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Derivation of a two-fluids model for a Bose gas

from a quantum kinetic system∗

Thibaut Allemand†

March 23, 2009

Abstract

We formally derive the hydrodynamic limit of a system modelling a

bosons gas having a condensed part, made of a quantum kinetic and a

Gross-Pitaevskii equation. The limit model, which is a two-fluids Euler

system, is approximated by an isentropic system, which is then studied.

We find in particular some conditions for the hyperbolicity, and we study

the weak solutions. A numerical example is given at the end.

1 Introduction

There has been a lot of research done about Bose-Einstein condensates in math-
ematics and physics, especially since the Nobel Prize 2001 was awarded to Carl,
Cornell and Ketterle who succeeded in creating one for the first time. In par-
ticular, mathematicians have been working on various models to see if the pre-
dictions of the physicists could be justified mathematically.

There are actually several types of models to describe a Bose-Einstein con-
densate [13]. The only one which is valid without any approximation is the
atomistic one, that is, the linear Schrödinger equation for the P bodies density:

ih∂tΨP = HP ΨP (1)

where HP is the Hamiltonian, i.e. the energy operator, of the system, and h is
Planck’s constant. Other models can be found depending on the regime under
consideration. At zero temperature, the gas is entirely condensated. Assuming
that it is in a non-dissipative trap, the one-body density is governed by the
Gross-Pitaevskii equation:

ih∂tΨ = −h2∆xΨ + UΨ + |Ψ|2Ψ

where U is the trapping potential. When the temperature of the gas is close to
zero, the gas is composed of a condensate and a normal component. The conden-
sate is still expected to be governed by a Gross-Pitaevskii-type equation, with
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Figure 1: Various models describing a Bose gas, and their interactions.

coupling terms taking into account the mass and momentum exchanges with
the normal component. The latter can be described in a probabilistic way using
kinetic equations; in this case, a quantum Boltzmann equation, first proposed
by Nordheim [12], with additional terms. We could also use a fluid description
for the normal part together with the usual Gross-Pitaevskii equation for the
condensate; still another possibility is to use a fluid description for both parts
of the gas, leading to a two fluids model as predicted by Landau [10]. The way
these models are related is represented in Figure 1.

In [14], a kinetic model for the non-condensate part has been derived from
(1) using the BBGKY expansion in the low density limit. The condensated part
is then described by a Gross-Pitaevskii equation, which takes into account both
the interactions between the atoms of the condensate, and between them and
those of the non-condensate part (called normal fluid).

What we are interested in is to link this model with models at a larger scale,
namely, fluid models. This can be done considering the fast relaxation limit
for the kinetic equation, together with the semiclassical limit for the Gross-
Pitaevskii equation.

Our starting point is the following model: let

ϕ ≡ ϕ(t, x, v) ≥ 0

denote the phase-space density function of the normal fluid, and

Ψ(t, x) =
√

ρs(t, x)eiθ(t,x)/h (2)
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denote the wave function of the condensated (or superfluid) phase, with ρs being
the mass of the superfluid. Here, t ∈ R+ is the time variable, and x, v ∈ R

N for
N ≥ 1 are the position and velocity variables.

In [14], Pomeau, Brachet, Métens and Rica derive the following coupled
system of equations:







∂tϕ + v.∇xϕ −∇xV1.∇vϕ = Q(ϕ) + ρsQ1(ϕ)

ih∂tΨ = −h2

2
∆xΨ + V2Ψ +

ih

2
Q2(ϕ)Ψ.

(3)

The first equation expresses a balance between the left-hand term, which is a
Vlasov operator for a gas in the external field ∇xV1, and the right-hand term,
which comes from the normal fluid-normal fluid and normal fluid-superfluid
interactions. The second equation is a cubic Schrödinger equation (because
of the form (8) of V2), with an interaction term with the normal fluid. The
first collision operator Q(ϕ) is the usual Boltzmann-Nordheim operator for the
bosons, modelling the collisions between two particles from the normal fluid. It
writes

Q(ϕ) =

∫

RN

∫

SN−1

(ϕ′ϕ′
∗(1 + ϕ)(1 + ϕ′) − ϕϕ∗(1 + ϕ′)(1 + ϕ′

∗)) dv∗dn (4)

with the usual notations

ϕ = ϕ(t, x, v), ϕ∗ = ϕ(t, x, v∗), ϕ′ = ϕ(t, x, v′), ϕ′
∗ = ϕ(t, x, v′∗).

The post-collisional velocities (v, v∗) and the precollisional ones (v′, v′∗) satisfy
the conservation of momentum and kinetic energy

{

v + v∗ = v′ + v′∗

|v|2 + |v∗|2 = |v′|2 + |v′∗|2
(5)

since the collisions are assumed to be elastic. The solutions of (5) can be
parametrized by a unit vector n ∈ SN−1, so that

{

v′ = v − [(v − v∗).n]n

v′∗ = v∗ + [(v − v∗).n]n.

The other two collision operators Q1(ϕ) and Q2(ϕ) both take into account the
collisions between particles from the normal fluid and from the superfluid. The
operator Q1(ϕ) writes

Q1(ϕ)(v) =

∫

C1

[

ϕ(v′)ϕ(v′∗) − ϕ(v) (ϕ(v′) + ϕ(v′∗) + 1)
]

dv′dv′∗

+ 2

∫

C2

[

ϕ(v′∗) (ϕ(v) + ϕ(v∗) + 1) − ϕ(v)ϕ(v∗)
]

dv∗dv′∗

(6)
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where C1 is the set of all the velocities v′, v′∗ such that

{

∇xθ + v = v′ + v′∗

−2∂tθ − 2V1 + |v|2 = |v′|2 + |v′∗|2,
(7)

and C2 is the set of the velocities v∗, v
′
∗ satisfying

{

∇xθ + v′∗ = v + v∗

−2∂tθ − 2V1 + |v′∗|2 = |v|2 + |v∗|2.

As to the last collision operator Q2, it writes

Q2(ϕ) =

∫

C3

[

ϕ(v′)ϕ(v′∗) − ϕ(v∗)(ϕ(v′) + ϕ(v′∗) + 1)
]

dv∗dv′dv′∗

where C3 is the set of all velocities v∗, v
′, v′∗ such that

{

∇xθ + v∗ = v′ + v′∗

−2∂tθ − 2V1 + |v∗|2 = |v′|2 + |v′∗|2.

The terms −2∂tθ− 2V1 which are added in the microscopic energy conservation
equations are here to ensure the possibility of having a condensate with velocity
and energy which are other than zero. Indeed, the usual Boltzmann-Nordheim
equation was derived in a space homogeneous setting, and up to translations the
energy and the velocity of the condensate can only be zero in such a framework.

