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Abstract  

The performances of automation systems are strongly linked to the performances of their 

control architecture. These architectures are the merger of a hardware structure – industrial 

computers and logic controllers connected to networks and fieldbuses – and of software 

components – implantation control functions. To manage these performances, the control 

engineer must evaluate them at each stage of the life cycle: from the project requirements to 

the setup stage, including the detailed design. 

In this paper, we present a method which evaluates timed performances of networked 

automation system and which guides the engineer throughout the control architecture 

development. A modular design has been retained to model the dynamic behaviour of the 

control architecture using Timed Coloured Petri Nets. To begin we present the design of 

generic modular models and we explain how these modules are instantiated and assembled to 

build the dynamic model of a whole control architecture. Next we present some enrichments 

of the assembled model in order to simulate the behaviour of the control architecture. These 

complements are some event generators – to excite the models – and some event observers – 

to detect, to date and to log the relevant events. Then we present the simulation results of four 

different timed performances on the same architecture. These results take the form of 

histograms of 10,000 simulated delays for each evaluated performance. Finally, the method 

suggested for the model construction is validated. by confrontation between the results of 

model simulation and the measurement of the real control architecture. 

Keywords: Control architecture, temporal performance, evaluation, simulation, timed 

coloured Petri nets. 
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1 Introduction 

A lot of performances of automated systems rely on 

temporal performances of their control architecture. 

Engineers must then be able to evaluate these 

performances during all phases of the system life 

cycle. The preliminary project is particularly crucial 

because in this phase a solution of control architecture 

is selected there with still not accurate information and 

sometimes the need for working quickly when the 

goal is to response to a call for tenders.  

In order to meet this need, we developed a method of 

generic and modular modelling of control architecture 

using timed coloured Petri nets. This modelling takes 

into account data processing devices, communication 

devices and functions to be ensured in the system. 

Simulation of obtained models makes it possible to 

evaluate the expected temporal performances of 

modelled architecture.  

In this paper we explain first, the context and 

objective of this work. After that, modelling principles 

will be presented. We will underline the generic and 

modular characteristics of our method. Simulation of 

the Petri net constructed models will be detailed in a 

second part of the paper. Finally simulation results 

will be discussed. A case study will be used to 

illustrate all the different aspects of the presented 

works and results. 

2 Context and objectives 

Control architecture includes a set of treatment 

devices (e.g. Programmable Logic Controllers, 

industrial computers). These devices compute 

necessary tasks (or functions) to control the plant. 

These devices exchange information together by mean 

of communication channels (e.g. networks, 

field buses, crossed digital IO). A control architecture 

example is given Fig. 1. 
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Fig. 1 Control Architecture Example 

When control architecture is designed, some temporal 

performances are required for assessment, like 

reactivity (response time between an input occurrence 

and its causal output) or transmission delays… 

However, such temporal characteristics do not have 

deterministic value. To characterize them, it is thus 

necessary to identify a probability distribution 

function as well as statistic indicators (minimum, 

maximum, mean value...). For critical applications, the 

knowledge of the maximum value corresponding to 

the worst case delay is required. For all kinds of 

applications, the knowledge of delay distribution is 

useful. Fig. 2 presents an example of a delay of 

response time in control architecture. 
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Fig. 2 Expected simulation results 

3 Modelling 

We developed a systematic assembly method of 

generic modular Petri net models. Evaluation of time 

performances is obtained by simulation of the 

assembled model. High level hierarchical timed and 

coloured Petri nets (K. Jensen [1]) have been retained 

for modelling. Hierarchy enables modular modelling; 

colours enable generic modelling while timed feature 

enables delays modelling. In order to achieve complex 

simulations CPNTools software [2] is used. In the 

following section we present construction of the 

generic models and then modelling of whole control 

architecture. 

3.1 Structure of modular model 

Modular modelling is well adapted to the development 

of the model of large systems, and the re-use of the 

modelling know-how in the next studies is facilitated. 

The most frequently used modules can be developed 

as generic models. The model design for new study 

case will be done both by instantiation of generic 

models gathered in a library and, if necessary, by the 

design of new specific models. 

