
HAL Id: hal-00344998
https://hal.science/hal-00344998

Submitted on 8 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal performance evaluation of control architecture
in automation systems

Pascal Meunier, Bruno Denis, Jean-Jacques Lesage

To cite this version:
Pascal Meunier, Bruno Denis, Jean-Jacques Lesage. Temporal performance evaluation of control ar-
chitecture in automation systems. 6th EUROSIM Congress on Modelling and Simulation (EUROSIM
2007), Sep 2007, Ljubljana, Slovenia. CDRom paper N°39. �hal-00344998�

https://hal.science/hal-00344998
https://hal.archives-ouvertes.fr

TEMPORAL PERFORMANCE EVALUATION OF

CONTROL ARCHITECTURE IN AUTOMATION

SYSTEMS

Pascal Meunier, Bruno Denis, Jean-Jacques Lesage

LURPA, ENS Cachan, UniverSud Paris

61 av. du Président Wilson, F-94230 Cachan, France

pascal.meunier@lurpa.ens-cachan.fr (Pascal Meunier)

Abstract

The performances of automation systems are strongly linked to the performances of their

control architecture. These architectures are the merger of a hardware structure – industrial

computers and logic controllers connected to networks and fieldbuses – and of software

components – implantation control functions. To manage these performances, the control

engineer must evaluate them at each stage of the life cycle: from the project requirements to

the setup stage, including the detailed design.

In this paper, we present a method which evaluates timed performances of networked

automation system and which guides the engineer throughout the control architecture

development. A modular design has been retained to model the dynamic behaviour of the

control architecture using Timed Coloured Petri Nets. To begin we present the design of

generic modular models and we explain how these modules are instantiated and assembled to

build the dynamic model of a whole control architecture. Next we present some enrichments

of the assembled model in order to simulate the behaviour of the control architecture. These

complements are some event generators – to excite the models – and some event observers –

to detect, to date and to log the relevant events. Then we present the simulation results of four

different timed performances on the same architecture. These results take the form of

histograms of 10,000 simulated delays for each evaluated performance. Finally, the method

suggested for the model construction is validated. by confrontation between the results of

model simulation and the measurement of the real control architecture.

Keywords: Control architecture, temporal performance, evaluation, simulation, timed

coloured Petri nets.

Presenting Author’s biography

Bruno DENIS obtained his Ph.D. in the field of control and automation system in 1994

at the University Nancy I. He currently holds the position of Associate Professor at the

"Ecole Normale Supérieure de Cachan" close to Paris in France. His main research

interest is the dependable control in automation system using approaches like simulation

or formal method such as model-checking.

1 Introduction

A lot of performances of automated systems rely on

temporal performances of their control architecture.

Engineers must then be able to evaluate these

performances during all phases of the system life

cycle. The preliminary project is particularly crucial

because in this phase a solution of control architecture

is selected there with still not accurate information and

sometimes the need for working quickly when the

goal is to response to a call for tenders.

In order to meet this need, we developed a method of

generic and modular modelling of control architecture

using timed coloured Petri nets. This modelling takes

into account data processing devices, communication

devices and functions to be ensured in the system.

Simulation of obtained models makes it possible to

evaluate the expected temporal performances of

modelled architecture.

In this paper we explain first, the context and

objective of this work. After that, modelling principles

will be presented. We will underline the generic and

modular characteristics of our method. Simulation of

the Petri net constructed models will be detailed in a

second part of the paper. Finally simulation results

will be discussed. A case study will be used to

illustrate all the different aspects of the presented

works and results.

2 Context and objectives

Control architecture includes a set of treatment

devices (e.g. Programmable Logic Controllers,

industrial computers). These devices compute

necessary tasks (or functions) to control the plant.

These devices exchange information together by mean

of communication channels (e.g. networks,

field buses, crossed digital IO). A control architecture

example is given Fig. 1.