The potentials V1 and V2 are given by

{

V1 = α(2ρn + ρs)

V2 = α
2 (2ρn + ρs)

(8)

where α is a positive constant, ρs is given by (2) and

ρn =

∫

RN

ϕ(t, x, v)dv

is the mass of the normal fluid.
Note that very few is known mathematically about the Boltzmann equation

for the bosons. It has been studied only in the spatially homogeneous case; see
for example [11], [5], [6].

In this work, we will (formally) perform the compressible Euler limit on the
system (3) together with a semiclassical limit. To do this, we rescale time and
space by changing (t, x) to ( t

ε , x
ε ), where ε is a small parameter, which gives the

scaled system











∂tϕ + v.∇xϕ −∇xV1.∇vϕ =
1

ε
Q(ϕ) +

ρs

ε
Q1(ϕ)

ih̃∂tΨ = − h̃2

2
∆xΨ + V2Ψ +

ih̃

2ε
Q2(ϕ)Ψ.

(9)
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where h̃ = εh, and we want to determine the asymptotics of this system as
h̃ → 0 and ε → 0.

In Section 2, we detail the main physical properties of the model. Then, in
Section 3, we obtain a fluid description of the Bose-Einstein condensate and the
non-condensate phase. We therefore study the fluid system. In Section 4, we get
some conditions for the system to be hyperbolic, and then we show the existence
of some local strong solutions. In Section 5, we finally give some details about
weak solutions and the propagation of shocks.

2 Properties of the model

The possibility of obtaining a fluid description of the Bose gas governed by (3) is
a consequence of some fundamental properties of this system. First, like for the
classical Boltzmann and Schrödinger equations, we can write the macroscopic
equations wich govern the mass, momentum and energy for both parts of the
gas. Then, we characterize the distributions ϕ which minimize the entropy and
thus are expected to be attractors of the dynamics in the fast relaxation limit.
These two informations will allow us to perform the compressible Euler limit in
Section 3.

2.1 Conservation laws

Integrating the kinetic equation in (3) against 1, v, |v|2, we obtain the equations
on the mass, momentum and kinetic energy of the normal fluid. From the Gross-
Pitaevskii equation, we derive the equations for the mass, momentum and energy
of the condensate.

2.1.1 Mass

We plug the expression of Ψ (2) in the second equation of the system (3). After
dividing by the exponential, we can write two equations, one for the real part
and one for the imaginary part. They read

∂tρs + ∇x.(ρsus) = ρsQ2(ϕ) (10)

and

∂tθ =
h2

2
√

ρs
∆x

√
ρs −

|us|2
2

− V2 (11)

where
us = ∇xθ

denotes the bulk velocity of the condensed phase. Equation (10) gives the law
governing the mass density of the condensate.

For the kinetic equation, let us first remark that

∫

RN





1
v

|v|2



Q1(ϕ)(v)dv = −





1
us

−2∂tθ − 2V1



Q2(ϕ). (12)
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Then, integrating with respect to the velocity over the whole space R
N , we

obtain the equation satisfied by the mass of the normal fluid:

∂tρn + ∇x.(ρnun) = −ρsQ2(ϕ) (13)

where we defined the bulk velocity of the normal fluid as

un =
1

ρn

∫

RN

vf(t, x, v)dv.

We can see that neither ρn nor ρs are conserved quantities, unless the thermo-
dynamic equilibrium is reached, that is,

Q2(ϕ) = 0.

However, the total mass
ρ = ρn + ρs

satisfies a conservation law without any assumption of equilibrium:

∂tρ + ∇x.(ρnun + ρsus) = 0. (14)

This means that the normal fluid and the condensate exchange mass until they
are at thermodynamic equilibrium.

2.1.2 Momentum

Integrating the kinetic equation against v, we get

∂t(ρnun) + ∇x.

(∫

RN

v ⊗ vϕdv

)

= −ρn∇xV1 − ρsusQ2(ϕ). (15)

For the condensed part, we differentiate equation (11) with respect to x, and,
thanks to the mass equations (10) and (13), we can write

∂t(ρsus) + ∇x.(ρsus ⊗ us) = −ρs∇xV2 + ρsusQ2(ϕ)

+
h2

2
∇x.

(√
ρs∇2

x

√
ρs −∇x

√
ρs ⊗∇x

√
ρs

)

.

Plugging the expression of the potentials (8), we can see that the total momen-
tum satisfies

∂t(ρnun + ρsus) + ∇x.

(∫

RN

v ⊗ vϕdv + ρsus ⊗ us + α(2ρn + ρs)IN

)

=
h2

2
∇x.

(√
ρs∇2

x

√
ρs −∇x

√
ρs ⊗∇x

√
ρs

)

where IN is the N × N identity matrix.
The momentum of each fluid is not preserved even at thermodynamic equi-

librium; however, the total momentum obeys a conservation law. This means
that, even at the equilibrium, the two parts of the fluid exchange some momen-
tum.
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2.1.3 Energy

We now integrate the kinetic equation against |v|2:

∂t

(∫

RN

|v|2ϕdv

)

+ ∇x.

(∫

RN

v|v|2ϕdv

)

= −2ρnun.∇xV1

−
(

ρs|us|2 + ρs(2V2 − V1) − h2√ρs∆x
√

ρs − ρsV1

)

Q2(ϕ).

For the condensed part, the energy writes h2|∇xΨ|2, and satisfies

∂th
2|∇xΨ|2 = h3ℜ(i∇x(∆xΨ).∇xΨ̄) − 2hℑ(Ψ̄∇xΨ)∇xV2

+
h2

2
∇xρs.∇xQ2(ϕ) + h2|∇xΨ|2Q2(ϕ).

(16)

Computing
h3ℜ(i∇x(∆xΨ).∇xΨ̄)

and since
h2|∇xΨ|2 = ρs|us|2 + h2|∇x

√
ρs|2,

it follows that

∂t

(

ρs|us|2 + h2|∇x
√

ρs|2
)

+ ∇x.(ρs|us|2us) = −2ρsus∇xV2 + ρs|us|2Q2(ϕ)

+
h2

2
∇xρs.∇xQ2(ϕ) + h2|∇x

√
ρs|2Q2(ϕ)

+ 3h2∇x.(∇x
√

ρs ⊗∇x
√

ρs : us)

− h2∇x.(
√

ρsus∆x
√

ρs) + h2∇x.(∇x
√

ρs∇x.(
√

ρsus)).

