Cut off procedure

Let ε a parameter belonging to the interval (0, 1]; let (r ε ) ε be in R (0,1] * such that r ε > 0 and lim ε→0 r ε = +∞. Consider a family of smooth one-variable functions

(f ε ) ε such that sup z∈[-rε,rε] |f ε (z)| = 1, f ε (z) = 0, if |z| ≥ r ε 1, if -r ε + 1 ≤ z ≤ r ε -1 , (A1) 
and

∂ n f ε ∂z n is bounded on [-r ε , r ε ] for any integer n, n > 0. Set sup z∈[-rε,rε] ∂ n f ε ∂z n (z) = M n .
Let φ ε (z) = zf ε (z). We approximate the function F by (x, y, z) → F (x, y, φ ε (z)) = F ε (x, y, z) then Problem (P ) is changed into the family of regularized problems

(P ε )        ∂ 2 u ε ∂x∂y = F ε (•, •, u ε ) u ε|(Ox) = ϕ u ε|γ = ψ. Example 19 If F (x, y, z) = G(z) = z p , we have F ε (x, y, u ε (x, y)) = G ε (u ε (x, y)) = (φ ε (u ε (x, y))) p .
Verification of assumption (H ε,ρ ). ϕ, ψ and g are some smooth one-variable functions. We fix ρ and set ϕ ρ = ϕ, ψ ρ = ψ. We have

∂G ε ∂z (z) = pφ p-1 ε (z)φ ε (z). Thus ∂G ε ∂z (z) ≤ pr p-1 ε |f ε (z) + zf ε (z)| ≤ pr p-1 ε |1 + r ε M 1 | ≤ µ 1 r p ε and µ 1 = 2p max(M 1 , 1) is independent of ε. Then assumption (H ε ) = (H ε,ρ ) is verified and Problem (P ε ) has a unique solution in C ∞ (R 2 ). When K λ = [g(-λ), g(λ)] × [-λ, λ], m K λ ,ε = m λ,ε , we have the estimate u ε ∞,K ≤ u ε ∞,K λ ≤ u 0,ε ∞,K λ + Φ λ,ε m λ,ε exp[m λ,ε (g(λ) -g(-λ)) λ]. (4) 4.2 Construction of A (R 2 )
Let ε a parameter belonging to the interval (0, 1], let (r ε ) ε be in (R + * )

(0,1]
such that lim ε→0 r ε = +∞. We take C = A/I A overgenerated by (ε) ε , (r ε ) ε and

(exp(r ε )) ε (elements of (R + * ) (0,1] ). Then A R 2 = X (R 2 )/N (R 2 ) is built on C with (E, P) = C ∞ (R 2 ), (P K,l ) K R 2 ,l∈N .
We look for u, solution to problem (P ), in the algebra A R 2 .

Stability of

A R 2 Proposition 20 Set S n = α ∈ N 3 : |α| = n when n ∈ N * . Let F ∈ C ∞ (R 3 , R), F ε defined by F ε (x, y, z) = F (x, y, φ ε (z)). Assume that ∀ε ∈ (0, 1] , ∀ (x, y) ∈ R 2 , F ε (x, y, 0) = 0 , (A0) ∃p > 0, ∀n ∈ N, ∃µ n > 0, ∀ε ∈ (0, 1] , ∀K R 2 , sup (x,y)∈K; z∈R;α∈Sn |D α F ε (x, y, z)| ≤ µ n r p ε , (A1) 
then A R 2 is stable under the family (F ε ) ε .

We refer the reader to [START_REF] Devoue | Generalized solutions to a non Lipschitz Cauchy problem[END_REF] for a detailed proof.

Corollary 21 Set F (x, y, z) = G(z) = z p , G ε (z) = F ε (x, y, z), then A R 2 is stable under (G ε ) ε . We have |G ε (z)| = |z p g p ε (z)| ≤ r p ε , so sup (x,y)∈R;z∈R |G ε (z)| ≤ r p ε . As φ ε (z) =
zg ε (z), we obtain

∂ n φ ε ∂z n (z) = z ∂ n g ε ∂z n (z) + n ∂ n-1 g ε ∂z n-1 (z). Thus ∂ n φ ε ∂z n (z) ≤ r ε M n + nM n-1 ≤ α n r ε , where α n = 2 max(M n ; nM n-1 ). Set w(z) = z p , then ∂ m w ∂z m (z) = i=m-1 i=0 (p -i) z p-m for 1 ≤ m ≤ p. According Francesco Faà di Bruno's formula, the nth order derivative of G ε = w • φ ε can be written ∂ n G ε ∂z n = n m=1 i1≥...≥im i1+...+im=n t i1,...,im w (m) • φ ε m k=1 φ (i k ) ε ,
where the coefficients t i1,...,im are integers. Then we get

∂ n G ε ∂z n (z) ≤ p m=1 i1≥...≥im i1+...+im=n t i1,...,im ( i=m-1 i=0 (p -i))r p-m ε m k=1 α i k r ε ≤ µ n r p ε ,
where µ n is independent of ε. So assumptions (A0), (A1) are verified.

Solution to (P gen )

Theorem 22 With the previous Assumptions (H), (A0), (A1), if u ε is the solution to Problem (P ε ) then Problem (P gen ) admits u = [u ε ] A(R 2 ) as solution.

