
HAL Id: hal-00345087
https://hal.science/hal-00345087

Submitted on 19 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-layer coordinated adaptation based on graph
refinement for cooperative activities

Ismael Bouassida Rodriguez, Nicolas van Wambeke, Khalil Drira, Christophe
Chassot, Mohamed Jmaiel

To cite this version:
Ismael Bouassida Rodriguez, Nicolas van Wambeke, Khalil Drira, Christophe Chassot, Mohamed
Jmaiel. Multi-layer coordinated adaptation based on graph refinement for cooperative activities.
Communications of SWIN, 2008, 4, pp.163-167. �hal-00345087�

https://hal.science/hal-00345087
https://hal.archives-ouvertes.fr

Multi-layer coordinated adaptation based on graph refinement for cooperative activities

Ismael Bouassida Rodriguez1, Nicolas Van Wambeke1,2, Khalil Drira1, Christophe Chassot1,2 and
Mohamed Jmaiel3

1 LAAS-CNRS, Université de Toulouse; 7, av. du Colonel Roche, F-31077 Toulouse
2 Université de Toulouse; INSA

3 Redcad, Enis, Route de la Soukra Sfax, Tunisia
Email:{bouassida; van.wambeke; khalil; chassot}@laas.fr mohamed.jmaiel@enis.rnu.tn

Abstract: Future network environments are likely to be used
by cooperative applications. Indeed, the recent advent of peer-
to-peer systems where participants collaborate together in an
ordered fashion motivates this assumption. In this paper, we
present a method that relies on graphs as well as graph gram-
mar productions in order to automatically refine a high level
Service interactions representation of a given activity into a de-
ployment topology at the Middleware and the Transport level.
At the middleware level, a formal algorithm is presented in or-
der to further optimize the solution. Similarly, at the Transport
level, an analytical model to optimize the provisioning in the
context of a modular transport protocol implementing collab-
orative congestion control is presented. The different models
and algorithms are implemented in a case study of CMS-like
operations for crisis management.
Keywords: dynamic re-configuration, self-adaptation, graph-
grammar, context awareness, cooperative activities

1. Introduction

Cooperative group activities using wireless mobile communi-
cating systems constitute an increasingly evolving application
domain. It is likely to be one of the most important directions
that may enable reliable and efficient human and machine-
to-machine cooperation under the current networking systems
and software, and may deeply shape their future deployment.

Such activity-support systems have to deal with dynam-
ically evolving activity-level requirements under constantly
changing network-level unpredictable constraints. Maintaining
reliable connectivity and QoS in such a communication con-
text is difficult. Adaptive service provisioning should help the
different provisioning actors for achieving this goal and con-
stitutes a challenge for different research communities.

Ad hoc solutions are likely to be not applicable to solve
such a complex problem. Providing a basic framework for
automated service and QoS deployment and management may
constitute an important contribution towards solving sucha
problem. Aiming to answering this problem, we propose a
formal model-based framework for adaptability management.
Our framework has been elaborated in the context of Crisis
Management System (CMS) with QoS provisioning at the
transport and middleware levels as the final objectives.

This paper is organized as follows. Section 2 describes
related work. Section 3 describes the targeted context used
for the case study. Section 4 presents the different levels that
we consider in our study. Section 5 provides details about the
elaborated models, including optimization strategies though an

example application. Finally, section 6 provides conclusions
and future work.

2. Related works

Adaptation objectives, actions and properties are among the
main facets of adaptability. They are studied and classifiedin
this section.

Two different adaptability views may be distinguished: the
design time adaptability [8] and the run time adaptability [4,
3]. For the first view, we can find design support tools like
Adaptive Application Architecture (AAA). This tool handles
the application development cycle and optimizes the resource
value by insuring that the infrastructure answering clearly and
in a measurable way to activity requirements. For the run time
adaptability [10] presents several adaptation techniquesamong
which use proxy services, change model of interaction and
reorganize application structure.