F1

Communications

F2

F3

F4 F5

F6
F7

F8 F9 F10

F11

Functions

Tasks
Hardware

components
F1

Communications

F2

F3

F4 F5

F6
F7

F8 F9 F10

F11

Functions

Tasks
Hardware

components

Fig. 1 Control Architecture Example

When control architecture is designed, some temporal

performances are required for assessment, like

reactivity (response time between an input occurrence

and its causal output) or transmission delays…

However, such temporal characteristics do not have

deterministic value. To characterize them, it is thus

necessary to identify a probability distribution

function as well as statistic indicators (minimum,

maximum, mean value...). For critical applications, the

knowledge of the maximum value corresponding to

the worst case delay is required. For all kinds of

applications, the knowledge of delay distribution is

useful. Fig. 2 presents an example of a delay of

response time in control architecture.

EventEffect

Frequency

Delay

Delay

EventEffect

Frequency

Delay

Delay

Fig. 2 Expected simulation results

3 Modelling

We developed a systematic assembly method of

generic modular Petri net models. Evaluation of time

performances is obtained by simulation of the

assembled model. High level hierarchical timed and

coloured Petri nets (K. Jensen [1]) have been retained

for modelling. Hierarchy enables modular modelling;

colours enable generic modelling while timed feature

enables delays modelling. In order to achieve complex

simulations CPNTools software [2] is used. In the

following section we present construction of the

generic models and then modelling of whole control

architecture.

3.1 Structure of modular model

Modular modelling is well adapted to the development

of the model of large systems, and the re-use of the

modelling know-how in the next studies is facilitated.

The most frequently used modules can be developed

as generic models. The model design for new study

case will be done both by instantiation of generic

models gathered in a library and, if necessary, by the

design of new specific models.

The main difficulty of modular modelling is the

identification of relevant boundaries and relevant

module interfaces. In practice the choice of the

modules is based on the modularity of the modelled

system. For the control architectures, the system

behaviour is the result of interactions between

hardware components (industrial computers,

programmable logic controllers, fieldbuses...) and

functions implemented into user’s programs. We

chose the modular aspect of hardware architecture to

structure our model. Thus the base of the model will

consist of a set of modules, where each module

describes hardware component behaviour, and where

modules are interconnected in a similar way to the

modelled components. The behaviour due to the

software part of each hardware component of

architecture (program of logic controllers) is modelled

by distinct modules. A software module (functions

implementation) will be only connected to the

hardware module which processes it.

Fig. 3 illustrates with a simple architecture the

principle which has been selected for the modularity.

The three logic controllers PLC1, PLC2 and PLC3

and the fieldbus that constitute hardware architecture

are modelled by four modules, and the program

“Prog” implemented in PLC1 is modelled by its own

module connected to the module of PLC1.

PLC1

Field bus

PLC2 PLC3

Prog.

Field bus

PLC1

PLC2 PLC3

Prog.

Modules

PLC1

Field bus

PLC2 PLC3

Prog.

PLC1

Field bus

PLC2 PLC3

Prog.

Field bus

PLC1PLC1

PLC2PLC2 PLC3PLC3

Prog.Prog.

Modules

Fig. 3 The selected principle for modular modelling

To translate this modularity into a Petri net, the

following rules were applied:

- Interfaces between the modules are made using

places of Petri net

- Exchanged data in architecture are modelled by

tokens

- In order to obtain generic models, and to avoid

the increase in interface places with the increase

in the number of senders and recipients of data

exchanges, tokens that model data are coloured

with their source and their destination.

- To interconnect the modules, rather than to add

transitions and hub places between modules, the

places interfaces having to be interconnected are

amalgamated in a fusion set. It is a set of places

so that anything that happens to each place in a

set also happens to all the other places in the set.

The places are then functionally identical. Such

places are called fusion places in CPNTools

- To distinguish the interconnection part of the
modules and the description part of the behaviour

of the modules, two hierarchy levels are used. On

the top level, modules appear as a single

transition surrounded by its interface places. That

gives a broad overview of the architecture model.

By substituting transitions of this top level net

with more detailed pages, we can bring detailed

behaviour of modules (see Fig. 4).

Detailled Level

Prog.PLC1

PLC2 PLC3

Fieldbus

Top Level Detailled Level

Prog.PLC1

PLC2 PLC3

Fieldbus

Top Level

Fig. 4 Hierarchical structure

In the next section, we present the construction of

generic model of modules.

3.2 Design of generic model of modules

In control architecture, the hardware components are

often generic; it is then useful to design generic

models of hardware components.