According to [START_REF] Devoue | Sur les singularités de certains problèmes différentiels[END_REF], u = [u ε ] is solution to (P gen ) if (u ε ) ε ∈ X (R 2 ). Then we shall prove that ∀K R 2 , ∀l ∈ N, (P K,l (u ε )) ε ∈ A.

We proceed by induction. We have

: ∀K R 2 , ∃ K λ R 2 , K ⊂ K λ , u ε ∞,K ≤ u ε ∞,K λ ≤ u 0,ε ∞,K λ + Φ λ,ε m λ,ε exp[(g(λ) -g(-λ)) λ]. ≤ u 0,ε ∞,K λ (1 + exp[λµ 1 r p ε (g(λ) -g(-λ))]) . As u 0,ε ∞,K λ ε ∈ A we have u 0,ε ∞,K λ (1 + exp -λµ 1 r p ε (g(λ) -g(-λ))]) ε ∈ A.
As A is stable, we deduce (P K,0 (u ε )) ε ∈ A, then the 0th order estimate is verified.

We have

∂u ε ∂x (x, y) = ∂u 0,ε ∂x (x, y) + y 0 F ε (x, ζ, u ε (x, ζ))dζ, hence P K,(1,0) (u ε ) ≤ sup K ∂u 0,ε ∂x (x, y) + λ sup K λ |F ε (x, ζ, u ε (x, ζ))| . Moreover P K λ ,(0,0) (F ε (•, •, u ε )) ≤ P K λ ,0 (F ε (•, •, u ε )) ≤ µ 0 r p ε , so P K,(1,0) (u ε ) ≤ ∂u 0,ε ∂x ∞,K + µ 0 r p ε λ.
As A is stable, we get P K,(1,0) (u ε ) ε ∈ A. We have

∂u ∂y (x, y) = ∂u 0,ε ∂y (x, y)+ x g(y)
F ε (ξ, y, u ε (ξ, y))dξ-g (y)

y 0 F ε (g(y), ζ, u ε (g(y), ζ))dζ, so P K,(0,1) (u ε ) ≤ sup K ∂u 0,ε ∂y (x, y) +((g(λ) -g(-λ)) + λg (y)) sup K λ |F ε (x, ζ, u ε (x, ζ))| . Hence P K,(0,1) (u ε ) ≤ ∂u 0,ε ∂y ∞,K + µ 0 r p ε (g(λ) -g(-λ) + λg (y))
and, as previously P K,(0,1) (u ε ) ε ∈ A. Finally

(P K,1 (u ε )) ε ∈ A.
Assume that (P K,l (u ε )) ε ∈ A for any l ≤ n. In fact we have P K,n+1 = max (P K,n , P 1,n , P 2,n , P 3,n , P 4,n ) with P 1,n = P K,(n+1,0) ; P 2,n = P K,(0,n+1)K,(0,n+1) P 3,n = sup α+β=n;β≥1 P K,(α+1,β) ; P 4,n = sup α+β=n;α≥1 P K,(α,β+1) .

For n ≥ 1, we have by successive derivations

∂ n+1 u ε ∂x n+1 (x, y) = ∂ n+1 u 0,ε ∂x n+1 (x, y) + y 0 ∂ n ∂x n F ε (x, ζ, u ε (x, ζ))dζ.
As K ⊂ K λ , we can write sup

(x,y)∈K ∂ n+1 u ε ∂x n+1 (x, y) ≤ ∂ n+1 u 0,ε ∂x n+1 ∞,K +λ sup (x,y)∈K ∂ n ∂x n F ε (x, y, u ε (x, y)) .
We have sup

(x,y)∈K ∂ n ∂x n F ε (x, y, u ε (x, y)) ≤ P K,n (F ε (•, •, u ε )). Moreover ∂ n+1 u 0,ε ∂x n+1 ∞,K ε ∈ A.
According to the stability hypothesis, a simple calculation shows that for any K R 2 , P K,(n+1,0) (u ε ) ε ∈ A, then (P 1,n (u ε )) ε ∈ A. Let us show that (P 2,n (u ε )) ε ∈ A for every n ∈ N. We have by successive derivations, for n ≥ 1,

∂ n+1 u ε ∂y n+1 (x, y) = ∂ n+1 u 0,ε ∂y n+1 (x, y) - n-1 j=0 C j n g (n-j) (y) ∂ j ∂y j F ε (g(y), y, ψ ε (y)) - g(y) x ∂ n ∂y n F ε (ξ, y, u ε (ξ, y))dξ - n-1 j=0 C j+1 n g (n-j) (y) ∂ j ∂y j F ε (g(y), y, ψ ε (y)) -g (n+1) (y) y 0 F ε (g(y), ζ, u ε (g(y), ζ))dζ . As K ⊂ K λ , we can write sup (x,y)∈K ∂ n+1 u ε ∂y n+1 (x, y) ≤ sup y∈[-λ,λ] n-1 j=0 C j+1 n+1 g (n-j) (y) ∂ j ∂y j F ε (g(y), y, ψ ε (y)) + (g(λ) -g(λ)) sup (x,y)∈K ∂ n ∂y n F ε (x, y, u ε (x, y)) +λg (n+1) (y) sup (x,y)∈K
|F ε (x, y, u ε (x, y))| + P K,(0,n+1) (u 0,ε ) .