Adaptation approaches are also targeting different architec-
tural levels including Service, Middleware and Transport lev-
els. At the first level, the Service-Oriented Architecture (SOA)
paradigm is based on dynamically publishing and discovering
services. This kind of architectures provides the possibilities
to dynamically compose services for adapting applicationsto
contexts. Service descriptions are published, via the registry,
by service providers and dynamically discovered by service
requesters.

Other frameworks are proposed to provide adaptability for
the middleware level. As an example, an adaptive framework
for supporting multiple classes of multimedia services with
different QoS requirements in wireless cellular networks is
proposed in [12].

At the transport level, dynamically configurable protocol ar-
chitectures provide adaptive stacks based on the protocol mod-
ule concept. A protocol module is a primitive building block
resulting from the decomposition of the protocol’s complex-
ity into various successive elementary functions. A protocol
is then viewed as the composition of various protocol mod-
ules in order to provide a global service. These architectures
can be refined into two different categories depending on their
internal structure: the event based model (followed by Coy-
ote and Cactus) and the hierarchical model (X-Kernel and AP-
PIA). ETP follows a hybrid approach combining both models.
These protocol architectures appear as a good choice for fu-
ture communication protocol’s self-adaptation as they areca-
pable of run-time architectural adaptation, meaning that the
modules composing them can change during the communica-

tion. The adaptation solutions suggested in the literaturedistin-
guish behavioural and architectural aspects. The adaptation is
behavioural (or algorithmic) when the behaviour of the adap-
tive service can be modified, without modifying its structure.
Standard protocols such as TCP and specific protocols such
as [13] provide behaviour-based adaptation mechanisms. Be-
havioural adaptation is easy to implement but limits the adapt-
ability properties.

The adaptation is architectural when the service composi-
tion can be modified [1] dynamically. In self-adaptive applica-
tions components are created and connected, or removed and
disconnected during the execution. The architectural changes
respond to constraints related to the execution context involv-
ing, for example, variations of communication networks and
processing resources. They may also respond to requirement
evolution in the supported activities involving, for example,
mobility of users and cooperation structure modification.

Designing and implementing self-adaptive communicating
systems is a complex task. To handle this complexity, sev-
eral studies showed the need to lay on model-based design ap-
proaches associated with automated management techniques.

Static architectures are described by instances of compo-
nents and interconnection links. The dynamic character of ar-
chitectures requires additional description rules. Several works
have addressed the dynamic architecture description, using dif-
ferent approaches [2]. In order to guarantee the architecture
evolving, correctness formal techniques are used. In particular,
graphs represent a powerful expressive mean to specify respec-
tively static and dynamic architectures aspects [11]. For such
approaches, graph vertices represent the software components,
and the edges represent the links between these components.
Dynamic architectures are described as graph grammars and
architecture transformation is specified and ruled using graph
rewriting models.

3. Case study

To expose the targeted problems and concepts and to show
the usefulness of the graph-based models, we consider the
example of crisis management systems (CMS). We introduce
this example and give two different execution steps and some
related scenarios.

For CMS-like activities, cooperation is based on informa-
tion exchanges between mobile participants collaboratingto
achieve a common mission. A CMS team is composed of
participants having different roles: The controller of themis-
sion, several coordinators, and several field investigators. Each
group of investigators is supervised by a coordinator (Fig-
ure 1). Each participant is represented by his identifier, role
and by the devices he uses. Each participant performs different
functions. The controller’s functions include monitoringand
authorizing/managing actions to be done by coordinators and
investigators. The controller is the entity which supervises the
whole mission. The controller waits for data from his coordi-
nators who synthesize the current situation of the mission.The
controller has permanent energy resources and high commu-
nication and CPU capabilities. Coordinators that are attached
to the controller, have to manage an evolving group of inves-
tigators during the mission and to assign tasks to each one of
them. The coordinator has also to collect, interpret, summarize
and diffuse information from and towards investigators. The

Fig. 1. CMS architecture

coordinator has high software and hardware capabilities. The
investigator’s functions include exploring the operational field,
observing, analysing, and reporting about the situation.