On the other hand, the equation for the potential energy writes:

∂t
α

2
(2ρn + ρs)

2+∇x.(α(2ρn + ρs)(2ρnun + ρsus))

= α(2ρnun + ρsus).∇x(2ρn + ρs) − αρs(2ρn + ρs)Q2(ϕ)

= 2ρnun∇xV1 + 2ρsus∇xV2 − ρsV1Q2(ϕ)

thanks to expressions (8) of the potentials. If we add this equation the the
equation for the energy of the condensed part (16), we note that we obtain
a conservation equation, plus some terms coming from the interaction with
the normal fluid. This conservation property is reminiscent from the energy
conservation of the solutions to the Schrödinger equation.

Collecting all the pieces together, we get the full energy equation:

∂t

(∫

RN

|v|2ϕdv + ρs|us|2 + h2|∇x
√

ρs|2 +
α

2
(2ρn + ρs)

2

)

+ ∇x.

(∫

v|v|2ϕdv + ρs|us|2us + α(2ρn + ρs)(2ρnun + ρsus)

)

= h2T (ϕ, ρs, us)

(17)
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with

T (ϕ, ρs, us) =∇x.(
√

ρsQ2(ϕ)∇x
√

ρs) + 3∇x.(∇x
√

ρs ⊗∇x
√

ρs : us)

−∇x.(
√

ρsus∆x
√

ρs) + ∇x.(∇x
√

ρs∇x.(
√

ρsus)).

We check that the total energy is conserved, and that all the terms which
do not have a clear physical interpretation formally vanish in the limit h → 0.

2.2 Thermodynamic equilibrium

Letting ε → 0 in (9) suggests that, in the fast relaxation limit, ϕ satisfies, for
almost every v ∈ R

N ,
Q(ϕ) + ρsQ1(ϕ) = 0.

We therefore need to characterize such functions:

Proposition 1. Let ϕ ≡ ϕ(v) be a smooth, positive valued function on R
N . Let

us ∈ R
N , V1 ∈ R be some given constants and let

ρn =

∫

v∈RN

ϕ(v)dv, un =
1

ρn

∫

RN

vϕ(v)dv.

Define Q(ϕ) and Q1(ϕ) by (4) and (6). Assume that h = 0, so that C2 is the
set of all the velocities v∗, v

′
∗ such that

{

us + v′∗ = v + v∗

|us|2 + V1 + |v′∗|2 = |v|2 + |v∗|2.

Then,
Q(ϕ) + ρsQ1(ϕ) = 0

if and only if ϕ is a bosonian, i.e.

ϕ(v) =
M

1 − M
, (18)

where

M = e−
|v−un|2−|us−un|2+V 1

2T ,

for some positive constant T .

Proof. The identity
Q(ϕ) + ρsQ1(ϕ) = 0

implies that
∫

RN

(Q(ϕ) + ρsQ1(ϕ)) log

(

ϕ

1 + ϕ

)

dv = 0.
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Using the symmetries of the collision integrals, we have

∫

RN

Q(ϕ) log

(

ϕ

1 + ϕ

)

dv

=

∫

RN

∫

RN

∫

SN−1

(1 + ϕ)(1 + ϕ∗)(1 + ϕ′)(1 + ϕ′
∗)

(

ϕ′

1 + ϕ′

ϕ′
∗

1 + ϕ′
∗

− ϕ

1 + ϕ

ϕ∗

1 + ϕ∗

)

×
(

log

(

ϕ

1 + ϕ

ϕ∗

1 + ϕ∗

)

− log

(

ϕ′

1 + ϕ′

ϕ′
∗

1 + ϕ′
∗

))

dvdv∗dn

and
∫

RN

Q1(ϕ) log

(

ϕ

1 + ϕ

)

dv

=

∫

RN

∫

C2

(1 + ϕ)(1 + ϕ∗)(1 + ϕ′
∗)

(

ϕ′
∗

1 + ϕ′
∗

− ϕ

1 + ϕ

ϕ∗

1 + ϕ∗

)

×
(

log

(

ϕ

1 + ϕ

ϕ∗

1 + ϕ∗

)

− log

(

ϕ′
∗

1 + ϕ′
∗

))

dvdv∗dv′∗.

But for all x, y > 0 we have

(x − y)(log y − log x) ≤ 0

with equality if and only if x = y. Hence both integrands are nonpositive
functions, and we claim that:

Q(ϕ) + ρsQ1(ϕ) = 0

if and only if
Q(ϕ) = 0 a.e. and Q1(ϕ) = 0 a.e..

For the same reason, Q(ϕ) vanishes if and only if

ϕ′

1 + ϕ′

ϕ′
∗

1 + ϕ′
∗

=
ϕ

1 + ϕ

ϕ∗

1 + ϕ∗
(19)

for almost every v, v∗ ∈ R
N , n ∈ SN−1, with v′, v′∗ satisfying (5), and Q1(ϕ)

vanishes only when
ϕ′
∗

1 + ϕ′
∗

=
ϕ

1 + ϕ

ϕ∗

1 + ϕ∗

for almost every v ∈ R
N and v∗, v

′
∗ ∈ C2 with h = 0 (us ∈ R

N and V1 are fixed).
We therefore have to solve the functional equation (19). Thanks to the

classical Boltzmann theory, we know that if for all v, v∗, v
′, v′∗ satisfying (5) we

have
ff∗ = f ′f ′

∗,

then f is a Maxwellian distribution, namely

f ≡ M = e(a|v|2+b.v+c)

9



with a, c ∈ R and b ∈ R
N . Taking f = ϕ

1+ϕ gives that Q(ϕ) vanishes if and only
if

ϕ =
M

1 − M
.

The Maxwellian function M can be rewritten

M = e−
|v−un|2

2T
+δ

for some T > 0 and δ ∈ R using the macroscopic velocity, since

∫

RN

vϕdv = ρnun.

We can compute δ by plugging this into Q1(ϕ) = 0, which leads to

M ′
∗ = MM∗

for all v ∈ R
N , v∗, v

′
∗ ∈ C2. We thus obtain:

|v′∗ − un|2
2T

− δ =
|v − un|2

2T
− δ +

|v∗ − un|2
2T

− δ

which gives, thanks to the definition of C2,

δ =
|us − un|2 − V1

2T
,

which is the expected result.

Remark 1. M satisfies
ϕ

1 + ϕ
= M,

so that
0 < M < 1.

In particular,
|us − un|2 ≤ α(2ρn + ρs).

