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The energetics of the stochastic process has shown the balance of energy on the mesoscopic level.
The heat and the energy defined there are, however, generally different from their macroscopic
counterpart. We show that this discrepancy can be removed by adding to these quantities the
reversible heat associated with the mesoscopic free energy.
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I. INTRODUCTION

This Communication demonstrates the relations be-
tween the ‘mesoscopic heat’ which came out in the con-
text of the energetics of a single realization of stochastic
processes [1] (the stochastic energetics, for short) and
the (usual) heat that can in principle be measured ex-
perimentally by calorimetric techniques or be calculated
from microscopic theories or simulations.

The method of stochastic energetics has been applied
to analyze the energetic aspects of various ratchet models
(see a review [2, 3] and the references therein). More re-
cent applications are about the fluctuation theorem (FT)
[4, 5, 6], the steady-state thermodynamics, [7], as well
as the breaking of fluctuation-dissipation (FD) relation
[8, 9]. The experimental assessment of heat and work
from the fluctuation of Brownian particle is also achieved
[6, 10]. The basic idea of energetics of a single stochastic
trajectory has been extended to the chemical reaction[11]
(the list is not complete).

However, along a particular trajectory of stochastic
process, almost nothing has been discussed about the ex-
plicit relation between the heat in the conventional ther-
modynamics and the ‘heat’ defined by the stochastic en-
ergetics. (Hereafter, we systematically use the quotation
mark, ‘heat’ etc., to mean those concept of stochastic en-
ergetics.) The ‘heat’ satisfies the first law, or the energy
balance together with the suitably defined ‘energy’ on the
mesoscopic level. The work defined there satisfies the sec-
ond law, that is, the positivity of the averaged irreversible
work, through Jarzynski’s nonequilibrium work relation
[12]. The energetics on the mesoscopic level thus shows
a thermodynamic structure which is proper to this level
of description. What is still missing is the link between
this framework and the conventional thermodynamics, in
which the heat has been measured by using a microscopic
mediums (liquid/gas molecules or conduction electrons,
etc.). If the ‘energy’ appearing in the stochastic model,
such as the Langevin equation, originates simply from
an external field (e.g. of optical tweezers [10]) or from a
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non-entropic restoring force (e.g. of a brass-wire holding
a pendulum [6]), then the ‘heat’ can be identified with
the heat in the conventional thermodynamics. Contrast-
ingly, the discrepancy between the ‘heat’ and the conven-
tional heat arises when the ‘energy’ contains the entropic
contribution due to those microscopic degrees of freedom
projected out to achieve the mesoscopic description.

To make the subject clear, let us suppose that a
micron-sized magnetic bead in water is leashed at the
point ~x = 0 through a polymer chain and that a mag-
netic trap constitutes a static potential well around ~x =
~a 6= 0. For simplicity we assume that the polymer is
ideal. We further assume that the arrangement is such
that the bead undergoes temporal bistability, either be-
ing trapped around ~x = ~a when the polymer chain is
stretched to the distance ≃ |~a|, or wandering around
~x = 0 when the chain is relaxed and fluctuating. The
main question is how much heat is released to or absorbed
from the surrounding water when the bead switches from
one of the bistable states to the other, allowing also for
the change of ~a in time. The point is that, although the
bistable states can be represented by a double-well ‘po-
tential’ for the bead, it is only the magnetic trap that re-
alizes a potential hole while the ideal chain exerts purely
entropic restoring forces. (We should remember that the
kinetic energy of ideal chain is independent of the chain’s
conformation.) The measured heat should depend only
on the potential energy of the magnetic trap, which mi-
croscopic calculations should predict. The framework of
stochastic energetics predicts, however, that the (meso-
scopic) ‘heat’ is absorbed from the environment whenever
the bead climbs up the ‘potential’ barrier, and desorbed
during the down-hill motion from the barrier. Below we
will show the protocol to convert the ‘heat’ prediction
of stochastic energetics into the measurable heat, or the
heat with the objectivity. The idea is a straightforward
generalization of what is known in the equilibrium sta-
tistical mechanics. We will, therefore, first summarize
the result of the latter discipline (the next section), and
then go on to the stochastic dynamics (the remaining
sections).

As for the description of ensemble behavior using the
Fokker-Planck equation, the ref. [13] developed a rea-
soning similar to that presented in the present paper.
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In particular, the authors of [13] studied two-component
(fast and slow) Brownian system, investigated the ther-
modynamic relation for the fast and slow components
and reaches conclusions which are consistent with those
obtained in the present paper.

