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Abstract
Following the recent work of J-F. Aujol and A. Chambolle, a

decomposition model of grayscale images into three components

(geometrical, texture and noise) has recently been proposed. In-

spired by this work, J-F. Aujol and S. Ha Hung have introduced a

new decomposition model for color images. This model splits an

image into only two components: a geometrical component and

a texture component.

The major contribution of this paper is to add a noise com-

ponent into the image decomposition model for color images in

order to better separate texture from noise. Several numerical

exemples illustrate the benefit of our approach.

Introduction
Decomposing an image into meaningful components is an

important and challenging inverse problem in image processing.

Y. Meyer has recently introduced [8] a new model to split

a given image into two components: a geometrical component

and a texture one. Inspired by this work, numerical models have

been developed to carry out the decomposition of grayscale

images.

In [1], J-F. Aujol and A. Chambolle propose a decom-

position model which splits a grayscale image into three

components: the first one, u ∈ BV 1, containing the structure of

the image, a second one, v ∈ G 2, the texture, and the third one,

w ∈ E 3, the noise.

In [2], J-F. Aujol and S. Ha Kang, introduce an algorithm

for a color decomposition model which splits a color image into

only two components: a geometrical one and a texture one. For

this decomposition, they use a generalization of Meyer’s G norm

applied to RGB vectorial color image, and use Chromaticity

and Brightness color model with total variation minimization [4].

In this paper, an extension of the decomposition al-

gorithm for color images is presented. More precisely, the

1BV (Ω) is the subspace of functions u ∈ L1(Ω) such that the follow-
ing quantity, called the total variation of u, is finite:

J(u) = sup

{

∫

Ω
u(x)div(ξ (x))dx

}

such that ξ ∈C1
c (Ω,R2), ||ξ ||L∞(Ω) ≤ 1

2G is the subspace introduced by Meyer for oscillating patterns. In
such a space oscillating patterns have a small norm.

3E is another dual space to model oscillating patterns.
.
B

1

1,1 is the

usual homogeneous Besov space and the dual space of
.
B

1

1,1 is the Banach

space E =
.
B

∞

−1,∞

addition of a noise component to the decomposition model of

J-F. Aujol and S. Ha Kang [2] is proposed.

This article is organized as follows: in the first sec-

tion, the litterature about “Different decomposition models”

is presented and the following section introduce the ”addition

of a noise component in the color decomposition model”. In

section “A new algorithm for the color decomposition model”

our new algorithm is exposed. After presenting our numerical

experiments, the choice of parameters is explained in the final

section.

Different decomposition models
The grayscale decomposition model

In [1], J-F. Aujol and A. Chambolle propose a discretized

functionnal for splitting a grayscale image f into a geometrical

component u, a texture component v and a noise component w.

The decomposition is given by minimizing a functionnal F:

in f
(u,v,w)∈X3

F(u,v,w) (1)

with

F(u,v,w) = J(u)+ J∗
(

v

µ

)

+B∗
( w

λ

)

+
1

2α
‖ f −u− v−w‖

L2

where J(u) is the total variation related to the extrac-

tion of the geometrical component, J∗
(

v
µ

)

, B∗
(

w
λ

)

are the

Legendre-Fenchel transforms4 of respectively J and B [3] for

the extraction of texture and noise components, parameter α
controls the L2 −norm of the residual f −u− v−w and X is the

discrete euclidean space R
N×N for images of size N ×N.

For minimizing this functionnal, Chambolle’s projection

algoritm is used [1]. The Chambolle’s projection P on space

λBG
5 of f is denoted PλBG

( f ) and is solved by an iterative

algorithm. This algorithm starts with P0 = 0 and for each pixel

(i, j) and at each step n+1 we have:

Pn+1
i, j =

Pn
i, j + τ

(

△div(Pn)− f
λ

)

i, j

1+ τ
∣

∣

∣△div(Pn)− f
λ

∣

∣

∣

i, j

(2)

In [3] a sufficient condition ensuring the convergence of this

algorithm is given: τ 6
1
8 .

4The Legendre-Fenchel transform of F is given by F∗(v) =
supu(〈u,v〉L2 −F(u)), where 〈., .〉L2 stands for the L2 inner product [9]

5λBG = { f ∈ G/‖ f‖G 6 λ}



To solve (1), the authors propose to solve successively three

different minimization problems.