For any K R 2 , we have sup

(x,y)∈K ∂ i ∂y i F (x, y, u ε (x, y)) ≤ P K,n (F (•, •, u ε )
Then, for any n ∈ N, P K,(0,n+1

) (u ε ) ε ∈ A. So (P 2,n (u ε )) ε ∈ A.
For α + β = n and β ≥ 1, we have now

P K,(α+1,β) (u ε ) = sup (x,y)∈K D (α,β-1) D (1,1) u ε (x, y) = sup (x,y)∈K D (α,β-1) F ε (x, y, u ε (x, y)) ≤ P K,n (F ε (•, •, u ε )).
So we finally have

P 3,n (u ε ) = sup α+β=n;β≥1 P K,(α+1,β) (u ε ) ≤ P K,n (F ε (•, •, u ε ))
and the stability hypothesis implies (P 3,n (u ε )) ε ∈ A. In the same way, for α + β = n and α ≥ 1, we have

P K,(α,β+1) (u ε ) = sup (x,y)∈K D (α-1,β) F ε (x, y, u ε (x, y)) ≤ P K,n (F ε (•, •, u ε )).
So we have

P 4,n (u ε ) = sup α+β=n;α≥1 P K,(α,β+1) (u ε ) ≤ P K,n (F ε (•, •, u ε ))
and the stability hypothesis implies (P 4,n (u ε )) ε ∈ A. Finally, we have (P K,n+1 (u ε )) ε ∈ A.

Generalized solution only depend on the class of cut off functions

Consider T (R) the set of families of smooth one-variable functions (h ε ) ε ∈ X (R), verfying the following assumptions

(f ε -h ε ) ε ∈ N (R), (E0) ∃ (s ε ) ε ∈ R (0,1] * : sup z∈[-sε,sε] |h ε (z)| = 1, h ε (z) = 0, if |z| ≥ s ε 1, if -s ε + 1 ≤ z ≤ s ε -1 , (E1) ∃q ∈ N * , ∀ (h ε ) ε ∈ T (R), ∀ε, s ε ≤ r q ε , (E2) moreover ∂ n h ε ∂z n is bounded on [-s ε , s ε ] for any integer n, n > 0. Recall that φ ε (z) = zf ε (z) for z ∈ R, F ε (x, y, z) = F (x, y, φ ε (z)) for (x, y, z) ∈ R 3 and sup z∈[-rε,rε] ∂ n f ε ∂z n (z) = M n . Take (h ε ) ε ∈ T (R). Set σ ε (z) = zh ε (z) for z ∈ R, H ε (x, y, z) = F (x, y, σ ε (z)) for (x, y, z) ∈ R 3 and sup z∈[-sε,sε] ∂ n h ε ∂z (z) = M n . Set I ε = [-r ε , r ε ]. Lemma 23 Set F ∈ C ∞ (R 3 , R), φ ∈ C ∞ (R, R), F(x, y, z) = F (x, y, φ (z)). For any α = (α 1 , α 2 , α 3 ), α 1 ≥ 0, α 2 ≥ 0, α 3 ≥ 0 with |α| = α 1 + α 2 + α 3 = n = 0, we have ∂ n F ∂x α1 ∂y α2 ∂z α3 (x, y) = 1≤|β|≤n D β F (x, y, φ (z)) n i=1 pi(α,β) d i,α,β i j=1 ∂ lj ∂z l j φ (z) kj
where β ∈ N 3 . The set p i (α, β) mentioned in the inner sum consists of all nonzero multi-indices (k 1 , ..., k i , l 1 , ..., l i ) ∈ (N) 2i , such that

0 < l 1 < ... < l i , i j=1 k j = β 3 , i j=1 k j l j = α 3 .
The proof uses the Multivariate Faà di Bruno's formula (see [START_REF] Constantine | A multivariate Faà di Bruno formula with applications[END_REF]).

Corollary 24 Set F ∈ C ∞ (R 3 , R), σ ε (z) = zh ε (z) with (h ε ) ε ∈ T (R), H ε (x, y, z) = F (x, y, σ ε (z)),α = (α 1 , α 2 , α 3 ), α 1 ≥ 0, α 2 ≥ 0, α 3 ≥ 0 with |α| = α 1 +α 2 +α 3 = n = 0. Then, for β ∈ N 3 , 1 ≤ |β| ≤ n, there exist constants C |β| which no de- pend of F and φ ε , such that ∀K R 2 , ∀ (x, y) ∈ K, ∀z ∈ [-s ε, s ε ],
∂ n H ε ∂x α1 ∂y α2 ∂z α3 (x, y, z)

≤ 1≤|β|≤n P K,|β| (F ) C |β| s α3 ε We have ∂ n σ ε ∂z n (z) = z ∂ n h ε ∂z n (z) + n ∂ n-1 h ε ∂z n-1 (z). Thus ∂ n σ ε ∂z n (z) ≤ s ε M n +nM n-1 ≤ α n s ε ≤ α n r q ε
, where α n = 2 max(M n ; nM n-1 ). So we deduce the formula. Moreover, according (E2), we have s ε ≤ r q ε , so