Remark 2. In [6], it is shown that the equilibrium solutions of the Boltzmann-
Nordheim equation, which are the minimizers of the entropy, are the bosonian
distributions (18) to which a Dirac function must be added if the mass of the
initial data is greater than some critical value. In fact, for initial data having
a big mass, the formation of a singularity taking the form of a Dirac function
means that a condensate has been created in the fluid. Our goal here is to study
a model (3) where a condensate has already occured, and then the corresponding
mass has been deleted from the normal component of the fluid. Hence, the initial
mass of the normal part of the fluid is assumed to be less than the critical value,
and consequently the equilibrium solution is made only of the regular part.
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3 Formal derivation of the fluid model

Our goal in this section is to derive a fluid description of the Bose gas governed
by (3). This will be achieved at formal level in three steps: we first perform
the semiclassical limit h → 0. It allows to pass from a quantum to a classical
description of the condensed part. Then, rescaling the time and space as in (9),
we perform the compressible Euler limit by the moment method. We get a set
of equations on the masses and momentum of the two fluids, and an equation
for the total energy. This system is closed. However, it is a system of 2N + 3
equations and as much unknowns. To simplify the subsequent study, we replace
it in the third step with a smaller system using the isentropic approximation.

3.1 Semiclassical limit

When performed on the usual Schrödinger equation, the semiclassical limit h →
0 allows to recover the laws of classical mechanics from quantum dynamics [3].
Indeed, h can be seen as a measure of how far we are from classical mechanics.
In our case, the limit will allow us to treat the condensed part as a classical
fluid.

We assume that all the quantities converge in suitable functional spaces as
h → 0. Moreover, we still write ρs, us, θ, ϕ, ρn, un the limits of these quantities.
Under these assumptions, the equation for the phase (11) becomes

∂tθ = −|us|2
2

− V2.

Hence, as h → 0, Q2(ϕ) is changed into

Q2(ϕ) =

∫

C3

[

ϕ(v′)ϕ(v′∗) − ϕ(v∗)(ϕ(v′) + ϕ(v′∗) + 1)
]

dv∗dv′dv′∗

where the new C3 is the set of all velocities v∗, v
′, v′∗ such that

{

us + v∗ = v′ + v′∗

|us|2 − V1 + |v∗|2 = |v′|2 + |v′∗|2.

Substituting Q2(ϕ) with its new expression, the mass equations (10), (13) and
(14) write the same as before. The momentum equation for the normal fluid
(15) is also unchanged. The equation for the momentum of the condensed part
becomes:

∂t(ρsus) + ∇x.(ρsus ⊗ us) = −ρs∇xV2 + ρsusQ2(ϕ).

Thus, the total momentum satisfies the conservation law

∂t(ρnun + ρsus) + ∇x.

(∫

RN

v ⊗ vϕdv + ρsus ⊗ us + α(2ρn + ρs)IN

)

= 0.
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Letting h → 0 in the energy equation (17) leads to:

∂t

(∫

RN

|v|2ϕdv + ρs|us|2 +
α

2
(2ρn + ρs)

2

)

+ ∇x.

(∫

v|v|2ϕdv + ρs|us|2us + α(2ρn + ρs)(2ρnun + ρsus)

)

= 0.

Note that in the semiclassical limit, the total energy is conserved.

3.2 Hydrodynamic limit

We now perform the change of scale (t, x) 7→ ( t
ε , x

ε ) where ε → 0 is a small
parameter. As can be seen on the system (9), this scaling leaves the equations
associated to the condensed part unchanged, excepted the collision term Q2(ϕ)
which gets a factor 1

ε . The small parameter ε is known as the Knudsen number,
which is proportional to the mean free path, that is, the average length covered
by the particules of the gas between two collisions. Letting this parameter
go to 0 means that the collisions occur on a time scale which is very small
compared with the observation time scale, so that one can consider that the
local thermodynamic equilibrium is reached almost instantaneously.

The principle of the moment method for the compressible Euler limit is as
follows: multiplying the kinetic equation in (9) by ε and letting ε → 0 suggests
that ϕ converges to the bosonian (18). We thus replace ϕ by its limiting value
in the moment equations, namely, in the equations for the mass, momentum
and kinetic energy of the normal fluid. We do the same for the equations which
govern the mass, momentum and energy of the condensate, and we obtain a
closed set of hydrodynamic equations describing the macroscopic evolution of a
Bose gas.

We assume that all the macroscopic quantities converge as ε → 0 in suitable
functional spaces. The only technical point is to compute some integrals, in
particular those associated with the momentum and heat flux. We have the
identity

∫

RN

v ⊗ v
M

1 − M
dv = ρnun ⊗ un + pIN

defining the pressure

p =
1

N

∫

RN

|v|2 βe−
|v|2

2T

1 − βe−
|v|2

2T

where

β = e
|us−un|2−V1

2T and 0 < β < 1.

Using obvious symmetry properties, we deduce that

∫

RN

|v|2 M

1 − M
dv = ρn|un|2 + Np.

12



In the same way, we have

∫

RN

v|v|2 M

1 − M
dv = ρn|un|2un + (N + 2)pun.

At the end, the hydrodynamic limit of the system (3) is given by the following
set of equations:























































∂tρn + ∇x.(ρnun) = 0

∂tρs + ∇x.(ρsus) = 0

∂t(ρnun) + ∇x.(ρnun ⊗ un + pIN ) = −αρn∇x(2ρn + ρs)

∂t(ρsus) + ∇x.(ρsus ⊗ us) = −α
2 ρs∇x(2ρn + ρs)

∂t(
1
2ρn|un|2 + 1

2ρs|us|2 + N
2 p + α

4 (2ρn + ρs)
2))

+∇x.
(

1
2ρn|un|2un + 1

2ρs|us|2us + (N+2)
2 pun

+α
2 (2ρn + ρs)(2ρnun + ρsus)

)

= 0

(20)

This is a kind of two-phases Euler system, the second fluid (the superfluid)
being pressureless. They do not exchange mass, while they exchange some
momentum, contrary to what occurs in the model proposed by Landau [10].

3.3 The isentropic approximation

The system (20) is somehow very complex insofar as it is not a system of con-
servation laws, and defining weak solutions for such a system is complicated.
Consequently, we approximate it with a simpler system, which can be written
as a system of conservation laws. To do this, we first claim that the kinetic
equation in (9) is endowed with a natural entropy S(ϕ), which is defined by:

S(ϕ) =
1

ρn

∫

RN

((1 + ϕ) log(1 + ϕ) − ϕ log ϕ) dv.

We will show that in the case when that entropy is approximatively constant,
we can compute the pressure law, thus reducing the number of unknowns, and
obtain a closed system of conservation laws.

The entropy satisfies the following equation:

∂t(ρnS(ϕ)) + ∇x.

(∫

RN

v ((1 + ϕ) log(1 + ϕ) − ϕ log ϕ) dv

)

= −1

ε

∫

RN

(Q(ϕ) + ρsQ1(ϕ)) log

(

ϕ

1 + ϕ

)

dv ≥ 0

(21)

which is analogous to Boltzmann’s H-theorem. When ε → 0, the density func-
tion ϕ goes to its equilibrium value M

1−M and the entropy (now called S) becomes

ρnS = −
∫

RN

(

M

1 − M
log M + log(1 − M)

)

. (22)

13



Then, it comes

∫

RN

v

(

1

1 − M
log

1

1 − M
− M

1 − M
log

M

1 − M

)

dv = ρnSun

and S satisfies
∂t(ρnS) + ∇x.(ρnSun) = 0.