Each type of hardware components is associated to a

dynamic behaviour. This behaviour is parameterized

by a set of variables (cycle duration, delays…). To

design a module, initially, it is necessary to define the

module interfaces (inputs and outputs). Then in the

second time, it is necessary to define the dynamic

behaviour of the module.

To illustrate how a generic module is designed, an

example is presented for a PLC. The chosen PLC is a

widespread component of automation systems with

cyclic and non pre-emptive behaviour. Its interfaces

are connected with:

- its environment – the controlled system – via

local input output signals

- one or more fieldbuses via network interfaces

- the functions (user’s program).

To model hardware component, the determination of

its dynamic behaviour is necessary. For that two

approaches are possible: knowledge-based or

identification-based. The documentation provided by

the manufacturers gives information on the dynamic

behaviour. But this behaviour is often simple and

idealized. The experimental identification permits to

construct a behavioural model very close to reality.

But this behavioural model is often very complex, and

difficult to obtain.

The presented example is built using the information

described by Bhowal [4] for PLC free of pre-emptive

tasks. As digital computer used for automation

systems, a PLC scan its inputs, re-computes all the

logic functions of the user program and updates its

outputs. These three steps are repeated in a cyclic

manner as presented Fig. 5.

time

ExecutionI O ExecutionI O I Exec.

time

ExecutionI O ExecutionI O I Exec.

Fig. 5 Cycle of a PLC

Fig. 6 shows the generic behaviour model designed.

On the model boundary, five places provide the

interface between the module of PLC and external

behaviours. The place P1 located on the top collects

all the PLC input data. The place P8 on the bottom-

left contains the data transmitted by the PLC to its

local output signals, while the place P9 on the bottom-

right contains the data transmitted through a network.

The two places P4 and P5 on the right border provide

the interface with the modules describing the

behaviour of the functions implemented into the PLC.

On the right of the model, a sequence of three places

P10, P11 and P12 and three transitions describes the

cyclic feature of the PLC.

Net

Input

Local

Input

Local

Output

Net

Output

(x,so,id_PLC)(x,0,id_PLC)

(x,id_PLC,0) (x,id_PLC,de)

x

x

@+DelayIn @+DelayInNet

@+DelayOutNet@+DelayOut

e@+DelayO

e@+DelayEX

e@+DelayI

(x, so, de)

(x, id_PLC, Dest(x,Id_PLC))

Buffer

input

Execution

Output

Update

Input

Scan

Send

Output

Receive

from Prog.

Send to

Prog.

x x

x

x

x

x

x

e

e

e

e

e

0

0

t

t+1

t
t-1

t

t+1

t

t-1

1’e

1’0

1’0

P1

P8 P9

P2

P3

P4

P13

P10

P11

P12

P14

P5

P6

P7

(x, so, 0)

[de<>0]

Net

Input

Local

Input

Local

Output

Net

Output

(x,so,id_PLC)(x,0,id_PLC)

(x,id_PLC,0) (x,id_PLC,de)

x

x

@+DelayIn @+DelayInNet

@+DelayOutNet@+DelayOut

e@+DelayO

e@+DelayEX

e@+DelayI

(x, so, de)

(x, id_PLC, Dest(x,Id_PLC))

Buffer

input

Execution

Output

Update

Input

Scan

Send

Output

Receive

from Prog.

Send to

Prog.

x x

x

x

x

x

x

e

e

e

e

e

0

0

t

t+1

t
t-1

t

t+1

t

t-1

1’e

1’0

1’0

P1

P8 P9

P2

P3

P4

P13

P10

P11

P12

P14

P5

P6

P7

(x, so, 0)

[de<>0]

Fig. 6 Coloured Timed Petri Net of PLC behaviour

To achieve the correct behaviour, the Petri net model

deals with two types of tokens for data modelling:

- tokens that model only data to be transmitted. For

example (X) where "X" is the data

- tokens that model the data its destination and its

source. For example (X, so, de) where "X" is the

data, "so" is the identifier of source component

and "de" is the identifier of destination

component).

When a PLC input data produces a consequence on a

PLC output, a data token flows the following way: P1,

P2, P3, P4, P5, P6, P7 and finally P8 or P9. An input

token in P1 goes to P2 then to P3 where it is buffered.