∂ n H ε ∂x α1 ∂y α2 ∂z α3 (x, y, z) ≤ 1≤|β|≤n P K,|β| (F ) C |β| r qα3 ε Corollary 25 Set S n = α ∈ N 3 : |α| = n when n ∈ N * . Let F ∈ C ∞ (R 3 , R), H ε defined by H ε (x, y, z) = F (x, y, σ ε (z)). Assume that ∀ (x, y) ∈ R 2 , F (x, y, 0) = 0 , ∃p 0 > 0, ∀α ∈ N 3 , |α| = n > p 0 , D α F (x, y, z) = 0, ∀n ∈ N, n ≤ p 0 , ∃d n > 0, ∀ε ∈ (0, 1] , ∀K R 2 , sup (x,y)∈K; z∈[-rε,rε];α∈Sn |D α F (x, y, z)| ≤ d n r p0 ε , (1) then A R 2 is stable under the family (H ε ) ε . Indeed, we have ∀K R 2 , ∀ (x, y) ∈ K, ∀z ∈ [-s ε, s ε ], ∀α ∈ N 3 , ∂ n H ε ∂x α1 ∂ α2 y∂z α3 (x, y, z) ≤ 1≤|β|≤n P K,|β| (F ) C |β| r qα3 ε ≤ 1≤|β|≤p d |β| r p0 ε C |β| r qp0 ε ≤ µ n r p0(1+q) ε
where µ n no depend to ε and r ε . So, as

σ ε (z) = 0 if z / ∈ [-s ε, s ε ], sup (x,y)∈K; z∈R;α∈Sn |D α H ε (x, y, z)| ≤ µ n r p0(1+q) ε ,
and, according to Proposition 20, A R 2 is stable under the family (H ε ) ε . Set p = p 0 (1 + q). Then, considering the family (H ε ) ε associated to F via the family (h ε ) ε , we can build a solution to (P gen ) in the same algebra A R 2 .

Theorem 26 Under the same hypotheses as Corollary 25, the solution u = [u ε ] does not depend of the choice of the representative

(f ε ) ε of the class f ∈ T (R)/N (R). We have ∀n ∈ N, ∃µ n > 0, ∀ε ∈ (0, 1] , ∀K R 2 , ∀α ∈ N 3 with |α| = n, sup (x,y)∈K; z∈R |D α F ε (x, y, z)| ≤ µ n r p ε and sup (x,y)∈K; z∈R |D α H ε (x, y, z)| ≤ µ n r p ε .
According to the results of Theorem 22, let u = [u ε ] the solution to (P gen ) defined with the family (F ε ) ε and v = [v ε ] another solution to (P gen ) defined with the family (H ε ) ε . As v 0,ε (x, y) = u 0,ε (x, y) we have

v ε (x, y) = u 0,ε (x, y) + D(x,y,f ) F (ξ, ς, σ ε (v ε (ξ, ς)))dξdς.
We will prove that (w

ε ) ε = (v ε -u ε ) ε ∈ N (R 2 ). Let ∆ ε (x, y) = σ ε (v ε (x, y)) -φ ε (u ε (x, y)) . Set J ε = [-s ε , s ε ]. We have ∀K R 2 , ∀ (x, y) ∈ K, ∆ ε (x, y) = v ε (x, y)h ε (v ε (x, y)) -u ε (x, y)f ε (u ε (x, y)) , so ∆ ε (x, y) = w ε (x, y)h ε (v ε (x, y)) + u ε (x, y) (h ε (v ε (x, y)) -f ε (u ε (x, y))) (2) 
and

h ε • v ε -f ε • u ε = (h ε • v ε -h ε • u ε ) + (h ε • u ε -f ε • u ε ) As h ε (v ε (x, y))-h ε (u ε (x, y)) = (v ε (x, y) -u ε (x, y)) 1 0 ∂h ε ∂z (u ε (x, y)+µ (v ε (x, y) -u ε (x, y)))dµ, (3) 
so

h ε (v ε (x, y))-f ε (u ε (x, y)) = w ε (x, y) 1 0 ∂h ε ∂z (u ε (x, y)+µw ε (x, y))dµ+(h ε -f ε ) (u ε (x, y)) . (4) We deduce that ∀ (x, y) ∈ K, |h ε (v ε (x, y)) -f ε (u ε (x, y))| ≤ |w ε (x, y)| 1 0 M 1 dµ + |(h ε -f ε ) (u ε (x, y))| ≤ |w ε (x, y)| M 1 + p Jε,1 (h ε -f ε ). Then |∆ ε (x, y)| ≤ |w ε (x, y)| + |u ε (x, y)| (|w ε (x, y)| M 1 + p Jε,1 (h ε -f ε )) ≤ |w ε (x, y)| (1 + |u ε (x, y)| M 1 ) + |u ε (x, y)| p Jε,1 (h ε -f ε ). We have ∀K R 2 , ∃ K λ R 2 , K ⊂ K λ , u ε ∞,K ≤ u 0,ε ∞,K λ (1 + exp[2λ λµ 1 r p ε ]) with 2λ = (g(λ) -g(-λ)). Let c λ,ε = 1 + u 0,ε ∞,K λ (1 + exp[2λ λµ 1 r p ε ]) M 1 and a λ,ε = u 0,ε ∞,K λ (1 + exp[2λ λµ 1 r p ε ]) p Jε,1 (h ε -f ε ). As (p Jε,1 (h ε -f ε )) ε ∈ I A , so (a λ,ε ) ε ∈ N (R 2 ). |∆ ε (x, y)| ≤ |w ε (x, y)| c λ,ε + a λ,ε . ( P 1) 
As