At step n :

1. u and v have been previously computed, we estimate:

w̃ = PδBE
( f −u− v)

2. then we compute:

ṽ = PµBG
( f −u− w̃)

3. and we finally obtain:

ũ = f −u− ṽ− w̃−PλBG
( f − ṽ− w̃)

This operation is repeated until :

max(|ũ−u|, |ṽ− v|, |w̃−w|) 6 ε

In [1], the authors replace PδBE
( f − u − v) by

f − u − v − WST ( f − u − v,δ ) where WST ( f − u − v,δ )
stands for the wavelet soft-thresholding of f − u − v with

threshold δ defined by :

Sδ

(

d
j
i

)

=
{ d

j
i −δ sign

(

d
j
i

)

i f |d
j
i | > δ

0 i f |d
j
i | 6 δ

(3)

where d
j
i is the wavelet coefficient, j the resolution and

i ∈ {x,y,xy}.

Color decomposition model
For decomposing color images, J-F. Aujol and S. Ha Kang

propose the following functional [2]:

in f
u,v

{

J(u)+ J∗
(

v

µ

)

+
1

2λ
‖ f −u− v‖L2

}

(4)

The higher λ is, the more negligible the residual f − u− v

is. µ controls the ‖.‖G norm of v.

For solving this functional, the authors proceed as follows :

1. v being fixed, we search for u as a solution of :

in f
u

(

J(u)+
1

2λ
‖ f −u− v‖2

)

2. Then, u being fixed, we search for v as a solution of :

in f
v
‖ f −u− v‖2

This operation is repeated until :

max(|ũ−u|, |ṽ− v|) 6 ξ

with ξ a given threshold. To solve these two minimization

problems, the direct total variation minimization approach

is used[5], since the Chambolle’s projection only works for

grayscale images.

The aim of our work is to add a noise component to this

color decomposition model in order to better seperate texture

from noise.

Adding a noise component to the color de-
composition model

To remove noise, a large variety of approaches have been

proposed in the litterature, including wavelet shrinkage and non

linear diffusion filtering. We use a connection given by Weickert

[11] between these two techniques to introduce the noise compo-

nent in the image decomposition model.

Let us now focus our attention on color image wavelet

shrinkage. In the litterature, the different color channels are fre-

quently shrunk marginally. This leads to create artifacts at color

edges. On the contrary for nonlinear diffusion filtering of color

images, a process with a joint diffusivity that steers the evolution

of all three channels is often used [7].

By considering an explicit discretisation and relating it to

wavelet shrinkage, Weickert gives shrinkage rules where all

channels are coupled [11]. In contrast to classical shrinkage (3)

where the wavelet coefficient are skrunken seperately, this leads

to novel shrinkage rules where the wavelet coefficients are cou-

pled :

Sδ

(

d
j
i

)

= d
j
i



1−4δ
1

√

d
j
x +d

j
y +2d

j
xy



 ,∀i ∈ {x,y,xy}

To steer the evolution of all three channels, the follow-

ing shrinkage function Sδ for the wavelet coefficient dc j

i (c ∈
{r,g,b}) is proposed :

Sδ

(

dc j

i

)

= dc j

i









1−12δ
1

√

∑
o∈{r,g,b}

(

do j

x +do j

y +2do j

xy

)









(5)

with ∀i ∈ {x,y,xy} and ∀c ∈ {r,g,b}.

If this function is used in the algorithm of J-F. Aujol and

S. Ha Kang, a third component, the noise is obtained. In the

following section, this shrinkage function is named W
rgb
ST ().

A new algorithm for the color decomposition
model

Our algorithm for splitting a color image f into a geometri-

cal component u, a texture component v and a noise component

w is the following :

(1) Initialization of f ,u,v,w where f0 is the original

image

f = f0, u1 = f0

v1 = 0 w1 = W
′rgb
ST ( f )

(2) Iterate N times or until max(|un+1 −un|, |vn+1 − vn|,

|wn+1 −wn|) 6 ξ

(a) Seperate f ,un,vn,wn into brightness ( fb,ub,

vb,wb) and chromaticity ( fc,uc,vc,wc)

components

fb = ‖ f‖ fc =
f

‖ f‖

ub = ‖un‖ uc =
un

‖un‖



vb = ‖vn‖ vc =
vn

‖vn‖

wb = ‖wn‖ wc =
wn

‖wn‖

(b) Iterate on k between 1 to M and update uc

and ub

uk+1
c = F

ε,λc
α

(

uk
c, fc − vc −wc

)

uk+1
b = F

ε,λb
α

(

uk
b, fb − vb −wb

)

uk
c = uk+1

c et uk
b = uk+1

b

(c) Update u and calculate the residual r

un+1 = uk
c ∗uk

b

rn = f −un+1 − vn −wn

(d) Iterate for k between 1 to M for updating r

rk+1 = F
ε,µ
α

(

rk, f −un+1 − vn −wn
)

rk = rk+1

(e) Update v and w

vn+1 = f −un+1 − rn+1 −wn

wn+1 = f −un+1 − vn+1 −W
′rgb
ST ( f −un+1

−vn+1)