All the data buffered into P3 are counted and the sum

is stored into P13. As soon as the transition “Input

scan” is fired the presence of a token in the place P10

ensures the transfer of all the data buffered into P3 to

P4. Thus the counter into P13 falls down to zero and

the transition "Execution" is fired. Without time-

consuming, another module gets data in P4 to produce

result data into P5. All the result data are buffered and

counted into P6 and the sum is stored into P14. As

soon as the transition “Output update” is fired the

presence of a token in the place P12 ensures the

transfer of all the data buffered into P6 to P7. Thus the

counter into P14 falls down to zero and the transition

"Input Scan" is fired. From P7, data are switched to

the right output place P8 or P9 depending their

destination. This switch is obtained thanks to the

“Dest” function used in the weight expression of the

arc between the transition "Send Output" and the place

P7. This function gives the next destination of a data

from its identifier and its current location (source).

In accordance with the syntax of CPNTools, time

modelling can be associated as well with the

transitions as with the outgoing arcs of the transitions.

Delays to input or output data from or to other

hardware component are modelled by timed transition

while delays of each step of the PLC cycle are

modelled by timed arcs.

At the time of the instantiation of this generic model

the following parameters will have to be instantiated:

the component identifier (Id_PLC), the input delays

(DelayIn, DelayInNet), the output delays (DelayOut,

DelayOutNet) and the PLC cycle delays (DelayI,

DelayEX, DelayO).

Before adding this generic model of PLC behavior in

a library, we have validated it by comparison between

simulation results and measurements on real PLC. The

validation of this generic model showed that it

provided very realistic results but it costs a lot of

computer time. This drawback is due to the cyclic

firing of transition, even if no data is to be treated. We

thus developed a “faster” model but less readable

presented in [5]. In the next section, we will present

the construction of a complete model.

3.3 Construction of control architecture model

Each of the behavioural models of the different

components has been obtained according to the

method described in section 3.1. The whole model of

a specific architecture has now to be built by

instantiation of generic model of components and then

assembly of component models taking into account

information flows.

To build a behavioural model of control architecture

the following information is necessary: the description

of hardware architecture, the description of functional

structure and the mapping of the functions into the

hardware components. Fig. 7 presents a hardware

architecture built around five PLC, one network of

PLC and one network of remote input-output (AS-i).

Fig. 8 presents the functional structure. For example,

data O is computed by the functions F1, F3, F8, and

F12 to produce the data O1, O2 and O3, while

function F2 queries periodically the three functions

F7, F11 and F16 for data exchange. Finally, Fig. 9

shows in which hardware component each function is

located.

PLC1

PLC2 PLC3 PLC4

PLC5

Fieldbus

AS-i

PLC1

PLC2 PLC3 PLC4

PLC5

Fieldbus

AS-i

Fig. 7 Hardware architecture

The whole model of the control architecture has now

to be built according the three following steps.

- Instantiation of all the generic modules useful for

the modelling of the control architecture, and if

necessary design of specific modules.

- Assembly of all modules by the creation of fusion

sets with the interface places .

- Development of the function “Dest” from the

functional structure and of the mapping of the

functions into the hardware components.