F (ξ, ς, σ ε (v ε (ξ, ς))) -F (ξ, ς, φ ε (u ε (ξ, ς))) (P 2) = ∆ ε (ξ, ς) 1 0 ∂F ∂z (ξ, ς, φ ε (u ε (ξ, ς))) + µ(σ ε (v ε (ξ, ς)) -φ ε (u ε (ξ, ς)))dµ ,
we have

w ε (x, y) = D(x,y,f ) ∆ ε (ξ, ς) 1 0 ∂F ∂z (ξ, ς, φ ε (u(ξ, ς))) + µ∆ ε (ξ, ς))dµ dξdς. Let (x, y) ∈ K, since D(x, y, g) ⊂ K λ , if g (y) ≤ x, we deduce |w ε (x, y)| ≤ m λ,ε x g(y) y 0 |∆ ε (ξ, ζ)| dξdζ ≤ m λ,ε +g(λ) -g(λ) y 0 (|w ε (ξ, ς)| c λ,ε + a λ,ε ) dξdζ ≤ m λ,ε c λ,ε +g(λ) -g(λ) y 0 |w ε (ξ, ς)| dξdς + 2λ λm λ,ε a λ,ε . Set b λ,ε = 2λ λm λ,ε a λ,ε and e ε (y) = sup ξ∈[g(-λ);g(λ)] |w ε (ξ, y)|, then |w ε (x, y)| ≤ m λ,ε c λ,ε 2λ y 0 e ε (ζ)dζ + b λ,ε , we deduce that, e ε (y) ≤ m λ,ε c λ,ε 2λ y 0 e ε (ζ)dζ + b λ,ε ,
for every y ∈ [0, λ]. Thus according to the Gronwall's lemma

e ε (y) ≤ b λ,ε exp( y 0 m λ,ε c λ,ε 2λ dζ).
We obtain the same result in the other cases, hence

∀y ∈ [-λ, λ] , e ε (y) ≤ b λ,ε exp(m λ,ε c λ,ε 2λ λ), consequently w ∞,K λ ≤ b λ,ε exp(m λ,ε c λ,ε 2λ λ).
As (b λ,ε ) ε ∈ I A and exp(m λ,ε c λ,ε 2λ λ) is a constant, consequently w ε ∞,K λ ε ∈ I A . According (P 1), we have ∆ ε ∞,K λ ε ∈ I A and according to (P 2), we have

(P K,0 (F (•, •, σ ε (v ε )) -F (•, •, φ ε (u ε )))) ε ∈ I A .
So, according to Proposition 9, we deduce (w ε ) ε ∈ N (R 2 ); consequently u depends solely on the class [f ε ] as a generalized function, not on the particular representative. Moreover, according to Proposition 9, (∆ ε

) ε ∈ N (R 2 ) and (F (•, •, σ ε (v ε )) -F (•, •, φ ε (u ε ))) ε ∈ N (R 2 ).

Comparison with classical solutions

Remark 27 The generalized solution to Problem (P gen ) is defined from the integral representation (3). Thus, we are going to study the relationship between this generalized function and the classical solutions to (P f orm ) (when they exist) on a domain Ω such that ∀ (x, y) ∈ Ω, D(x, y, g) ⊂ Ω. This justified to choose

Ω = ]g(µ), g(ν)[ × ]µ, ν[ when (µ, ν) ∈ R 2 with µ < 0 < ν.
If the non regularized problem (P f orm ) has a smooth solution v on Ω then, necessarily we have Ω ⊂ R 2 \singsupp (u).

Recall that there exists a canonical sheaf embedding of C ∞ (•) into A (•), through the morphism of algebra

σ Υ : C ∞ (O) → A (O) , f → [f ε ] (where O is any open subset of R 2 and f ε = f ).
The presheaf A allows to restriction and as usually we denote by u| O the restriction on O of u ∈ A R 2 .

Theorem 28 Let Ω be an open subset of R 2 such that Ω ⊂ R 2 \singsupp (u). Assume that Ω = ε Ω ε with (Ω ε ) ε is an increasing family of open subsets of R 2 such that Ω ε = ]g(µ ε ), g(ν ε )[ × ]µ ε , ν ε [ when (µ ε , ν ε ) ∈ R 2 with µ ε < 0 < ν ε .
Assume that the non regularized problem has a smooth solution v on Ω such that sup We can choose as representative of σ Ω (v) the net (v) ε . We clearly have ∀ (x, y) ∈ Ω, ∃ε 0 , ∀ε ≤ ε 0 , (x, y) ∈ Ω ε . Then D(x, y, g) ⊂ Ω ε ⊂ Ω and v(x, y) = v 0 (x, y) + D(x,y,g)

F (ξ, ζ, v(ξ, ζ))dξdζ.
We take has representative of u the net (u ε ) ε given by Theorem 22. This net satisfies

∀ (x, y) ∈ Ω, u ε (x, y) = u 0,ε (x, y) + D(x,y,g) F ε (ξ, ζ, u ε (ξ, ζ))dξdζ, moreover v 0 = u 0,ε . Set (w ε ) ε = ( u ε | Ω -v) ε
and take K Ω. There exists ε 1 such that, for all ε < ε 1 , K Ω ε . According the definition of Ω ε , there exists λ,

0 < λ < (ν ε -µ ε ) /2, such that K ⊂ Q λ ⊂ Ω with Q λ = [g(µ ε + λ), g(ν ε -λ)]× [µ ε + λ, ν ε -λ]. Take (x, y) ∈ K, then D(x, y, g) ⊂ Q λ . Note that, for (ξ, ς, z) ∈ Ω ε × ]-r ε + 1, r ε -1[, we have F (ξ, ς, z) = F ε (ξ, ς, z) by construction of F ε .
Thus v, which values are in ]-r ε + 1, r ε -1[, is solution of the same integral equation as u ε , which admits a unique solution since F ε is a smooth function of its arguments. Thus, for all ε ≤ ε 1 , v and u ε are equal on Ω ε . It follows that, for all ε ≤ ε 1 , sup (x,y)∈Q λ |w ε (x, y)| = 0, hence (P K,l (w ε )) ε ∈ I A for any l ∈ N as w ε vanishes on K. Thus (w ε ) ε ∈ N (Ω) and σ Ω (V ) = U | Ω as claimed.