Functions performed by investigators include generating
Descriptive data (D) of the exploration field and Produced data
(P) feedbacks to the controller. Two kinds of feedbacks are dis-
tinguished. Feedbacks D are descriptive data; they are trans-
mitted by means of audio/video and real time text messaging.
Feedbacks P are Produced data; they express the analysis of
the situation by an investigator. They are transmitted by means
of audio and real time text messaging.

The controller’s function includes supervising the entire
mission, i.e. deciding actions to be performed from the anal-
ysis of the observation feedbacks D transmitted by the coordi-
nators. Initially, all investigator groups are in the “exploration
step” where investigators provide continuous feedbacks D to
the coordinator; they also provide periodical feedbacks P.The
coordinator sends continuous feedbacks P to the controller.

When an investigator finds a critical situation, its group ar-
chitecture has to be reconfigured in order to move to an ex-
ecution step called “action step” where: the investigator that
discovers the critical situation keeps sending both feedbacks D
and P to the coordinator but also provides feedbacks P to the
other investigators of its group. Other investigators report feed-
backs P to coordinator on the basis of feedbacks D transmitted
by the critical investigator. The coordinator continue sending
feedbacks P to the controller.

In this senario, feedbacks D are more important than feed-
backs P. When the critical situation is resolved, the investiga-
tion group comes back to the exploration step.

4. Model-based approach for adaptability
management

Managing self-adaptability for optimizing QoS in CMS-like
activities is complex as requirements and constraints evolve
constantly requiring adaptation at multiple levels of the stack.
This raises a coordination problem which may lead to sub op-
timal solutions. Adapting architectural adaptation may poten-
tially be handled at different levels. For example, an energy
constraint may be handled by modifying the servers’ deploy-
ment at one level or by acting on the pull/push mode another
level. Considering that servers consume more CPU as they
serve many clients, we can suppose that they are less energy-
efficient than clients. Moreover, considering that puller clients
are more active than pushed clients, we can deduce that they
need more CPU time and consume more energy. Both servers
and puller clients may be placed on wired machines to save en-

ergy of mobile machines. However, actions at both these com-
munication levels are not necessarily mandatory for a givenen-
ergy loss rate and bandwidth constraints may lead to consider
acting only on puller clients. Managing architectural adapta-
tions requires defining and modeling abstractions levels ded-
icated to specific parts of the whole adaptation. This allows
designers and developers to respectively master the designof
adaptation rules. For a given configurationAn,1 at leveln, mul-
tiple configurations(An−1,1, ..., An−1,p) may be implemented
at leveln − 1).

Adapting the architecture to constraint and requirement
changes at leveln− 1 by switching among these multiple con-
figurations allows maintaining unchanged the n-level config-
uration. Moreover, when adaptation requires changes at level
n, this may need no changes at leveln − 1 if initial and new
configurations of leveln (e.g. changes fromAn,1 toAn,2) have
common implementations (e.g.An−1,p) at leveln − 1.

We consider three main abstraction levels for adaptabil-
ity management which allow describing process-to-process,
component-to-component and service-to-service architectural
properties. From a communication point of view they represent
respectively, the Transport layer, the Middleware layer and the
upper users-oriented service layers. In the following, we will
refer at these three levels as: the Transport-level adaptation (T-
Adapt), the Middleware-level adaptation (M-Adapt) level and
the Service-level adaptation (S-Adapt).

The S-Adapt level constitutes the highest level of the com-
munication. It describes the services and their associatedre-
quirements and constraints provided by entities exchanging
high level information. S-Adapt entities can for example repre-
sent the different roles the human participants may have within
the considered activity. For CMS-like activities, depending on
its role in the mission (e.g. controller, coordinators, investiga-
tors...) each participant has to perform a set of given functions
(e.g. observe, report...).

The M-Adapt level is viewed as a component-to-component
communication level aiming at supporting a given S-Adapt
architecture, considering resource-related constraints. Three
roles are distinguished: “event producers” (EP), “event con-
sumers” (EC) and “channel manager” (CM).

The T-Adapt level constitutes the lowest level that we con-
sider. It handles the process-to-process communications,i.e.
the Transport level connections supporting the component-to-
component communications of the M-Adapt level.