F6

F1

F10

F8

F17

F12

F15F19

F4

F3

O

O1

O2

O3

A1

O1

O2

O3

A1 A1

F20F18
A2 A2 A2

F9F5
T1 T1 T1

F13

F14

A2

T1

T2 T2 T2T2 T2

F2

F7

F11

F16

ED1

ED2

ED3

SD2

SD1

SD3

F6

F1

F10

F8

F17

F12

F15F19

F4

F3

O

O1

O2

O3

A1

O1

O2

O3

A1 A1

F20F18
A2 A2 A2

F9F5
T1 T1 T1

F13

F14

A2

T1

T2 T2 T2T2 T2

F2

F7

F11

F16

ED1

ED2

ED3

SD2

SD1

SD3

Fig. 8 Functional

structure

F1 F2

F3 F4 F5

F6 F7

F8 F9

F11F10

F12 F13 F14

F15 F16

F17

F18 F19

F20

PLC1

PLC2 PLC3 PLC4

PLC5

Fieldbus

AS-i

F1 F2

F3 F4 F5

F6 F7

F8 F9

F11F10

F12 F13 F14

F15 F16

F17

F18 F19

F20

PLC1

PLC2 PLC3 PLC4

PLC5

Fieldbus

AS-i

Fig. 9 Mapping of the functions into the hardware

components

PLC1

PLC2 PLC3 PLC4

PLC5

AS-i

F1 F17 F20 F2

F12 F13 F14

F15 F16 F17

F18 F19

F8 F9

F10 F11

F3 F4 F5

F6 F7

Fieldbus

PLC1PLC1

PLC2PLC2 PLC3PLC3 PLC4PLC4

PLC5PLC5

AS-iAS-i

F1F1 F17F17 F20F20 F2F2

F12F12 F13F13 F14F14

F15F15 F16F16 F17F17

F18F18 F19F19

F8F8 F9F9

F10F10 F11F11

F3F3 F4F4 F5F5

F6F6 F7F7

FieldbusFieldbus

Fig. 10 Top-level of the hierarchy of the control architecture behaviour model

Fig. 10 presents the result of instantiation. Twenty

seven modules have been instantiated from six generic

modules: PLC, master-slave PLC fieldbus, remote

input output fieldbus, regular data processing function,

data polling function, data answering function. The

instantiation task includes the setup of parameters

such as delays and data transformation. Fig. 10. also

present three fusions of the assembly task. The set of

obliquely hatched places is the fusion place which

models how the networks outputs are connected to the

PLC inputs.

The set of three vertically hatched places is the fusion

set which models the start of computation of functions

F18 and F19 into PLC5 while the set of three filled

places is the fusion set which models the end of

computation of functions F18 and F19. Finally Tab. 1

gives a part of “Dest” function obtained by crossing

the data of the Fig. 8 (functional structure) and Fig. 9

(mapping architecture).

Fig. 11 presents the whole Petri net model of the

control architecture described Fig. 8, Fig. 9 and

Fig. 10.

Tab. 1 “Dest” function definition table

Function inputs Result

Data name Id of source

component

Id of destination

component

O Process PLC1

PLC2 PLC1
O1

PLC1 Process

SD1 PLC1 PLC2

ED1 PLC2 PLC1

… … …

4 Results

In this section an example is used for three purposes:

first purpose aims to give experimental results of Petri

net simulation for four temporal performances, second

purpose aims to validate our choice of simulation of

Timed Coloured Petri net, and third purpose aims to

validate our modelling and simulation approach by

comparison between simulation results and

measurement data on a same architecture.

Fig. 11 Control architecture Petri net behaviour model

4.1 Simulation setup

Petri net simulation tools allow us to simulate marking

evolution of the model from the initial marking. To

excite the model built in section 3, we can either

define a huge initial marking to model a scenario of

events or add event generators to the model. We

choose to define event generators. Fig. 12 presents a

generator of three events (I1, I2, I3) according

uniform distributions.

Event

Generator

Ress

In_PLC

xx

@+DGEN(x)

(x, 0, DEST(x, 0))

(* Event Generator Declarations *)

val LEvents = 1‘I1 ++ 1‘I2 ++ 1‘I3;

fun DGen(x)= case x of

I1 => CPN’randint(100000,200000)

|I2 => CPN’randint(20000,220000)

|I3 => CPN’randint(50000,110000)

|_ => 0;

LEvents VRG

VII

Event

Generator

Ress

In_PLC

xx

@+DGEN(x)

(x, 0, DEST(x, 0))

(* Event Generator Declarations *)

val LEvents = 1‘I1 ++ 1‘I2 ++ 1‘I3;

fun DGen(x)= case x of

I1 => CPN’randint(100000,200000)

|I2 => CPN’randint(20000,220000)

|I3 => CPN’randint(50000,110000)

|_ => 0;

LEvents VRG

VII

Fig. 12 Generic events generator

To collect performance results, rather than extract

them from the full log file of fired transition we enrich

the model with two non-intrusive event observers, one

at the beginning of the evaluated delay (Fig. 13) and

one at the end of the evaluated delay (Fig. 14). Each

one store the token time stamp in a specific log file.