Case of irregular data

In this section, we assume that ϕ and ψ are themselves irregular data, say ϕ ∈ A (R), ψ ∈ A (R), where A (R) is define below. We replace problem (P f orm ) with the family of problems

P (ε,ρ)        ∂ 2 ∂x∂y u ε,ρ (x, y) = F (x, y, φ ε (u ε,ρ (x, y))) = F ε (x, y, u ε,ρ (x, y)) , u ε,ρ (x, 0) = ϕ ρ (x) , u ε,ρ (g(y), y) = ψ ρ (y) ,
where ε, ρ are parameters belonging to the interval (0, 1], (ϕ ρ ) ρ and (ψ ρ ) ρ are representatives of ϕ and ψ, f ∈C ∞ (R). The parameter ε permits to replace Problem (P f orm ) by Lipschitz problems P (ε,ρ) , whereas the parameter ρ makes it regular. Keeping assumption (H), assume that

     C = A/I A is overgenerated by the following elements of R (0,1]×(0,1] * (ε) (ε,ρ) , (ρ) (ε,ρ) , e r p ε
(ε,ρ) . A R 2 and A (R) are built on the same ring C of generalized constants.

(H 1 ) Assumption (H), implies that A R 2 is stable under the family (F ε ) ε .

Theorem 29 If u ε,ρ is the solution to Problem P (ε,ρ) then Problem (P gen ) admits u = [u ε,ρ ] A(R 2 ) as solution.

According to [START_REF] Devoue | Sur les singularités de certains problèmes différentiels[END_REF], [START_REF] Devoue | On generalized solutions to the wave equation in canonical form[END_REF]

, u = [u ε,ρ ] is a solution to (P gen ) if (u ε,ρ ) (ε,ρ) ∈ X (R 2 ). Then we will prove that ∀K R 2 , ∀l ∈ N, (P K,l (u ε,ρ )) (ε,ρ) ∈ A.
We proceed by induction. We have:

∀K R 2 , ∃K λ R 2 , K ⊂ K λ , u ε,ρ ∞,K ≤ u ε,ρ ∞,K λ ≤ u 0,ε,ρ ∞,K λ (1 + exp[λµ 1 r p ε (g(λ) -g(-λ))]) .
Like previously, we can prove that u ε,ρ ∞,K (ε,ρ) ∈ A that is (P K,0 (u ε,ρ )) (ε,ρ) ∈ A, then the 0th order estimate is verified. We have

∂u ε,ρ ∂x (x, y) = ∂u 0,ε,ρ ∂x (x, y) + y 0 F ε (x, ζ, u ε,ρ (x, ζ))dζ, and 
∂u ε,ρ ∂y (x, y) = ∂u 0,ε,ρ ∂y (x, y)+ x g(y) F ε (ξ, y, u ε,ρ (ξ, y))dξ-g (y) y 0 F ε (g(y), ζ, u ε,ρ (g(y), ζ))dζ, hence P K,(1,0) (u ε,ρ ) (ε,ρ) ∈ A and (P K,1 (u ε,ρ )) (ε,ρ) ∈ A.
Suppose that we have (P K,l (u ε,ρ )) (ε,ρ) ∈ A for any l ≤ n. We have u 0,ε,ρ (x, y) = ψ ρ (y)+ϕ ρ (x)-ϕ ρ (g(y)), then

∂ n+1 u0,ε,ρ ∂x n+1 ∞,K (ε,ρ) ∈ A because [ϕ ρ ] and [ψ ρ ]
are elements of A(R). For n ≥ 1, replacing u ε by u ε,ρ and computing the successive derivatives ∂ n+1 u ε,ρ ∂y n+1 and ∂ n+1 u ε,ρ ∂y n+1 , we get similar estimates as those ones of Theorem 22. Like previously we can prove that P K,(n+1,0) (u ε,ρ ) (ε,ρ) ∈ A and P K,(0,n+1) (u ε,ρ ) (ε,ρ) ∈ A for any K R 2 and n ∈ N. In the same way (P 3,n (u ε,ρ )) (ε,ρ) ∈ A and (P 4,n (u ε,ρ )) (ε,ρ) ∈ A. Finally, we have (P K,n+1 (u ε,ρ )) (ε,ρ) ∈ A.