We consider distributed component-based applications de-
ployed on mobile communication nodes. The communication
has to be maintained adapted to the context change factors.
These factors are given according to the application and the
node properties. Being aware of these factors, that we call con-
text, provides adaptability. The application and the node prop-
erties are: the mobile nodes move in a limited perimeter and
each node has limited resources in term of energy and mem-
ory. The transport connections evolve in an open environment
in which they will have to enforce “friendliness” and “fair-
ness” [9] with regards to other non-cooperating connections.
We drive the evolutions between levels by considering the con-
text factors.

5. Graph-based refinement framework

We introduce our general framework of models. We use mod-
els based on graph grammar [5] to handle the architectural
adaptation refinement management.

Graph grammars constitute a powerful and very expressive
formalism for style description. Moreover, theoretical work on
this field provides formal means to specify and check con-
straints on these architectures [14, 7]. We use productionsof
type (L; K; R; C) where(L; K; R) corresponds to the struc-
ture of a Double PushOut (DPO) production [6] and whereC is
a set of connection instructions. The instructions belonging to
C are of the edNCE type [14]. They are specified by a system
(n, δ, d, d′) wheren corresponds to a vertex belonging to the
daughter graphR, δ is a vertex label, andd andd′ are elements
of the set in, out. For example, a production defined by the
system(L; K; R; (n, δ, d, d′)) is applicable to a graphG if it
contains an occurrence of the mother graphL. The application
of this production involves transforming G by deleting the sub-
graph(Del = L\K) and adding the subgraph(Add = R\K)
while the subgraphK remains unchanged. All dangling edges
will be removed. The execution of the connection instruction
implies the introduction of an edge between the vertexn be-
longing to the daughter graphR and all verticesn′ that are
p-neighbours1 of and d-neighbours2. This edge is introduced
following the direction indicated byd′ and labelled byq.

5.1 Refining from S-Adapt to M-Adapt

This section presents the steps and formalisms used to auto-
matically refine a given configuration at the S-Adapt level to
an optimal configuration at the M-Adapt level.

5.1.1 Graph grammar productions

In the following, we provide an example of graph grammar
for our case study to implement architecture refinement. The
proposed grammar generalize the use case by considering a
variable number of investigators.

Following the commonly used conventions, we consider
that vertices represent communicating entities (e.g. services,
components) and edges correspond to their related interde-
pendencies (e.g. communication links, composition dependen-
cies).

For our study, we consider an architecture instance that
includes a coordinator (coord) that manage three investigators
(Inv). The graph edges are labeled by the exchanged data types
and the priority of each type (DH/PL). Each participant have
two attributes: the identifier and the deploying machine.

Architectural refinement deals with characterization of all
the architectures that may be generated at an abstraction level
n (Service) to implement a given architecture of the abstraction
leveln − 1 (Middleware).

In this subsection we give the graph grammar addressing
the refinement of any architecture of the S-Adapt level in all
possible architectures of the M-Adapt level, during the explo-
ration step. Since this graph grammar transforms S-Adapt ar-
chitecture into M-Adapt architectures, its non-terminal nodes
are S-Adapt entities while terminals nodes are M-Adapt enti-

1 p-neighbours of a vertexn are all verticesn′ such that there exists an edge
labeled byp which connectsn andn′.
2 In-neighbours ifd = in and out-neighbours otherwise.

GGS→M,exp = (AX, NT, T, P) with: T = {CM(cm, D, m), EC(ec, D, m), EP (ep, D, m)}, and
NT = {Coord(c,m1), Inv(A, m2)}, andP = {p1, p2}

p1 = (L = {Coord(co,m1), Inv(i1, m2), Inv(i2, m3), Inv(i1, m2)
<DH ,PL>
−−−−−−−−→ Coord(co,m1),

Inv(i2, m3)
<DH ,PL>
−−−−−−−−→ Coord(co,m1)}; K = {Inv(i1, m2), Inv(i2, m3)};