(f) Preparation for the next iteration

un = un+1

vn = vn+1

wn = wn+1

with :

F
ε,λ
α

(

u,u0
)

= ∑
β j

h
ε,λ
αβ j

(u)uβ j
+h

ε,λ
αα (u)u0

α

h
ε,λ
αβ

(u) =
wε

αβ
(u)

λ +∑γ∼α wε
αγ (u)

h
ε,λ
αα (u) =

λ

λ +∑γ∼α wε
αγ (u)

wε
αβ (u) =

1
√

|∇α u|2 + ε2
+

1
√

|∇β u|2 + ε2

where α , β and γ are neighbouring pixels of u. For more details,

see [5].

and :

W
′rgb
ST ( f ) = 1

5 (W
rgb
ST ( f (x−1,y))+W

rgb
ST ( f (x+1,y))

+W
rgb
ST ( f (x,y))+W

rgb
ST ( f (x,y−1))

+W
rgb
ST ( f (x,y+1)))

for W
rgb
ST (), refer to section “Adding a noise component to the

color decomposition model”. An averaging of the results for

four shifted possibilities is computed in order to avoid block

effects.

Numerical experiments
Figure 1 presents numerical results of image decomposi-

tions obtained with the algorithm of Aujol and Kang and our new

model. The following parameters values have been used in our

experiments:

δ = 2 µ = 0.1
λc = 0.01 N = 2

λb = 0.05 M = 30

(a) (b)

f

u

v

w

u+ v
Figure 1. An image decomposition with two models : column (a) model of

J-F. Aujol and S. Ha Kang and column (b) our model

By observing the recomposed image u+v for each color de-

composition model, we can note that our decomposition model

smoothes better the homegeneous zones. Moreover, figure 2

shows that the recomposed image contains less noise with our

model.

(a) (b)

Figure 2. Detailed view of the recomposed image u+v for the two models

: column (a) model of J-F. Aujol and S. Ha Kang and column (b) our model

A similar observation can be done on figure 3. It represents

the error between the original image without noise and the



recomposed image u + v using the two models (δ on the

absciss).

Figure 3. Error plots between the original image without noise and the

recomposed image u+ v using UV model (in red) and using UVW model (in

blue) with the variation of δ on the absciss

Two things can be noted on these plots :

• the error between the original image and the recomposed

image u+v of Aujol and Kang is always the same, because

this model does not take the noise into account. This error

is used as a reference for the comparison with our model.

• the error between the original image and our color decom-

position model starts by decreasing and is followed by an

increase. The decrease is due to the subtraction of noise

to the noisy image so that u + v approaches the original

image. The increase of the error is caused by an over

extraction of noise: a part of the image texture is added

to the noise component. The reconstruction u + v and the

original image do not match anymore.

Choice of Parameters
In this section, the parameter values are discuted.

Fig. 4 shows that the smaller the couple (λc,λb), the

higher the regularization of u. This parameters rule the strengh

of smoothing.

Figure 4. From left to right : increasing values of couple (λc,λb)

Fig. 5 shows that the smaller µ is, the higher the extraction

of texture in v. This parameter is very sensitive as it can mix the

texture part and the noise part.

Figure 5. From left to right : increasing values of µ

Fig. 6 shows that the higher δ is, the higher the extraction

of the noise will be. This parameter is also crucial as if too high,

the texture of the image can be extracted in the noise component:

it is a trade-off between parameters µ and δ .

Figure 6. From left to right: increasing values of δ



Conclusion
In this paper, a new decomposition algorithm has been

presented, which can be applied for color image denoising. It

combines the total variation minimization model of J-F. Aujol

and S. Ha Kang for image decomposition, with a new shrinkage

function for the wavelet coefficients.

In our color decomposition model, Haar analysis filters

are used. Others filters could improve the results for image

denoising by potentially reducing block artifacts. However in

this case formula (5) should be changed.

This method can be extended to the temporal domain in

order to process videos. If the color decomposition model is

applied directly on each image, only the spatial information can

be extracted. Future prospects are to extend the analysis to time,

leading to a better extraction of spatial and temporal contents.

This improved decomposition could be promising for analyzing

and characterizing spatio-temporal patterns such as dynamic

textures [6].
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