

Context-aware adaptation for group communication support applications with dynamic
architecture

Ismael Bouassida Rodriguez1,2,3,Khalil Drira1, Christophe Chassot1,2 and Mohamed Jmaiel3

1 LAAS-CNRS, University of Toulouse, 2 INSA 7 avenue du Colonel Roche, Toulouse, France

3 Redcad, Enis, Route de la Soukra Sfax, Tunisia
{bouassida, khalil,chassot}@laas.fr, mohamed.jmaiel@enis.rnu.tn

Abstract: In this paper, we propose a refinement-based
adaptation approach for the architecture of distributed group
communication support applications. Unlike most of previous
works, our approach reaches implementable, context-aware
and dynamically adaptable architectures. To model the
context, we manage simultaneously four parameters that
influence Qos provided by the application. These parameters
are: the available bandwidth, the exchanged data
communication priority, the energy level and the available
memory for processing. These parameters make it possible to
refine the choice between the various architectural
configurations when passing from a given abstraction level to
the lower level which implements it. Our approach allows the
importance degree associated with each parameter to be
adapted dynamically. To implement adaptation, we switch
between the various configurations of the same level, and we
modify the state of the entities of a given configuration when
necessary. We adopt the direct and mediated Producer-
Consumer architectural styles and graphs for architecture
modelling. In order to validate our approach we elaborate a
simulation model.
Keywords : Software architecture, Producer-Consumer style,
Adaptation, Context-aware, Graphs.

1. Introduction

Our work aims to makeing context-aware applications self-
adaptable. For this kind of applications, it is necessary to be
able to dynamically adapt the architecture during execution.
Designing and implementing self-adaptive communicating
systems is a complex task, which may be addressed via
model-based design approaches associated with automated
management techniques for dynamic architectural
adaptability. In self-adaptable applications components are
created, and connected, or removed and disconnected during
the execution. The architectural changes respond to
constraints in the communication and resources and to energy
variation. They may also respond to evolution in the
supported activities. The changes can also result from the
user mobility. Static architectures are described by instances
of components and interconnection links. This approach
appears inappropriate when the architecture structure changes
need to be described. The dynamic architectures character
requires additional description rules. Several works have
addressed the dynamic architecture description, using
different approaches [3]. In order to guarantee the
architecture updates correctness we use formal techniques. In
particular, graphs represent a powerful expressive mean to

specify respectively static and dynamic architectures aspects.
For architecture description we use ACG (Abstract
Component Graph) [10] approach. The graph nodes represent
the software components, and the edges represent the links
between these components. The evolution is implemented by
an architecture transformation specified by a rewriting rule.
In this context we are interested in group communication
support applications. These applications require adaptation
ability to their various contexts. We use direct and mediated
Producer-Consumer architectural styles [7]. To illustrate the
proposed models and their transformations, we consider a
case study of Emergency Management Activities (EMA)
involving several cooperating participants or nodes having
different roles and functions dealing with several context
changes.

This paper, is organized as follows. In section 2, we
present the related work. In section 3 we detail our
refinement approach for adaptation illustrated on the
considered case study. Then, in section 4, we propose a
simulation for the refinement approach where we handle the
internal structure of nodes and the communication links
between the nodes. Finally, in section 5 we conclude.

2. Related work

The adaptation solutions suggested in the literature are
defined in various ways. Adaptation may be ruled by
architecture based transformation laws. In [9] the
classification of common adaptation techniques are identified
and classified. The adaptation is architectural when the
structure of adaptive services can be modified. [9, 8] provides
frameworks for designing Transport level protocols whose
internal structure can be modified according to the
application requirements and network constraints. The
replacement of a processing module by another(s) can
implement adaptation actions, following a plug and play
approach where the new component has the same interfaces
as the replaced one. The applications have requirements and
constraints provided by entities exchanging high level
information. Requirements and constraints may change
dynamically depending on the supported cooperative activity
and its evolution. Two different adaptability approaches may
be distinguished: the design time adaptability and the run
time adaptability. For the design time adaptability, we can
find commercial tools for application architecture adaptability
like AAA of HP [2], a design support tool. The AAA tool
handles the application development cycle and optimizes the
resource value, by insuring that the infrastructure answering