Event

Generator

Ress

In_PLC

xx

@+DGEN(x)

(x, 0, DEST(x, 0))

LEvents VRG

VII

LOG

EVENT

In_PLC
VII

C

Input (x);

Output ();

Action

Outfile := open_append (M2FILE (x)) ;

Output (!Outfile , makestring(IntInf.toInt (time()) ^ « \n ») ;

Close_out (!Outfile);

(x, 0, de)

(x, 0, de)

Event

Generator

Ress

In_PLC

xx

@+DGEN(x)

(x, 0, DEST(x, 0))

LEvents VRG

VII

LOG

EVENT

In_PLC
VII

C

Input (x);

Output ();

Action

Outfile := open_append (M2FILE (x)) ;

Output (!Outfile , makestring(IntInf.toInt (time()) ^ « \n ») ;

Close_out (!Outfile);

(x, 0, de)

(x, 0, de)

Fig. 13 Event observers

In

process

VII

LOG

EVENT C

Input (x);

Output ();

Action

Outfile := open_append (M2FILE (x)) ;

Output (!Outfile , makestring(IntInf.toInt (time()) ̂« \n ») ;

Close_out (!Outfile);

(x, so, 0)

In

process

VII

LOG

EVENT C

Input (x);

Output ();

Action

Outfile := open_append (M2FILE (x)) ;

Output (!Outfile , makestring(IntInf.toInt (time()) ̂« \n ») ;

Close_out (!Outfile);

(x, so, 0)

In

process

VII

LOG

EVENT C

Input (x);

Output ();

Action

Outfile := open_append (M2FILE (x)) ;

Output (!Outfile , makestring(IntInf.toInt (time()) ̂« \n ») ;

Close_out (!Outfile);

(x, so, 0)

Fig. 14 Effect observers

4.2 Simulation results [6]

The simulation of the behaviour model of the control

architecture presented Fig. 11 was carried out. The

computing time to simulate one hour of operating

architecture is 17 minutes. Four performances are

studied:

- the response time of a bottom-up transmission of

A1 data (alarm type),

- the response time of a top-down transmission of

O1 data (order type),

- the response time of a horizontal transmission of

T1 data, and

- delay between two reactions (O1 and O3) due to a
top-down transmission.

To obtain at least 10,000 values for each performance,

12 hours of computation were necessary. Fig. 15

presents the simulation results.

Fig. 15 Simulation results of four evaluated

performances

4.3 First analysis: Validation of the choice of
Coloured Timed Petri nets simulation

We chose to carry out a simulation of Coloured Timed

Petri nets where all the model delays (except for

model excitation) have deterministic duration. This

choice has constrained us to design detailed models to

be able to only deal with elementary delays of

constant duration. But was this the best choice to

evaluate the temporal performances? Could we use

Temporal Petri nets or Stochastic Petri nets to evaluate

the same performances with less detailed models?

Let us take the simple case where E1 data cross two

interconnected PLC as represented on Fig. 16 to

produce the R1 reaction. If we consider an approach

which models the treatment delay of a PLC by a

uniform distribution, the evaluated performance will

have the shape presented in Fig. 16.

PLC1

PLC2

E1 R1

DPLC2 + DPLC1 + DPLC2

t

DPLC2

DPLC1

t

t

PLC1

PLC2

PLC1

PLC2

E1 R1E1 R1

DPLC2 + DPLC1 + DPLC2DPLC2 + DPLC1 + DPLC2

t

DPLC2

DPLC1

t

t

DPLC2

DPLC1

t

t

Fig. 16 Stochastic approach without correlation

That comes from the result of the sum of three random

drawings. This approach does not take into account

the correlation between these phenomena: the

transmission crossing twice the same PLC, the second

delay is not independent of the first. The second

crossing is correlated with the first (Fig. 17).

PLC2 cycle

PLC1 cycle

DE1⇒⇒⇒⇒R1

E1 R1

t

t

t

PLC2 cycle

PLC1 cycle

DE1⇒⇒⇒⇒R1DE1⇒⇒⇒⇒R1

E1 R1E1 R1

t

t

t

Fig. 17 determinist approach with correlation

The Stochastic Petri nets and the Temporal Petri nets

cannot thus meet our requirements in evaluation for

temporal performances. Our choice of Coloured

Timed Petri nets for architecture modelling is

validated.