II. EQUILIBRIUM STATISTICAL MECHANICS
OF MESOSCOPIC VARIABLES

Suppose that the total system consist of the system
whose Hamiltonian is H(x, y, a) and a heat bath of the
temperature T . (We could start from the whole isolated
system, except that the argument is more complicated.)
Here a stands for the external control parameter(s), and
we have divided, for the later use, the system’s degrees
of freedom into two groups, x and y. We can define the
Helmholtz free energy F (a, β) (β = (kBT )

−1) through
the canonical partition function, Z(a, β)

e−βF (a,β) = Z(a, β) = Trx,ye
−βH(x,y,a), (1)

where the suffices x, y of Trx,y indicates the degrees of
freedom over which the trace should be taken. We can
also introduce the mesoscopic (or Landau) free energy,

F̃ (x, a, β), by eliminating only the degree(s) of freedom,
y:

e−βF̃ (x,a,β) = Trye
−βH(x,y,a). (2)

We are particularly interested in the case where the vari-
ables x and y represent, respectively, the slow and fast
variables of the system. In the context of the example de-
scribed in the Introduction, the slow variable, x, denotes
the position of the magnetic bead, while the fast vari-
ables, y, describe the local movements of the monomers
of the polymer chain, or even the motion of the surround-

ing water molecules. Then e−βF̃ (x,a,β) gives the relative
probability density for the slow variable, x, given that
the parameters a and β are fixed.
By definition we have the relation:

e−βF (a,β) = Trxe
−βF̃ (x,a,β). (3)

We shall say that a quantity has the objectivity, if this
quantity satisfies the following two conditions: (I) it can
be defined on the three levels of descriptions, {x, y, a, β},
{x, a, β} and{a, β}, corresponding to Eqs. (1), (2) and
(3), respectively, and (II) the magnitudes of the quantity
for these descriptions are essentially the same, except for
the fluctuations inherent to the description levels. The
first example is the force conjugate to the parameter a:
Differentiating each terms of (1), (2) and (3) with respect
to a, we have

f̃(x, a, β) = Try[e
β(F−H)f̂ ]

f(a, β) = Trx[e
β(F−F̃ )f̃ ] = Trx,y[e

β(F−H)f̂ ], (4)

where the external force conjugated to the parame-
ter a is defined on the different levels, f(a, β) ≡

∂F (a, β)/∂a, f̃(x, a, β) ≡ ∂F̃ (x, a, β)/∂a and f̂(x, y, a) ≡
∂H(x, y, a)/∂a. The second quantity with the objectiv-
ity is the energy (not the ‘energy’): Differentiating each
term of (1), (2) and (3) with respect to β, we have

Ẽ(x, a, β) = Try[e
β(F−H)H ]

E(a, β) = Trx[e
β(F−F̃ )Ẽ] = Trx,y[e

β(F−H)H ], (5)

where E(a, β) ≡ ∂[βF (a, β)]/∂β and Ẽ(x, a, β) ≡

∂[βF̃ (x, a, β)]/∂β stand for the energies of the system, as
isH(x, y, a) on the microscopic level. The above relation-

ships indicates that (i) it is F̃ (x, a, β) that governs the
probability weight of x on the mesoscopic level, while (ii)

it is Ẽ whose equilibrium average over x coincides with
the thermodynamic energy E. The ‘correction’ term for
the latter from the former is nothing but the entropic
term, which we obtain by rewriting slightly the defini-
tion of Ẽ mentioned above:

Ẽ − F̃ = −T
∂F̃

∂T
. (6)

III. STOCHASTIC ENERGETICS AND THE
HEAT

If the time-scale of the slow variable(s) x is well sep-
arated from that of fast variable(s) y (as well as all the
others related to the thermal environment), and if the
temperature of the environment can be regarded to be
constant, we may use the Markovian description such as
the Langevin equation to simulate the fluctuations of x
near the canonical equilibrium. In the over-damped case,
the equation writes

γ
dx

dt
= −

∂F̃ (x, a, β)

∂x
+ ξ(t), (7)

where γ is the friction constant for x, and ξ(t) is the white
Gaussian random force with zero mean and the correla-
tion, 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′) [14]. The factor 2γkBT
assures the canonical equilibrium distribution if a is fixed.
As in the static case summarized above, it is F̃ (x, a, β)
that gives the bias for the variable x. The ‘energy’ bal-
ance along a particular realization of the stochastic pro-
cess writes [1]

dF̃ = d′W̃ + d′Q̃, (8)

where we use d (not d′) to mean the total differential at
constant temperature, i.e., d = dx ∂/∂x+ da ∂/∂a, while

the work d′W̃ and the ‘heat’ d′Q̃ brought to the system
are defined by (N.B. all the multiplications below should
be interpreted as of Stratonovich type)

d′W̃ ≡
∂F̃

∂a
da (9)

d′Q̃ ≡

[

−γ
dx

dt
+ ξ(t)

]

dx =
∂F̃

∂x
dx. (10)
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We should remember that the eliminated degree(s) of
freedom y are supposed to follow x and a fast enough
that any non-Markov properties is excluded in (7). It
means that the the heat dissipated can be captured by

the change of the pertinent entropy, −∂F̃
∂T

. (A related

argument is also found in [15].) In order to convert d′Q̃
into the measurable heat, d′Qm, it is, therefore, suffi-
cient to add to both d′Q̃ and dF̃ the differential of the
‘correction’ term found in (6), that is

d′Q̃ 7→ d′Qm ≡ d′Q̃− Td
∂F̃

∂T

dF̃ 7→ dẼ ≡ dF̃ − Td
∂F̃

∂T
. (11)