clearly and in a measurable way to activity requirements. For
the run time adaptability [9] presents several adaptation
techniques among which use proxy services, change model of
interaction and reorganize application structure. Adaptability
is also implemented by multimedia retrieval systems like the
search engine framework CARSA [4]. Behavioral and
architectural adaptability are the two approaches addresses by
the proposed solutions. [6] describes a distributed image
visualization application that consists of components that
implement different compression methods. On the other side,
at the application level, [13] addresses the need for adaptation
in video streaming applications distributed over the Best-
Effort. In general the application adaptability is implemented
as a handling of features provided by lower layers. The
adaptation can also be managed at the component-to-
component communication level, aiming at supporting a
given application level architecture and considering resource
related constraints. Multiple architectures may be designed by
adopting partially or totally centralized and distributed styles
[9, 11]. Different criteria may be used for routing and
connecting strategies. Similarly to [5], we can consider typed
channel managers where producers and consumers are
connected to one or another manager depending on the type
of information they produce or consume. The Peer to Peer
technology [12] has initiated publishing and dynamic
discovery of components. Service-oriented technologies as
Web Services constitute a continuation towards this direction.
Service-Oriented Architectures (SOA) are based on
dynamically publishing and discovering services. This kind
of architectures provides the possibilities to dynamilically
compose services for adapting applications to contexts.
Service descriptions are published, via the registry, by service
providers and dynamically discovered by service requesters.
We distinguish also some projects that focus on the
middleware-level adaptation like “The Adaptive Application
Project” [1].The goal of “The Adaptive Application Project”
is to provide a programming framework (a programming
model, language, compiler, and runtime environment) that
enable programmers to design, develop, and optimize the
performance of adaptive distributed applications. Here we
can say that the adaptation question is widely addressed in the
literature, we distinguish two different approaches: design
time adaptability and run time adaptability where we find
several adaptation techniques. This diversity is extended here
by answering to questions dealing with energy management
and computing load balancing.

3 Adaptation approach

Managing architectural adaptation requires considering
abstraction levels dedicated to specific parts of the whole
adaptation, and self-adaptation has to be managed in a
coordinated manner both within and between these
abstraction levels. Distinguishing these abstraction levels
allows designers and developers to master specification and
implementation of adaptation rules. For a given configuration
An,1 at level n, multiple configurations (An−1,1, ,An−1,p) may
be implemented at level n-1. Adapting the architecture to
constraint and requirement changes at level n-1 by switching
among these configurations allows maintaining unchanged
the n-level configuration. Likewise, when adaptation requires
changes at level n, this may need no change at level n-1 if

initial and new configurations of level n (e.g. changes from
An,1 to An,2) have common implementations at level n-1 (e.g.
An−1,p). We consider distributed component-based
applications deployed on mobile communication nodes. The
communication has to be maintained adapted to the context
change factors. These factors are given according to the
application and the node properties. Being aware of these
factors, that we call context, provides a certain form of
adaptability. The application and the node properties are: The
mobile nodes move in a limited perimeter, each node has
limited resources in term of energy and memory, priorities
are associated with the communications among nodes.
Moreover, on the same links it is possible to have several
types of data with different priority degrees. We drive the
evolutions between levels by considering the context
changes.

3.1 Case study

Recent advances in computing and networking technologies
enabled the deployment of complex group communication
activities, such as Emergency Management Activities (EMA)
involving mobile users cooperating within a common
mission. This section presents the graph-based models of the
three abstraction levels through a case study related to EMA-
like activities.

3.1.1 General description

We assume an EMA group composed of a fixed

controller, say A1, and two investigators, say A2 and A3,
moving within the exploration field. For simplifying the
model explanation, coordinator and controller are merged
into a single role: controller. Functions performed by
investigators include Observing the exploration field and
Reporting feedbacks to the controller. Two kinds of
feedbacks are distinguished: feedbacks D are Descriptive
data; they are transmitted by means of audio/video; feedbacks
P are Produced data; they express the analysis of the situation
by an investigator. They are transmitted by means of audio.
Investigators A2 and A3 provide continuous feedbacks D to
A1; they also provide periodical feedbacks P; there is no
priority difference between communications A2-A1 and A3-
A1, but transmission of feedbacks D is more important than
those of feedbacks.

3.1.2 Architecture Modelling

The architecture is represented by a directed graph, the
vertices represent communication devices hosted by mobile
nodes. The edges are labelled by the sent data types from a
node to another and the priority of each type. The edge
direction indicates the data flow direction. The producer and
consumer are respectively at the tail and the head of the
arrows. We also specify the factors the architecture has to
adapt. This consists in defining the context elements. The
elements we consider are: the energy level of the nodes, the
memory saturation level of the nodes and the bandwidth
available on the link. These three factors and the
communications priority degree change during time and
trigger the architecture transformations to adapt the
application to these changes.

3.2 Architectural Refinement

We describe a refinement approach which implements the
initial architecture on an event-based architecture, and on
which we act for the adaptability. We proceed step by step.
Initially we handle the internal structure of each node and
then we refine the communications links between the nodes.