Theorem 30 Under the same hypotheses as subsection 4.4, the solution u =

[u ε,ρ ] A(R 2 ) does not depend of the choice of the representative (f ε ) ε of the class f ∈ T (R)/N (R). We have ∀n ∈ N, ∃µ n > 0, ∀ε ∈ (0, 1] , ∀K R 2 , ∀α ∈ N 3 with |α| = n, sup (x,y)∈K; z∈R |D α F ε (x, y, z)| ≤ µ n r p ε and sup (x,y)∈K; z∈R |D α H ε (x, y, z)| ≤ µ n r p ε .
According to the results of Theorem 29, let u = [u ε,ρ ] the solution to (P gen ) defined by the family (F ε ) ε associated to F via the family (f ε ) ε and v = [v ε,ρ ] another solution to (P gen ) defined by the family (H ε ) ε associated to F via the family (h ε ) ε . We have

v ε,ρ (x, y) = u 0,ε,ρ (x, y) + D(x,y,g) F (ξ, ζ, σ ε,ρ (v ε,ρ (ξ, ζ)))dξdζ + j ε,ρ (x, y), with (j ε,ρ ) ε,ρ ∈ N (R 2 ) .We will prove that (w ε,ρ ) (ε,ρ) = (v ε,ρ -u ε,ρ ) (ε,ρ) ∈ N (R 2 ). Let, ∆ ε,ρ (x, y) = σ ε (v ε,ρ (x, y)) -φ ε (u ε,ρ (x, y)) , with σ ε (z) = zh ε (z). We have ∀K R 2 , ∃ K λ R 2 
, K ⊂ K λ and replacing u ε (resp.v ε ) by u ε,ρ (resp. v ε,ρ ) we get estimates like those ones of Theorem 26, so For every y ∈ [0, λ], if g (y) ≤ x, e ε,ρ (y) ≤ (exp(m λ,ε 2λ λ)) j ε,ρ ∞,K λ .

|∆ ε,ρ (x, y)| ≤ |w ε,ρ (x, y)| c λ,ε + a λ,ε . where (a λ,ε ) ε ∈ N (R 2 ) and c λ,ε = 1 + u 0,ε,ρ ∞,K λ (1 + exp[2λ λµ 1 r p ε ]) M 1 with 2λ = (g(λ) -g(-λ)). As F (ξ, ζ, σ ε (v ε,ρ (ξ, ζ))) -F (ξ, ζ, φ ε (u ε,ρ (ξ, ζ))) (P 2) = ∆ ε,ρ (ξ, ς) 1 0 ∂F ∂z (ξ, ς, φ ε (u ε,ρ (ξ, ς))) + µ∆ ε,ρ (ξ, ς))dµ , we obtain w ε,ρ (x, y) = j ε,ρ (x, y) + D(x,y,g) w ε,ρ (ξ, ζ) 1 0 ∂F ∂z (ξ, ς, φ ε (u ε,ρ (ξ, ς))) + µ∆ ε,ρ (ξ, ς))dµ dξdζ. Let (x, y) ∈ K λ , since D(x, y, g) ⊂ K λ , if g (y) ≤ x, we have |w ε,ρ (x, y)| ≤ m λ,ε x g(y) y 0 |w ε,ρ (ξ, ζ)| dξdζ + j ε,ρ ∞,K λ ≤ m λ,ε +g(λ) -g(λ) y 0 |w ε,ρ (ξ, ζ)| dξdζ + j ε,ρ ∞,K λ . Put e ε,ρ ( 
We obtain the same result in the other cases, hence ∀y ∈ [-λ, λ] , e ε,ρ (y) ≤ j ε,ρ ∞,K λ exp(m λ,ε 2λ λ), D(x, y, g) ⊂ Q λ . As previously, Theorem 28, we can prove that, for all ε ≤ ε 1 , sup (x,y)∈Q λ |w ε,ρ (x, y)| = 0, hence (P K,l (w ε,ρ )) (ε,ρ) ∈ I A for any l ∈ N as w ε,ρ vanishes on K. Thus (w ε,ρ ) (ε,ρ) ∈ N (Ω) and v = u| Ω as claimed, that is, there exists (σ ε,ρ ) (ε,ρ) ∈ N (Ω) such that ∀ (x, y) ∈ Ω, ∀ε, u ε,ρ (x, y) = v ρ (x, y) + σ ε,ρ (x, y).

A degenerate Goursat problem in (C, E, P)-algebras

We study the Goursat problem in the case where ϕ and ψ are one-variable generalized functions, γ = (Oy). (We take g = 0). We replace Problem (P f orm ) with the family of problems 

P (ε,ρ)       

Examples

Example 33 For α real, consider the functions

h +,α (x) = x -α if x > 0 0 if x < 0 and h -,α (x) = 0 if x > 0 |x| -α if x < 0 . Set h α (x) = h +,α (x) + h -,α (x) 
g α (x) = h +,α (x) -h -,α (x) .

Then h α (x) = (-α) (h +,α+1 (x) -h -,α+1 (x)) = (-α) g α+1 (x) g α (x) = (-α) (h +,α (x) + h -,α (x)) = (-α) h α+1 (x).

Consider P f.h α (resp. P f.g α ) the Hadamard's finite-part of h α (resp g α ).

Consider the problem 

  (x,y)∈Ωε |v(x, y)| < r ε -1 for any ε. Let u = [u ε ] be the solution to Problem (P gen ) given in Theorem 22. Then σ Ω (v) = u| Ω .

  y) = sup ξ∈[g(-λ);g(λ)] |w ε,ρ (ξ, y)|, then |w ε,ρ (x, y)| ≤ m λ,ε 2λ y 0 e ε,ρ (ζ)dζ + j ε,ρ ∞,k λ , we deduce that, for every y ∈ [0, λ], if g (y) ≤ x, e ε,ρ (y) ≤ m λ,ε 2λ y 0 e ε,ρ (η)dη + j ε,ρ ∞,K λ .Thus according to the Gronwall's lemma, for every y ∈[0, λ], if g (y) ≤ x, e ε,ρ (y) ≤ exp( y 0 m λ,ε 2λdζ) j ε ∞,K λ .