R = {EC(ec1, D, m1), EC(ec2, P, m1), CM(cm1, D, m2), CM(cm2, P, m3),

CM(cm1, D, m1)
<P ull,1‖Push,0>
−−−−−−−−−−−−−→ EC(ec1, D, m1), CM(cm2, P, m2)

<P ull,1‖Push,0>
−−−−−−−−−−−−−→ EC(ec2, P, m1),

Inv(i1, m2)
<P ull,1‖Push,0>
−−−−−−−−−−−−−→ CM(cm1, D, m2), Inv(i1, m2)

<Pull,1‖P ush,0>
−−−−−−−−−−−−−→ CM(cm2, P, m3)

Inv(i2, m3)
<P ull,1‖Push,0>
−−−−−−−−−−−−−→ CM(cm1, D, m2), Inv(i2, m3)

<Pull,1‖P ush,0>
−−−−−−−−−−−−−→ CM(cm2, P, m3)} C = {ic1, ic2})

p2 = (L = {CM(cm1, D, m1), CM(cm2, P, m2), Inv(i, m3); Inv(i, m3)
<Pull,1‖Push,0>
−−−−−−−−−−−−−→ CM(cm1, D, m1),

Inv(i, m3)
<P ull,1‖Push,0>
−−−−−−−−−−−−−→ CM(cm2, P, m2)} K = {CM(cm1, D, m1), CM(cm2, P, m2)};

R = {EP (ep1, D, m3), EP (ep2, P, m3), EP (ep1, D, m3)
<Pull,1‖P ush,0>
−−−−−−−−−−−−−→ CM(cm1, D, m1),

EP (ep2, P, m3)
<Pull,1‖P ush,0>
−−−−−−−−−−−−−→ CM(cm2, P, m2)}; C = { })

with: ic1 = (CM(cm1, D, m2), < DH , PL > /Pull, 1 ‖ Push, 0 >, Inv, in/in)
ic2 = (CM(cm2, P, m3), < DH , PL > /Pull, 1 ‖ Push, 0 >, Inv, in/in)

Table 1. Refinement graph grammarGGS→M,exp

ties. GGS→M,exp (Table 1) allows implementing this refine-
ment in the exploration step.

Productionp1 allows the refinement of the pattern consist-
ing of the coordinator, and the two investigators that host the
channel managersCM1 andCM2. Connection instructions
ic1 and ic2 allow considering the pull/push options. Produc-
tion p2 allows refining for other investigators. Figure 2 gives
the refinement generated byGGS→M,exp and depicts the case
of three nodes represented with their communications and their
priorities. The application of the sequencep1; p2; p2; p2 gener-
ates a configuration containing only terminal nodes (i.e. nodes
belonging to the M-Adapt level).

EC(ec1,D,m1) CM(cm1,D,m2))
pull,1

pull,1

push,0

push,0

EP(ep1,D,m2)

EP(ep2,P,m2)

EP(ep5,D,m3)

Inv(i2,m2)

Cont(c,m1) Inv(i3,m3)

p1, p2, p2, p2

EC(ec1,D,m1) CM(cm2,P,m3)

push,0

pull,1

pull,1

push,0

EP(ep5,D,m4)

EP(ep5,P,m4)

EP(ep5,P,m3)

Co (c,) (3, 3)
<D

H
,P

L
>

Inv(i4,m4)

Fig. 2. UsingGGS→M,exp to achieve the refinement from
S-Adapt to M-Adapt

5.1.2 Optimization at the Middleware level

The refinement graph grammarGGS→M,exp, for a given con-
figurationAn,i at the service level, produce the set of config-
urations(An−1,1, ..., An−1,p) that can implemente at the mid-
delware level. We provide an algorithm (Table 2) that allowsto
select the optimal implementation ofAn,i.

Let C denotes the context
Let An,i

Let S = {An−1,1, ..., An−1,p} the result of the
refinement graph grammarGGS→M,exp for An,i

SelectS1 = {An−1,k ∈ S} such that:
Cost(An−1,k, C) ≤ Cost(X, C), ∀X ∈ S}

if card(S1) 6= 1
Select any configuration fromS1.