Now the ‘energy balance’ equation (8) is converted to the
new one that includes only the quantities with objectiv-
ity:

dẼ = d′W̃ + d′Qm. (12)

This expression holds for a particular realization of
the Langevin equation (7), as does (8), which could
be directly verified experimentally or calculated us-
ing the original Hamiltonian H . Note that the term,
−Td(∂F̃/∂T ), in (12) is the total differential, to which
both the change of x and that of a contribute. For
cyclic processes this term has, therefore, no cumulative
effects. In the context of the fluctuation theorem about
the ‘heat’, the distribution of the (measurable) heat may
deviate from that of the ‘heat’.
In case of the example discussed in the Introduction,

we may assign the variables y to the degrees of freedoms
associated to the monomers of the ideal chain. For the
‘potential energy’, F̃ (~x,~a, β), we may write F̃ (~x,~a, β) =
U (m)(~x−~a)− TS(p)(~x), where U (m)(~x−~a) represents the
potential energy due to the magnetic trap, and S(p)(~x) is
the entropy due to the ideal polymer chain. By substitut-
ing this form into (12), we find the concrete expression,
term by term (∇U denotes the gradient of U),

dU (m) = [−∇U (m)(~x− ~a)d~a] + [∇U (m)(~x− ~a)d~x] (13)

as it should be from the argument in the Introduction
on one hand, and also as a mathematical identity on the
other hand. Experimentally, we should take account of
the heat exchange with the magnetic bead as well as the
effect of polymer conformations on the solvent.
The change of F̃ (x, a, β) through the change of x is

supposed to be a quasi-static work for the fast degrees
of freedom, y. The chain should, therefore, release the
heat even when the chain is spontaneously stretched
near ~x = 0. This statement does not contradicts with
the above analysis; it is the thermal environment that
does the work to displace the bead, gathering the energy
nearby. The heat −TdS(p) is, therefore, compensated
around the system. However, if one can measure the
heat even closer, some local transfer of heat around the
chain and the bead should be observed. In general, where
to measure the heat d′Qm depends on to what extent we
have included the fast degrees of freedom as y.

IV. CASE OF DISCRETE STATES

It is straightforward to generalize the above analysis to
the case where the system’s state is discretized. Suppose
that the probability Pj(t) for the system to be in the j-th
state obeys the master equation,

dPj

dt
=

∑

j

[Pjwj→i(a, β) − Piwi→j(a, β)] , (14)

where the transition rate wi→j(a, β) from the i-the state
to the j-th one writes [16, 17, 18, 19]

wi→j(a, β) = ν0e
−β[∆̃i,j(a,β)−F̃i(a,β)], (15)

where the constant ν0 is an attempting frequency, and
∆̃i,j(a, β) = ∆̃j,i(a, β) is the height of the free-energy
barrier between the states i and j. The above form of
transition rate assures the canonical equilibrium prob-

ability, P
(eq)
i (a, β) = eβ(F (a,β)−F̃i(a,β)), as the detailed-

balance state.
The energetics of a particular trajectory corresponding

to the above master equation has long been presented
(see, for example, [20]): If a trajectory includes the tran-
sition from the state iα to the state iα+1 at the time tα
with 1 ≤ α ≤ n and 0 < t1 < · · · < tn < t, the ‘energy’
balance between t = 0(≡ t0) and t = t(≡ tn+1) writes as
follows:

∆F̃ = ∆′W +∆′Q̃, (16)

with

∆F̃ = F̃in+1
(a(t), β)− F̃i1 (a(0), β), (17)

∆′W =

n+1
∑

α=1

[

F̃iα (a(tα), β) − F̃iα(a(tα−1), β)
]

(18)

∆′Q̃ =

n
∑

α=1

[

F̃iα+1
(a(tα), β)− F̃iα(a(tα), β).

]

(19)

These relations correspond to (8) in the continuum case.
To transform to the balance equation with objectivity,

we can again use the correspondence relations (11): The
energy balance relation,

∆Ẽ = ∆′W̃ +∆′Qm, (20)

holds with

∆Ẽ ≡ ∆F̃ − T∆
∂F̃

∂T
. (21)

∆′Qm ≡ ∆′Q− T∆
∂F̃

∂T
, (22)
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where the total difference in the correction term is defined
by

T∆
∂F̃

∂T
≡ T

[

∂F̃in+1
(a(t), β)

∂T
−

∂F̃i1(a(0), β)

∂T

]

. (23)

To conclude, we have related the ‘heat’ of the stochas-
tic energetics with the conventional heat along a single
realization of stochastic process. For the moment, the
‘energy’ and ‘heat’ have only begun to be assessed experi-
mentally [6, 10]. The direct measurement of the fluctuat-
ing observable heat, d′Qm, will be a future experimental

challenge. The possibility to measure directly d′Q̃ is an
open theoretical problem.
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