Moreover, thanks to the mass conservation for the normal fluid (first equation
in the system (20)), we get

∂tS + un.∇xS = 0 (23)

which is a transport equation. Note that S ≡ S0, where S0 is a constant, is a
trivial solution of (23).

Remark 3. In the fast relaxation limit ε → 0, the entropy dissipation is expected
to concentrate on shock solutions, as occurs for the classical Boltzmann equation.
Hence, inequality (21) is expected to become an equality in the limit as long as
smooth solutions are considered. In other words, (23) should be a combination
of the other equations of the system.

Using (22), we can compute the entropy with respect to ρn, p, β and T :

S = N
p

2Tρn
− log β − T N/2

ρn

∫

RN

log(1 − βe−
|v|2

2 )dv.

From the expressions of the density and pressure for the normal fluid:

ρn = T N/2

∫

RN

βe−
|v|2

2

1 − βe−
|v|2

2

dv, p =
1

N
T N/2+1

∫

RN

|v|2 βe−
|v|2

2

1 − βe−
|v|2

2

dv,

remarking that, thanks to an integration by parts,

∫

RN

|v|2 βe−
|v|2

2

1 − βe−
|v|2

2

dv = −N

β

∫

RN

log(1 − βe−
|v|2

2 )dv,

we get

S =

(

N

2
+ 1

)

p

Tρn
− log β.

If we write

ρn = T N/2F0(β), p =
1

N
T N/2+1F2(β), (24)

we obtain at the end

S =

(

1

2
+

1

N

)

F2(β)

F0(β)
− log β.

14



It comes out that the entropy depends only on the variable β. If we show that
β 7→ S(β) is one-to-one, we will be able to say that if S remains constant, so is
β; hence, thanks to (24), we will obtain the following pressure law:

p = c̃Nρ
N+2

N

n . (25)

with

c̃N =
1

N

F2(β0)

(F0(β0))1+2/N
> 0

for some constant β0 ∈ (0, 1).

Lemma 3.1. The function β ∈ (0, 1) 7→ S(β) is one-to-one.

Proof. We compute the derivative of S with respect to β:

S′(β) =

(

1

2
+

1

N

)

F ′
2(β)F0(β) − F2(β)F ′

0(β)

F0(β)2
− 1

β
.

Hence,

S′(β) =

(

1

2
+

1

N

)

1

F0(β)2

(

∫

RN

|v|2 e−
|v|2

2

(

1 − βe−
|v|2

2

)2 dv

∫

RN

βe−
|v|2

2

1 − βe−
|v|2

2

dv

−
∫

RN

|v|2 e−
|v|2

2

1 − βe−
|v|2

2

dv

∫

RN

βe−
|v|2

2

(

1 − βe−
|v|2

2

)2 dv

)

− 1

β
.

We want to show that S′(β) is negative. To do this, we expand the integrands
into power series. We get for the simplest one

∫

RN

e−
|v|2

2

1 − βe−
|v|2

2

dv =

∫

RN

∞
∑

n=0

βne−(n+1)
|v|2

2 dv =

∞
∑

n=0

βn

∫

RN

e−(n+1)
|v|2

2 dv,

that is,

∫

RN

e−
|v|2

2

1 − βe−
|v|2

2

dv =

(∫

RN

e−
|v|2

2 dv

) ∞
∑

n=0

βn 1

(n + 1)N/2
.

We compute the other integrals using the same tool, and the entropy derivative
becomes

S′(β) = β

(

1

2
+

1

N

)(∫

RN

|v|2e−
|v|2

2 dv

)(∫

RN

e−
|v|2

2 dv

)

1

F0(β)2
×





(

∞
∑

n=0

βn 1

(n + 1)N/2

)2

−
∞
∑

n=0

βn 1

(n + 1)N/2+1

∞
∑

n=0

βn 1

(n + 1)N/2−1



− 1

β
.
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We can calculate the products of the summations:

(

∞
∑

n=0

βn 1

(n + 1)N/2

)2

=

∞
∑

n=0

cnβn

with

cn =
n
∑

k=0

1

(k + 1)N/2(n − k + 1)N/2
,

and
∞
∑

n=0

βn 1

(n + 1)N/2+1

∞
∑

n=0

βn 1

(n + 1)N/2−1
=

∞
∑

n=0

c̃nβn

with

c̃n =

n
∑

k=0

1

(k + 1)N/2+1(n − k + 1)N/2−1
.

A simple calculation shows that

c̃n ≥ cn.

But since

S′(β) =

(

1

2
+

1

N

)∫

RN

|v|2e−
|v|2

2 dv

∫

RN

e−
|v|2

2 dv
β

F0(β)2

(

∞
∑

n=0

(cn − c̃n)βn

)

− 1

β
,

it comes
S′(β) < 0,

and thus β 7→ S(β) is one to one.

From now on, we will assume that the dimension of the space is N = 3.
Moreover, we assume that the gas is translation invariant along the y- and z-axis,
and that the y- and z-components of the velocities un and us are zero. Under
these conditions, the system under consideration becomes one-dimensional



















∂tρn + ∂x(ρnun) = 0

∂tρs + ∂x(ρsus) = 0

∂t(ρnun) + ∂x(ρnu2
n + c̃ρ

5/3
n ) = −αρn∂x(2ρn + ρs)

∂t(ρsus) + ∂x(ρsu
2
s) = −α

2 ρs∂x(2ρn + ρs)

(26)

where c̃ = c̃3.
If (ρn, ρs, un, us) is a regular solution of (26), then (ρn, ρs, un, us, p ≡ c̃ρ

5/3
n )

will be a regular solution of (20). However, this is not true any more when
dealing with weak solutions. The reason is that the entropy does not remain
constant along shock waves as mentioned in remark 3. Hence, system (26) is
actually an approximation of system (20), and not just a particular case of it.
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4 Hyperbolicity and regular solutions

In view of giving some mathematical justifications to the derivation of the hy-
drodynamic model (20) and of its isentropic approximation (26), it is necessary
to have a good understanding of its structure and a good mathematical theory
of existence and stability. We are therefore interested in this section in finding
smooth solutions to (26).