4.4 Second analysis: Simulations results versus
measurement results

To validate simulation results, it is necessary to check

their accuracy and their relevance. For that, an

experimental platform dedicated to the measure of the

temporal performances has been used to measure on a

real architecture. To check the accuracy of our

simulation, we compare the statistics of the

measurement results with simulation results.

Tab. 2 presents the absolute and relative deviations on

minimum, average and maximum values of temporal

performances A1, O1, O3-O1 and T1.

Tab. 2 Comparison of performance statistics obtained

from measure and simulation

 A1 T1 O1 O1-O3

Minimum +28ms

(25%)

16ms

(33%)

+4ms

(7%)

22ms

(24%)

Mean -5ms

(2%)

13ms

(14%)

-1ms

(1%)

-2ms

(22%)

Maximum 239 ms

(60%)

151ms

(58%)

+17ms

(9%)

-22ms

(20%)

The comparison shows that simulation allows a very

good estimation of the average and a rather good

estimation of the minimal value. On the other hand the

maximum value gives of worse results. That is

because the maximum value of transmission is

obtained when a conjunction of many phenomena

appears. If during measurement or simulation, this

conjunction is not observed, then the maximum value

cannot be known.

Moreover, we compare simulation distributions and

measure distributions. The covering rate between the

distributions is used as comparison criteria. Fig. 18

presents coverings between the distributions of

simulation and those of measurement.

The covering rates are very good. The small

deviations are explained because PLCs are modelled

with constant cycle times, whereas they are slightly

variable in reality. Simulations give a very good

estimation of the distributions of the temporal

performances of control architecture.

5 Conclusion

In this paper, we have presented a modelling method

of control architecture based on the assembly of

generic modular models described by Timed Coloured

Petri nets with deterministic delay. We showed then

how to enrich the model to carry out an evaluation of

temporal performances using simulation. Finally

simulation results have been presented.

These results were confronted with measurements on

real control architecture. This comparison have shown

that our approach which take into account the

correlation between modular behaviour gives results

very close from the real. Only the estimation of the

maximum value of performance is still difficult to

correctly evaluate with non exhaustive evaluation

method.

Our current works aim to use exhaustive methods of

exploration like model-checking to obtain a

guaranteed value of the maximum delay and to keep

simulation approach to get performance distribution.

Match = 77% Match = 71%

Match = 94%

Match = 83%

Match = 77% Match = 71%

Match = 94%

Match = 83%

Fig. 18 Comparison of performance distributions obtained from measure and simulation – bleu union green bars

are simulation results, red union green bars are measure results whereas green bars are intersections between

simulation and measure results

6 Références

[1] K. Jensen. Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Volume 1,

Basic Concepts. Monographs in Theoretical

Computer Science Springer-Verlag 2nd corrected

printing 1997. ISBN: 3-540-60943-1.

[2] Anne V. Ratzer, Lisa Wells, Henry Michael

Lassen, Mads Laursen, Jacob Frank Qvortrup,

Martin Stig Stissing, Michael Westergaard, Søren

Christensen, Kurt Jensen. CPN Tools for Editing,

Simulating, and Analysing Coloured Petri Nets.

ICATPN 2003: 450-462.

[3] Søren Christensen, Jens Bæk Jørgensen, Lars
Michael Kristensen. Design/CPN - A Computer

Tool for Coloured Petri Nets. Proceedings in

Tools and Algorithms for Construction and

Analysis of Systems, Third International

Workshop, TACAS'97, Enschede, The

Netherlands, April 2-4, 1997, p 209-223.

[4] Prodip Bhowal, Rajib Mall and Anupam Basu.

Estimating micro-PLC execution time for time

critical system design, Journal of Systems

Architecture, Volume 45, Issue 14, July 1999,

Pages 1245-1248.

[5] Pascal Meunier, Bruno Denis and Jean-Jacques

Lesage. Comparison of different modelling

approaches in simulation of Programmable Logic

Controller. IFAC conference on Control Systems

Design, CSD’00, june 2000, Bratislava (Slovak

Republic).

[6] Pascal Meunier. Evaluation de performance

d'architectures de commande de systèmes

automatisés industriels, PhD thesis of “Ecole

Normale Supérieure de Cachan” in electrical and

automation engineering, 209 p., mars 2006