∂ 2 y 0 F

 20 ∂x∂y u ε,ρ (x, y) = F ε (x, y, u ε,ρ (x, y)) ,u ε,ρ (x, 0) = ϕ ρ (x) , u ε,ρ (0, y) = ψ ρ (y) ,where (ϕ ρ ) ρ and (ψ ρ ) ρ are representatives of ϕ and ψ in A(R 2 ).Proposition 32 If u ε,ρ is the solution to Problem P (ε,ρ) then Problem (P gen )admits u = [u ε,ρ ] A(R 2 ) as solution. Moreover u ε,ρ (x, y) = u 0,ε,ρ (x, y) + D(x,y,0) F ε (ξ, η, u ε,ρ (ξ, η))dξdη = u 0,ε,ρ (x, y) + x 0 ε (ξ, η, u ε,ρ (ξ, η))dη dξ,with u 0,ε,ρ (x, y) = ψ ρ (y) + ϕ ρ (x) -ϕ ρ (0).

C

  Ox) = ϕ, u| γ = ψ where ϕ ∈ A (R), ψ ∈ A (R), γ is the curve of equation x = ηy where η ∈ (0, 1], η fixed, p is an integer, p > 2.Set α = (p -1) -1 , β = α 2α . Keeping assumption (= A/I A is overgenerated by the following elements of R ]0,1]×]0,1] * (ρ) (ε,ρ) , (ε) (ε,ρ) , e r p ε (ε,ρ) .A R 2 and A (R) are built on the same ring C of generalized constants.(H 2 ) Let(P ρ ) Ox) = ϕ ρ , u| γ = ψ ρ with ϕ ρ (x) = β [(l ρ * P f.h α ) (x)] [(l ρ * P f.h α ) (0)] , ψ ρ (y) = β [(l ρ * P f.h α ) (ηy)] [(l ρ * P f.h α ) (y)] ,where (l ρ ) ρ is a family of mollifiers (l ∈ D (R) l (x) dx = 1 and l ρ (x) = 1 ρ l x ρ ). Assume that (ϕ ρ ) ρ is a representative of ϕ and (ψ ρ ) ρ is a representative of ψ. We replace Problem (P f orm ) with the family of problemsP (ε,ρ) ρ (x, y) = |φ ε (u ε,ρ (x, y))| p , u ,ε,ρ (x, 0) = ϕ ρ (x), u ε,ρ (ηy, y) = ψ ρ (y) . If u ε,ρ is solution to P (ε,ρ) then u = [u ε,ρ ] is solution to (P gen ). Set Ω = ]ηµ, ην[ × ]µ, ν[ with µ < 0 < ν.The solution v ρ to the non regularized problem (P ρ ) on Ω is defined byv ρ (x, y) = β [(l ρ * P f.h α ) (x)] [(l ρ * P f.h α ) (y)] .According the previous results the family (v ρ ) (ερ) is a representative of a generalized function v and v = u| Ω .Example 34 We consider the problem Ox) = ϕ, u| γ = ψ

As (j ε,ρ ) ε,ρ ∈ N (R 2 ) so j ε,ρ ∞,K λ ε,ρ ∈ I A . Moreover (exp(m λ,ε 2λ λ)) is a constant, consequently w ε,ρ ∞,K λ ε ∈ I A . Which implies the 0th order estimate. According to Proposition 9, we deduce (w ε,ρ ) ε,ρ ∈ N (R 2 ); consequently u depends solely on the class [f ε ] as a generalized function, not on the particular representative.

Consider the family of problems

where (ϕ ρ ) ρ and (ψ ρ ) ρ are representatives of ϕ and ψ in A (R) defined in assumption (H 1 ).

Assume that, for any ρ, problem (P ρ ) has a smooth solution v ρ on Ω such that sup We clearly have ∀ (x, y) ∈ Ω, D(x, y, g) ⊂ Ω ε ⊂ Ω and following [START_REF] Devoue | Sur les singularités de certains problèmes différentiels[END_REF], [START_REF] Devoue | On generalized solutions to the wave equation in canonical form[END_REF] 

Replacing u ε,ρ by v ρ we can prove, like in Theorem 29, that (P K,n (v ρ )) (ε,ρ) ∈ A for any K Ω and n ∈ N. Then v ∈ A (Ω).

We take has representative of u the net (u ε ) ε given by Theorem 29. This net satisfies

and v 0,ρ (x, y) = u 0,ε,ρ (x, y).

Take K Ω. There exists ε 1 , such that, for all ε < ε 1 , K Ω ε . According the definition of Ω ε , there exists λ,

where (l ρ ) ρ is a family of mollifiers (l ∈ D (R) l (x) dx = 1 and l ρ (x) = 1 ρ l x ρ ). Assume that (ϕ ρ ) ρ is a representative of ϕ and (ψ ρ ) ρ is a representative of ψ. We replace Problem P f orm with the family of problems

If u ε,ρ is solution to P (ε,ρ) then [u ε,ρ ] is solution to P gen .

Set Ω = ]ηµ, ην[ × ]µ, ν[, µ < 0 < ν, the solution v ρ to the non regularized problem P ρ on Ω is defined by v ρ (x, y) = β [(l ρ * P f.g α ) (x)] [(l ρ * P f.g α ) (y)] .

According the previous results the family (v ρ ) (ερ) is a representative of a generalized function v and v = u| Ω .