Table 2. Selection alogorithm

We define the contextC as the percentage of the remain
energy of each node (LE) and the percentage of the remain
memory of each node (LM). We define also the fonction
Cost() (Table 2).We proceed by step. First, for each node
(i) for a given deployment configurationAn−1,p, we calcu-
late an evaluationVi = αLE+βLM

α+β . Where the valuesα andβ
are weights that allow an importance degree to be associated

with each factor. For instance, if we know that for a specific
node the memory saturation level is the most important fac-
tor, we setβ to a value higher thanα. Second, we calculate
Cost(An−1,p, C) = 1

N

∑N
1 Vi ,where the valueN is the node

number of the deployment configurationAn−1,p. In the end of
this refinmement, we optain the optimalAn−1,p (Service level)
that implementsAn,i (Middelware level).

5.2 Refining from M-Adapt to T-Adapt

Given the M-Adapt graph obtained by the sucessivep1; p2; p2;
p2 productions presented figure 2, it appears that the different
connections have different priorities assigned to them, directly
derived from the type of media that they transport. In a process
similar to what has been described in the previous section to
refine an element from S-Adapt into M-Adapt, a graph gram-
mar (GGM→T,exp) generating a T-Adapt graph (see figure 3)
can be written. However, it is not presented here due to space
limitations.

The refinement graph grammarGGM→T,exp, for a given
configurationAn−1,i at the Middleware level, produces a set
of configurations(An−2,1, ..., An−2,p) at the transport level. A
first step in transport provisioning consists in selecting the ad-
equate(An−2,p) composition to be instantiated given the me-
dia that is being transport as well as the context in which the
connection takes place. This step is presented in [15]. The ap-
proach relies on analytical models that define an optimization
problem which’s output is the most suitable composition for
the modular protocol.

Given the collaborative nature of the case study, the analyt-
ical model that leads to the protocol compositions is extended
in order to make it compulsory for them to include a conges-
tion control that is “collaborative”. A collaborative congestion
control is a modified version of the standard algorithm in order
to allow 2 or more connections to collaborate meaning that one
of them will reduce its sending rate in order for the other to be
able to acheive greater throughput. The drop and raise being
simultaneous, the good properties offairness andfriendliness
[9] are maintained towards non-collaborating connections.

In what follows, we describe a method that takes the data
available on the M-Adapt graph as input in order to compute
the parameters to be provided to a collaborative congestion
control module instantiated in the dynamic transport protocol
instance supporting the connection.

Fig. 3. Transport Connections Graph

Figure 3 presents the transport connections, it is derived
from figure 2. Nodes represent the different machines. Arrows
denote connections, they are labeled by a tuple representing
the connection ID,the type of transported data, the service
paradigm as well as the connection’s priority.

Definition: Let c1..cn the connections transporting the col-
laboration data. A connectionci is defined as a pair:(Si, Di)
whereS designates the ID of the source node forci andD
designates the ID of the destination node ofci.

Definition: Let {ci = (Si, Di), cj = (Sj , Dj)} two
connections,ci andcj are said to bedependant iif:
(Si = Sj ∨ Si = Dj) ∧ (Di = Sj ∨ Di = Dj).

Definition: Let D the dependency matrix for the activity
such that:

Di,j =

{

1 if ci andcj are dependant
0 otherwise

Given the above definitions, the ratio of the total available
bandwidth between two nodes to be consumed by each con-
nection without taking priorities into account is given (inan
activity composed byn connections) by:Fi =

Di,j
P

n
j=1

Di,j

Let Pi the priority associated to connectioni. In order to
take this priority into account, theFi expression is modified as
follows: Fi = (Pi+1)

P

n
j=1

Di,j(Pj+1)

For the current scenario, the graph presented on figure 3
leads to the following dependency matrix:

D =

0

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

A

The priorities vector is: P = (0, 1, 1, 0, 1, 0, 1, 0)

Applying the previously presented heuristics, we obtain
F =

(

1, 1, 1, 1
2 , 1, 1

2 , 1, 1
)

the parameters vector to be fed to
the collaborative congestion control.