In Section 5, we will deal with weak solutions of this system. As it will be
more convenient to work with a system of conservation laws, we introduce right
now the following system of equations:






























∂tρn + ∂x(ρnun) = 0

∂tρs + ∂x(ρsus) = 0

∂t(ρnun + ρsus) + ∂x(ρnu2
n + ρsu

2
s + c̃ρ

5/3
n + α

4 (2ρn + ρs)
2) = 0

∂t(
1
2ρnu2

n + 1
2ρsu

2
s + 3

2 c̃ρ
5/3
n + α(ρn + 1

2ρs)
2)

+∂x(1
2ρnu3

n + 1
2ρsu

3
s + 5

2 c̃ρ
5/3
n un + α(ρn + 1

2ρs)(2ρnun + ρsus)) = 0

(27)
Actually, the inversibility of the function

F : R
∗
+ × R

∗
+ × R × R → R

∗
+ × R

∗
+ × R × R

∗
+

(ρn, ρs, un, us) 7→ (ρn, ρs, ρnun + ρsus,
1

2
ρnu2

n +
1

2
ρsu

2
s

+
3

2
c̃ρ

5
3
n + α(ρn +

1

2
ρs)

2)

(whose jacobian is jF = ρnρs(us − un)) on the sets

O+ =















U =









ρn

ρs

un

us









s.t. ρn, ρs > 0 and un > us















and

O− =















U =









ρn

ρs

un

us









s.t. ρn, ρs > 0 and un < us















is enough to say that on these sets, the smooth solutions to (26) are also solutions
of (27), and conversely. In addition, they are also solutions of

∂tU + A∂xU = 0 (28)

where

A =









un 0 ρn 0
0 us 0 ρs

cρ
− 1

3
n + 2α α un 0

α α
2 0 us









(29)
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(with c = 5
3 c̃ > 0), and any of this problem is (strictly) hyperbolic provided the

others are.

4.1 Hyperbolicity

For a system of the form (28), the right property to study is hyperbolicity,
that is, the possibility to diagonalize the matrix A given by (29). Indeed, this
property allows to claim the existence and uniqueness of smooth solutions to
(28) (see [4]). It will also be useful when dealing with weak solutions.

Since system (26) is hyperbolic if and only if system (27) or system (28)
is, it is enough to investigate the eigenvalues of the matrix A given by (29)
to conclude on the hyperbolicity of any of these systems. The characteristic
polynomial of A writes

PA(λ) =
(

(λ − un)2 − cρ
2
3
n − 2αρn

)(

(λ − us)
2 − α

2
ρs

)

− α2ρnρs.

Even if it is of degree 4 and there are explicit formulae for the roots of polyno-
mials of degree 4, they are very complicated and we are not able to use them
here. Our analysis relies only on basic analytical tools to find cases where the
polynomial has 4 different roots. The main result of this section is the following:

Theorem 4.1. Systems (26), (27) and (28) are strictly hyperbolic if ρn, ρs > 0
and if one of these conditions holds:

(un − us)
2 < cρ2/3

n (30)

(un − us)
2 <

cα
2 ρsρ

2/3
n

cρ
2/3
n + 2αρn

(31)

ρn ≤
( c

2α

)3

. (32)

Obviously, the condition (32) is the most interesting, because it can be prop-
agated by the solution, whereas the other two may fail to hold after a small time.

Proof. We work with U = (ρn, ρs, un, us) and α fixed, with ρn, ρs, α > 0. We
first notice that

lim
λ→±∞

PA(λ) = +∞.

On the other hand, if we let

{

λ∗
1 = us −

√

α
2 ρs

λ∗
2 = us +

√

α
2 ρs

,

we can remark that

∀i = 1, 2 P (λ∗
i ) = −α2ρnρs < 0.

18



But us ∈ (λ∗
1, λ

∗
2) satisfies

PA(us) = −α

2
ρs

(

(un − us)
2 − cρ2/3

n

)

.

Hence, if we assume that (30) holds, we have

PA(us) > 0.

Since PA is a continous function of λ, we claim that it has four distinct roots
(λi)i=1..4 depending on U and α and satisfying (see Figure 2)

λ1 < us −
√

α

2
ρs < λ2 < us < λ3 < us +

√

α

2
ρs < λ4.

λ∗
1

λ∗
2

+∞
+∞

λ1 λ

PA(λ)

λ2

λ4λ3us

Figure 2: In the case when PA(us) > 0, the polynom PA has four distinct roots.

In the same way, we let







λ∗
3 = un −

√

cρ
2/3
n + 2αρn

λ∗
4 = un +

√

cρ
2/3
n + 2αρn

;

then
PA(λ∗

3) = PA(λ∗
4) = −α2ρnρs < 0

and
PA(un) = c

α

2
ρsρ

2/3
n − (un − us)

2(cρ2/3
n + 2αρn).
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Thus, under the condition (31), PA has four distinct roots (λi)i=1..4 wich satisfy

λ1 < un −
√

cρ
2/3
n + 2αρn < λ2 < un < λ3 < un +

√

cρ
2/3
n + 2αρn < λ4.

We have then proved that under the condition (30) or (31), the systems (26),
(27) and (28) are strictly hyperbolic.

We now assume that neither (30) nor (31) are verified, that is,

(un − us)
2 ≥ cρ2/3

n (33)

and

(un − us)
2 ≥ cα

2 ρsρ
2/3
n

cρ
2/3
n + 2αρn

. (34)

Thus, un 6= us, PA(un) ≤ 0 and PA(us) ≤ 0. Let us study the sign of PA(un+us

2 ):

PA

(

un + us

2

)

=
1

16
(un−us)

4− 1

4

(α

2
ρs + cρ2/3

n + 2αρn

)

(un−us)
2+c

α

2
ρsρ

2/3
n .

Let Q(X) be the polynomial defined by

Q(X) =
1

16
X2 − 1

4

(α

2
ρs + cρ2/3

n + 2αρn

)

X + c
α

2
ρsρ

2/3
n .

Its discriminant is

δ =
1

16

(α

2
ρs − cρ2/3

n + 2αρn

)2

+ c
α

2
ρ5/3

n > 0,

and its two roots write

β− =
1

32

(

1

4

(α

2
ρs + cρ2/3

n + 2αρn

)

−
√

δ

)

β+ =
1

32

(

1

4

(α

2
ρs + cρ2/3

n + 2αρn

)

+
√

δ

)

.

Hence,

P

(

un + us

2

)

> 0 ⇔ (un − us)
2 > β+ or (un − us)

2 < β−.

Let us assume that (32) holds, or equivalently, that

2αρn ≤ cρ2/3
n .

Then,

β+ <
1

64

(α

2
ρs + 3cρ2/3

n

)

.

But, thanks to (33) and (34), we know that

(un − us)
2 > cρ2/3

n
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and
(un − us)

2 >
α

4
ρs,

from which we deduce that

(un − us)
2 > β+.