3.2.1 The nodes internal structure processing

We also proceed here step by step. Step 1 implements
Functional entities decomposition. We consider now, the case
of a node (A1). We split the entities inside the node according
to their functional role. In our example, we consider that each
node has a communication entity C and several processing
entities T. At the end of this step, it is possible to proceed in
two manners: Mediated Producer-Consumer style and Direct
Producer-Consumer style. We detail first, the reasoning for
the mediated Producer- Consumer style. Step 2 addresses
communication message filtering. The communication entity
receives a number of messages addressed to the different
processing entities. The event server has the role of an event
dispatcher. In one node, we distinguish one communication
entity (C) and two processing entities (TD and TP). Each
entity manages one flow type (D or P). Step 3 addresses the
communications type choice. We consider the
communication between the processing entities and the
communication entity inside each node. The D data type has
a high priority, therefore we choose a push link. A push link
makes it possible to transfer the data as soon as it is
produced. The P data type has a low priority, therefore we
choose a pull link. A pull link makes it possible to transfer
the data on demand of the consumers. We consider the
internal structure of a refined producer node. The associated
processing entity TD pushes the data when it is produced. On
the other hand, the associated processing entity TP pulls the
data when it is requested. We consider the internal structure
of a refined consumer node. The communication entity C
pushes the D data type because it has a higher priority. We
detail now, the logic reasoning for the direct Producer-
Consumer style. Like for step 2 when we consider the
mediated Producer-Consumer style, we choose a push link
which makes it possible to transfer the D data type as soon as
it is produced. We choose a pull link which makes it possible
to transfer the data on the consumer demand. In direct
Producer-Consumer style, we do not use a filtering entity
(event dispatcher). We have direct communication links
between the communication entity and the processing
entities. The functional differentiation makes it possible to
deactivate the least important processing entities when the
energy level of the nodes goes down.

3.2.2 Communication links refinement

The communication link refinement is related to the current
context. To be able to adapt the system, we associate to each
link a “rate”. The rate represents the data transfer frequency
by a node on a link. Through the rate and the nature of the
link we will act to adapt the system. We also define
thresholds associated with each parameter the context to
define the rates witch trigger the adaptability actions. For
instance, we define the scale for the energy level. If the node

energy level is between 80% and 100%, the required rate is
PR1. If the node energy level is between 40% and 80%, the
required rate is PR2. If the node energy level is between 0%
and 20%, the required rate is PR3. This rule is defined at the
system deployment time and can be modified during the
execution automatically or through an administrator
intervention. Similar rules are associated with the bandwidth
available on the link and the memory saturation level on the
node. For each link, we associate a priority degree which is
initially set to zero. Each factor can require a specific rate and
we define a global link rate. We adopt the following policy.
For two nodes A and B, each node calculates the rate
required according the threshold rules. We have for each
node: ER the rate associated with the energy level of the
node; MR the rate associated with the memory saturation
level of the node; BR the rate associated with the bandwidth
available on the link and LR the rate associated with the link
priority degree. Each node calculates his global link rate

(GR) as follows: µγβα
µγβα

+++
+++ LRBRMRER

. Where

the values α, β, γ and µ are weights that allow an importance
degree to be associated with each factor. For instance, if the
administrator knows that for a specific node the memory
saturation level is the most important factor, he/she sets β to a
value higher than α, γ and µ. The threshold scales for the four
factors and the weights constitute the node profile. This
profile depends on the technical characteristics of the node in
the deployed application. Node A and Node B calculate their
global link rates (GRA,GRB). Then the link rate LR is
calculated. The new LR corresponds to the minimum
between the GRA and the GRB. We obtain newLR= minimum
(GRA, GRB). At the end of the operation, we reach a tradeoff
which provides the adaptability until the next context change.

4 Simulation model and results

To validate our approach, we simulate the behaviour of an
architecture composed of four mobile nodes. The D data type
has a high priority and the P data type has low priority. We
apply the three refinement steps and we adopt the direct
Producer-Consumer style. Each link is mapped on a push or a
pull interaction link. The pulls implement the transfer of data
P because this transfer has a low priority. The pushes
implement transfer of the data D because this transfer has a
high priority. We consider the internal structure of each node,
our approach allows to deactivate the component that the
node does not use. We have two types of processing
components (TD and TP). In each node we represent only the
active components. For node A4, we deactivate TD because
this node does not process D data type. For the other nodes,
we have the communication entity (C) and two processing
entities (TD and TP). The links between the two processing
entities and the communication entity are of type push or
pull. We associate the pull interaction mode with the transfer
of data P. And we associate the push interaction mode with
the transfer of the data D. Each node has a profile: a rate rule
and four factor importance values α, β, γ and µ.