As it can be observed, connection’s which don’t “collab-
orate” have a fraction of 1. This instructs the collaborative
congestion control to use the standard algorithm. On the other
hand,c4 andc6 have a fraction of12 indicating that they share
resources with another collaborating connection of the same
priority.

6. Conclusion

In this paper, we presented a framework for the context-aware
dynamic provisioning and automated management of group
cooperative activities. All the levels ranging from Service to
Transport have been introduced. The graph formalism used to

model each of the levels has been illustrated in the context of
CMS-like activities. In this context, the graph grammar as well
as a the productions required for automated top-down refine-
ment of the models have been explicitly presented. Finally,al-
gorithms and models to further refine the decision at the Mid-
dleware and the Transport level have been introduced to take
advantage of context information captured in a CMS-like case
study.

Future works include the implementation of the models and
algorithms presented in this paper and the introduction of aco-
ordination approach to avoid conflict between the adaptation at
different levels. Moreover, the integration of the optimization
algorithms as well as the graph transformation modules with
a monitoring and measurements system would provide all the
needed inputs for the deployment of the solution in controlled
network environments.

References

[1] In IEEE Std 1471-2000, IEEE Recommended practice for
architectural description of software-intensive systems, pages
i–23, 2000.

[2] R. Allen and D. Garlan. A formal basis for architectural
connection. ACM Transactions on Software Engineering and
Methodology, 6(3):213–249, 1997.

[3] K. Bade, E. W. D. Luca, A. Nürnberger, and S. Stober. Carsa -
an architecture for the development of context adaptive retrieval
systems. In K. van Rijsbergen, A. Nürnberger, J. M. Jose, and
M. Detyniecki, editors,Adaptive Multimedia Retrieval: User,
Context, and Feedback. Springer-Verlag, 2006.

[4] F. Chang and V. Karamcheti. Automatic configuration and run-
time adaptation of distributed applications. InHPDC, pages
11–20, 2000.

[5] N. Chomsky. Three models for the description of language.
Information Theory, IEEE Transactions on, 2(3):113–124, 1956.

[6] H. Ehrig. Tutorial introduction to the algebraic approach of graph
grammars. InProceedings of the 3rd International Workshop on
Graph-Grammars and Their Application to Computer Science,
pages 3–14, London, UK, 1987. Springer-Verlag.

[7] H. Ehrig and H.-J. Kreowski. Graph Grammars and Their
Application to Computer Science: 4th International Workshop,
Bremen, Germany, March 5-9, 1990 Proceedings. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1991.

[8] H. Fahmy and R. Holt. Using graph rewriting to specify software
architectural transformations. In15th IEEE international
Conference on Automated Software Engineering, ISBN 0-7695-
0710-7, pages 187–196, Grenoble, France, September 2000.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based
congestion control for unicast applications. InSIGCOMM, pages
43–56, 2000.

[10] A. Friday, N. Davies, G. Blair, and K. Cheverst. Develop-
ing adaptive applications: The most experience.Integrated
Computer-Aided Engineering, 6(2):143– 157, 2000.

[11] D. L. Metayer. Describing software architecture styles using
graph grammars.IEEE Transactions On Software Engineering,
24(7):521–533, July 1998.

[12] N. Nasser and H. Hassanein. Adaptive bandwidth framework for
provisioning connection-level qos for next-generation wireless
cellular networks.Canadian Journal of Electrical and Computer
Engineering, 29(1):101–108, 2004.

[13] Özgür B. Akan and I. F. Akyildiz. Atl: an adaptive transport
layer suite for next-generation wireless internet.IEEE Journal
on Selected Areas in Communications, 22(5):802–817, 2004.

[14] G. Rozenberg, editor.Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations.
World Scientific, 1997.

[15] N. Van Wambeke, F. Armando, C. Chassota, and E. Expósito.
A model-based approach for self-adaptive transport protocols.
doi:10.1016/j.comcom.2008.02.026, Computer Communications,
2008.