Moreover, we notice that P ′
A(us)P

′
A(un) 6= 0. We can conclude that the systems

(26), (27) and (28) are strictly hyperbolic under the condition (30), or (31), or
under the only condition (32). In this case, the eigenvalues of A satisfy

λ1 < un ≤ λ2 <
un + us

2
< λ3 ≤ us < λ4

if un < us, or the same thing inverting un and us if us < un.

4.2 Entropy

We are now interested in finding a convex entropy to system (26), that is, a
convex function E(U) such that there exists a function G(U) which satisfies

∂tE(U) + ∂xG(U) = 0.

Our research is motivated by the fact that a strictly hyperbolic system having
a strictly convex entropy admits regular solutions (see [4] for example).

The entropy we are looking for is given by the physical energy:

E(U) =
1

2
ρnu2

n +
1

2
ρsu

2
s +

9

10
cρ

5
3
n + α(ρn +

1

2
ρs)

2.

We can find the equation satisfied by E just from (28); it writes

∂tE(U) + ∂xG(U) = 0

with

G(U) =
1

2
ρnu3

n +
1

2
ρsu

3
s +

3

2
cρ

5
3
nun + α(ρn +

1

2
ρs)(2ρnun + ρsus).

Let us now study its convexity. Its Hessian matrix is given by

∇2
U,UE(U) =









cρ
− 1

3
n + 2α α un 0

α α
2 0 us

un 0 ρn 0
0 us 0 ρs









.

If we denote X = (x1, x2, x3, x4)
T , where T is the transposition operator, then

XT (∇2
U,UE(U))X =ρs

(

x4 +
us

ρs
x2

)2

+ ρn

(

x3 +
un

ρn
x1

)2

+

(

α

2
− u2

s

ρs

)(

x2 +
2αρs

αρs − 2u2
s

x1

)2

+

(

cρ
− 1

3
n + 2α − u2

n

ρn
− 2α2ρs

αρs − 2u2
s

)

x2
1.
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Hence, E will be strictly convex uniformly on every compact subset of O under
the conditions















α

2
− u2

s

ρs
> 0

cρ
− 1

3
n + 2α − u2

n

ρn
− 2α2ρs

αρs − 2u2
s

> 0

which are equivalent to
{

u2
s <

α

2
ρs

PA(0) > 0
. (35)

We can now write the following theorem of existence of solutions:

Theorem 4.2. Let α > 0, and

A =

{

(ρn, ρs, un, us)
T , ρn, ρs > 0, (30), (31) or (32) holds,

u2
s <

α

2
ρs, PA(0) > 0, un 6= us

}

.

Let U0 ∈ C1(R; Ω) where Ω is a compact subset of A, such that ∂xU0 ∈ H l

for some l > 1
2 . Then there exists T∞, such that 0 < T∞ ≤ ∞, and a unique

function U ∈ C1([0, T∞) × R;A), which is a classical solution of the problem
(28) on [0, T∞) with the initial condition

U(0, x) = U0(x), ∀x ∈ R,

and of the problem (27) with same initial condition. Moreover,

∂xU(., t) ∈ C0([0, T∞); H l).

5 Weak solutions and the Riemann problem

In Section 4, we have proved the existence of smooth solutions to the problem
(26), or equivalently to (27) or (28). However, these solutions are not satisfac-
tory. First, they exist only for small times, while we would like to have global
solutions. Moreover, physical experiments often show non regular behaviours
to physical problems. The solutions of hyperbolic systems having a physical
meaning should therefore be authorized to be discontinous. It is then natural
to define a weaker notion of solutions.

In this section, we will recall the usual definition of weak solutions to a
system of conservation laws, and state an existence and uniqueness result for
the system (27). We will then give some details on the qualitative behaviour of
such a solution by studying the characteristic fields and the shock curves.
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5.1 Existence of weak solutions

When dealing with weak solutions, systems (26), (27) and (28) are no more
equivalent. Indeed, the usual definition of weak solutions for an hyperbolic
system is valid only for systems of conservation laws. We consequently restrict
our analysis to the system (27), which we rewrite here:































∂tρn + ∂x(ρnun) = 0

∂tρs + ∂x(ρsus) = 0

∂t(ρnun + ρsus) + ∂x(ρnu2
n + ρsu

2
s + c̃ρ

5/3
n + α

4 (2ρn + ρs)
2) = 0

∂t(
1
2ρnu2

n + 1
2ρsu

2
s + 3

2 c̃ρ
5/3
n + α(ρn + 1

2ρs)
2)

+∂x(1
2ρnu3

n + 1
2ρsu

3
s + 5

2 c̃ρ
5/3
n un + α(ρn + 1

2ρs)(2ρnun + ρsus)) = 0

(36)
With obvious notations, we can write it

∂tF (U) + ∂xH(U) = 0.

We define weak solutions in the usual way:

Definition 5.1. Let U0 = (ρ0
n, ρ0

s, u
0
n, u0

s) ∈ (L∞(R))4. We say that the bounded
vector field U = (ρn, ρs, un, us) is a weak solution of system (36) supplemented
with the initial condition U0 if for all Φ ∈ (C1(R+ × R))4 compactly supported
we have

∫ +∞

0

∫

R

(

F (U(t, x)).∂tΦ(t, x) + H(U(t, x)).∂xΦ(t, x)
)

dxdt

+

∫

R

F (U0(x))Φ(0, x)dx = 0.

Moreover, we say that U is a solution of the Riemann problem if the initial
condition is of the form

U0(x) =

{

U−
0 if x < 0

U+
0 if x > 0

where U±
0 are two constant states in R

4.

We now state the existence and uniqueness result:

Theorem 5.2. Let Ū = (ρ̄n, ρ̄s, ūn, ūs) be a constant state such that ρ̄n, ρ̄s > 0
and ūn 6= ūs. Let U0 = (ρ0

n, ρ0
s, u

0
n, u0

s) be a bounded function of x having small
total variation and such that ‖U0 − Ū‖L∞ is sufficiently small; in particular,
there exists a constant r > 0 such that ρ0

n > r and ρ0
s > r, and such that

u0
n − u0

s > r almost everywhere, or u0
s − u0

n > r a.e.. Then the system (36)
endowed with the intial condition U0 admits a unique weak global entropic (in
the sense of Liu) solution.
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Weak solutions of hyperbolic equations are not unique in general. The en-
tropy criterion of Liu is a way of selecting physical solutions, and weak solu-
tions are unique in that class. See [1] for details and more general results on
uniqueness of solutions to hyperbolic systems. General existence theorems for
hyperbolic systems can be found in [2] or [7]. Let us just mention that this the-
orem holds true because of the hyperbolicity condition (32) wich is propagated
by the solutions.