4.1 Simulation parameters

To simplify, we focus here, on the energy evolution for each
node. We consider two random variables: X that represents a

Poisson law of parameter λ, which characterizes the node’s
message production and Y that represents a Gaussian law
with parameters m and σ, which characterizes the bandwidth
variation on the links. For the memory state, we use a trace of
a mobile node previously logged and we take into account the
variable X. We calculate the node energy according to the
node state (consuming or producing, inactivity and idle).

4.2 Results and interpretations

We give here the curves of node energy evolution during
time with and without adaptability. We draw the curves that
show the energy evolution on each node with and without
adaptability.

Fig 1. Energy evolution on nodes

We estimate how much time the node stays “alive” or has
enough energy to work properly. For node A4 (fig 1), we
notice that adaptability provides energy 23 minutes (14%)
more. This is due mainly to the deactivation of the processing
entity TD and the fact that node A4 makes only pulls. For node
A2 (fig 1), we notice that adaptability provides energy 19
minutes (11%)more. This is due mainly to the adaptation of
the push rate. During simulation, the energy decrease made
the node decrease the push rate. For nodes A1 and A3 (fig 1),
the improvement was only of 8 minutes (5%) and can be
improved by a different tuning of the rate rules and the
parameters α, β, γ and µ.

5 Conclusion and perspective

We presented in this paper an approach of adaptation for
group communication support application with context-aware
architectures sensitive to the context. We consider different
refinement steps that make it possible to decompose the
nodes into processing and communication entities. It also
allows us to act on the communication links. In particular, we

can tune the rate on a link. This adaptation is not static, but it
is specific to each node through, the weights α, β, γ and µ
and the threshold scales according to the role of the node. To
validate our approach, we provided a model to simulate the
architectural quantitative attributes. The effectiveness of our
approach was shown but we still work on adjusting the
importance parameters α, β, γ and µ and the threshold scales.
We plan in addition, to develop an ontology that will
characterize better the context and its various parameters.

Acknowledgements

This work has been done within the context of the ITEA
UseNet Project.

References

[1] The Adaptive Application Project home page,

http://wwwsal.cs.uiuc.edu/vadve/adaptive.html. may 2007.
[2] The HP AAA presentation page

http://h20219.www2.hp.com/services/cache/10096-0-0-
75-135.html. last visited may 2007.

[3] R. Allen and D. Garlan. A formal basis for architectural
connection. ACM Transactions on Software Engineering
and Methodology, 6(3):213–[12]9, 1997.

[4] K. Bade, E. W. D. Luca, A. N¨urnberger, and S. Stober.
Carsa - an architecture for the development of context
adaptive retrieval systems. In K. van Rijsbergen, A.
N¨urnberger, J. M. Jose, and M. Detyniecki, editors,
Adaptive Multimedia Retrieval: User, Context, and
Feedback. Springer-Verlag, 2006.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[6] F. Chang and V. Karamcheti. Automatic configuration
and runtime adaptation of distributed applications. In
HPDC, pages 11–20, 2000.

 [7] P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
Technical report, EPFL, Lausanne, Switzerland, 1999.

[8] E. Exposito, P. Snac, and M. Diaz. FPTP: the XQoS
aware and fully programmable transport protocol. In Proc.
The 11th IEEE International Conference on Networks
(ICON’2003), Sydney, Australia, 2003.

[9] A. Friday, N. Davies, G. Blair, and K. Cheverst. Developing
adaptive applications: The most experience. Integrated
Computer-Aided Engineering, 6(2):143-157, 2000.

[10] K. Guennoun, K. Drira, and M. Diaz. A proved
componentoriented approach for managins dynamic
software architectures. In Proc. 7th iasted international
conference on software engineering and
application,Marina Del Rrey, CA, USA, 2004.

[11] Microsoft. .Net passport technical overview, 2001.
www.sec.informatik.tu-darmstadt.de/de/lehre/SS03/itsec2/
uebungen/wp engl net passport.pdf.

[12] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-peer
computing. Technical Report 2002-57RI, HP Inc, 2002.

[13] D.Wu, Y. Hou,W. Zhu, Y. Zhang, and J. Peha.
Streaming video over the internet: Approaches and
directions. IEEE Transactions on Circuit and Systems for
Video, 11(3):282–300, 2001

http://wwwsal.cs.uiuc.edu/vadve/adaptive.html
http://h20219.www2.hp.com/services/cache/10096-0-0-
http://www.sec.informatik.tu-darmstadt.de/de/lehre/SS03/itsec2/