5.2 Nature of the characteristic fields

Let λ be an eigenvalue of A, that is, a solution of

(

(λ − un)2 − cρ
2
3
n − 2αρn

)(

(λ − us)
2 − α

2
ρs

)

− α2ρnρs = 0. (37)

An associated eigenvector is

X =









(λ − us)
2 − α

2 ρs

αρs
1

ρn

(λ − un)((λ − us)
2 − α

2 ρs)

α(λ − us)









.

We can compute the derivatives of λ directly from (37) and then we get, letting

K = −1

2
P ′

A(λ) 6= 0,

∇Uλ =











1
2K (2

3cρ
−1/3
n + 2α)(α

2 ρs − (λ − us)
2)

1
4K (cρ

2/3
n + 2αρn − (λ − un)2)

1
K (λ − un)(α

2 ρs − (λ − us)
2)

1
K (λ − us)(cρ

2/3
n + 2αρn − (λ − un)2)











.

Thus, we get for the associated characteristic field

∇Uλ.X =
1

K

[

− 1

2

(

2

3
cρ−1/3

n + 2α

)

(α

2
ρs − (λ − us)

2
)2

+
α

4
ρs

(

cρ
2
3
n + 2αρn − (λ − un)2

)

− 1

ρn
(λ − un)2

(

(λ − us)
2 − α

2
ρs

)2

+ α(λ − us)
2
(

cρ
2
3
n + 2αρn − (λ − un)2

)

]

.

It is easy to see that if

(λ − un)2 − cρ
2
3
n − 2αρn > 0, (38)
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holds, then the field is genuinely nonlinear. Since

PA(un −
√

cρ
2
3
n + 2αρn) = PA(un +

√

cρ
2
3
n + 2αρn) = −α2ρnρs < 0,

condition (38) always holds for the fields 1 and 4 associated with the extremal
eigenvalues. Hence these fields are genuinely nonlinear, and they will induce the
formation of shock or rarefaction waves. Nevertheless, we have not been able to
establish anything for the fields 2 and 3.

5.3 Shock curves

In this part, we are interested in the shock solutions of the Riemann problem
for system (27). The solutions we are looking for are of the form

U(t, x) =

{

U− if x < σt

U+ if x > σt

with U± = (ρ±n , ρ±s , u±
n , u±

s ) the left and right constant states, and σ ∈ R the
shock speed. They must satisfy the Rankine-Hugoniot equations, which write
for our system

σ









ρn

ρs

ρnun + ρsus
1
2ρnu2

n + 1
2ρsu

2
s + 3

2 c̃ρ
5/3
n + α(ρn + 1

2ρs)
2









=









ρnun

ρsus

ρnu2
n + ρsu

2
s + c̃ρ

5/3
n + α

4 (2ρn + ρs)
2

1
2ρnu3

n + 1
2ρsu

3
s + 5

2 c̃ρ
5/3
n un + α(ρn + 1

2ρs)(2ρnun + ρsus)









.

(39)

Here, the bracket means
[X ] = X+ − X−.

Let
wn = un − σ

and
ws = us − σ.

Then, the first two equations of (39) write simply

{

[ρnwn] = 0

[ρsws] = 0.
(40)

Hence, if we know the left state U− = (ρ−n , ρ−s , u−
n , u+

s ), the shock speed σ and
the right densities ρ+

n , ρ+
s , it is easy to compute the right velocities u+

n and u+
s .
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The third equation in (39) writes

[ρnu2
n − ρnunσ + ρsu

2
s − ρsusσ + c̃ρ5/3

n +
α

4
(2ρn + ρs)

2] = 0.

Using (40) and letting

Mn = ρ−n w−
n = ρ+

n w+
n , Ms = ρ−s w−

s = ρ+
s w+

s ,

and

τn =
1

ρn
, τs =

1

ρs
,

it becomes
M2

n[τn] + M2
s [τs] + c̃[ρ5/3

n ] +
α

4
[(2ρn + ρs)

2] = 0. (41)

In the same way, the fourth Rankine-Hugoniot relation (39) becomes, using (41):

M3
n[τ2

n] + M3
s [τ2

s ] + 5Mn[ρ2/3
n ] + α(2Mn + Ms)[2ρn + ρs] = 0. (42)

Let

J(ρn, ρs, un, us, σ) =













ρn(un − σ)
ρs(us − σ)

ρn(un − σ)2 + ρs(us − σ)2 + c̃ρ
5/3
n + α

4 (2ρn + ρs)
2

ρn(un − σ)3 + ρs(us − σ)3 + 5
2ρ

5/3
n (un − σ)

+α
2 (2ρn + ρs) (2ρn(un − σ) + ρs(us − σ))













.

Equations (40), (41), (42) imply that the Rankine-Hugoniot relations are satis-
fied if and only if

J(ρ+
n , ρ+

s , u+
n , u+

s , σ) = J(ρ−n , ρ−s , u−
n , u−

s , σ).

Thanks to the implicit functions theorem, for any left state U− = (ρ−n , ρ−s , u−
n , u−

s )
and shock velocity σ0 such that D(ρn,ρs,un,us)J(ρ−n , ρ−s , u−

n , u−
s , σ0) is invertible

(take for example ρ−n = ρ−s = u−
n = 1, u−

s = σ0 = 0), there exist some right
states U+(σ) close to U− for σ in a neighbourhood of σ0 such that

J(U+(σ), σ) = J(U−, σ),

that is, system (36) admits some shock solutions, which can be parametrized
by the velocity σ. Note that the entropy criterion will select just half of each
shock curve.

Such shock solutions can be observed with numerical simulations. Examples
of numerical results using a Lax-Friedrichs scheme (see [9] for example) are
given by Figure 3 which represents the quantity ρn. The figure is made of three
graphics which show the results of the numerical scheme using a spatial grid
made of 1000, 5000 and 10000 points. The time step is taken so that

∆t

∆x
= 5.
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Figure 3: The mass of the normal fluid ρn.

As expected, the solutions show 5 different states separated by 4 waves. This
contrasts with the solutions of the Euler equations which cannot exhibit more
than 3 waves in general, 2 waves in the isentropic case. The presence of the
superfluid part induces therefore some changes even in the behaviour of the
normal part of the fluid compared to a usual (non quantum) fluid.

Conclusions

We have derived a two-fluids model for a quantum gas from a system consisting
of a Boltzmann-like and a Gross-Pitaevskii equations. Our derivation is formal,
and it seems to be very difficult to obtain a rigourous proof of convergence, at
least until there is a good existence framework for the quantum Boltzmann-Bose
equation. However, we have shown that our hydrodynamic model is well-posed,
which is the first step in a good understanding of the limiting process.

The limit system (27) that we propose does not seem to exist in the littera-
ture. It remains to see whether it provides a good description of the evolution
of a superfluid, before any further mathematical exploration of its properties.
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