The main difficulty of modular modelling is the 

identification of relevant boundaries and relevant 

module interfaces. In practice the choice of the 

modules is based on the modularity of the modelled 

system. For the control architectures, the system 

behaviour is the result of interactions between 

hardware components (industrial computers, 

programmable logic controllers, fieldbuses...) and 

functions implemented into user’s programs. We 

chose the modular aspect of hardware architecture to 

structure our model. Thus the base of the model will 

consist of a set of modules, where each module 

describes hardware component behaviour, and where 

modules are interconnected in a similar way to the 



modelled components. The behaviour due to the 

software part of each hardware component of 

architecture (program of logic controllers) is modelled 

by distinct modules. A software module (functions 

implementation) will be only connected to the 

hardware module which processes it. 

Fig. 3 illustrates with a simple architecture the 

principle which has been selected for the modularity. 

The three logic controllers PLC1, PLC2 and PLC3 

and the fieldbus that constitute hardware architecture 

are modelled by four modules, and the program 

“Prog” implemented in PLC1 is modelled by its own 

module connected to the module of PLC1. 
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Fig. 3 The selected principle for modular modelling 

To translate this modularity into a Petri net, the 

following rules were applied: 

- Interfaces between the modules are made using 

places of Petri net 

- Exchanged data in architecture are modelled by 

tokens 

- In order to obtain generic models, and to avoid 

the increase in interface places with the increase 

in the number of senders and recipients of data 

exchanges, tokens that model data are coloured 

with their source and their destination. 

- To interconnect the modules, rather than to add 

transitions and hub places between modules, the 

places interfaces having to be interconnected are 

amalgamated in a fusion set. It is a set of places 

so that anything that happens to each place in a 

set also happens to all the other places in the set. 

The places are then functionally identical. Such 

places are called fusion places in CPNTools 

- To distinguish the interconnection part of the 
modules and the description part of the behaviour 

of the modules, two hierarchy levels are used. On 

the top level, modules appear as a single 

transition surrounded by its interface places. That 

gives a broad overview of the architecture model. 

By substituting transitions of this top level net 

with more detailed pages, we can bring detailed 

behaviour of modules (see Fig. 4). 
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Fig. 4 Hierarchical structure 

In the next section, we present the construction of 

generic model of modules. 

3.2 Design of generic model of modules 

In control architecture, the hardware components are 

often generic; it is then useful to design generic 

models of hardware components.  

Each type of hardware components is associated to a 

dynamic behaviour. This behaviour is parameterized 

by a set of variables (cycle duration, delays…). To 

design a module, initially, it is necessary to define the 

module interfaces (inputs and outputs). Then in the 

second time, it is necessary to define the dynamic 

behaviour of the module. 

To illustrate how a generic module is designed, an 

example is presented for a PLC. The chosen PLC is a 

widespread component of automation systems with 

cyclic and non pre-emptive behaviour. Its interfaces 

are connected with: 

- its environment – the controlled system – via 

local input output signals 

- one or more fieldbuses via network interfaces 

- the functions (user’s program). 

To model hardware component, the determination of 

its dynamic behaviour is necessary. For that two 

approaches are possible: knowledge-based or 

identification-based. The documentation provided by 

the manufacturers gives information on the dynamic 

behaviour. But this behaviour is often simple and 

idealized. The experimental identification permits to 

construct a behavioural model very close to reality. 

But this behavioural model is often very complex, and 

difficult to obtain. 

The presented example is built using the information 

described by Bhowal [4] for PLC free of pre-emptive 

tasks. As digital computer used for automation 

systems, a PLC scan its inputs, re-computes all the 

logic functions of the user program and updates its 

outputs. These three steps are repeated in a cyclic 

manner as presented Fig. 5. 
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Fig. 5 Cycle of a PLC 

Fig. 6 shows the generic behaviour model designed. 

On the model boundary, five places provide the 

interface between the module of PLC and external 

behaviours. The place P1 located on the top collects 

all the PLC input data. The place P8 on the bottom-

left contains the data transmitted by the PLC to its 

local output signals, while the place P9 on the bottom-

right contains the data transmitted through a network. 

The two places P4 and P5 on the right border provide 

the interface with the modules describing the 

behaviour of the functions implemented into the PLC. 

On the right of the model, a sequence of three places 

P10, P11 and P12 and three transitions describes the 

cyclic feature of the PLC. 

Net

Input

Local

Input

Local

Output

Net

Output

(x,so,id_PLC)(x,0,id_PLC)

(x,id_PLC,0) (x,id_PLC,de)

x

x

@+DelayIn @+DelayInNet

@+DelayOutNet@+DelayOut

e@+DelayO

e@+DelayEX

e@+DelayI

(x, so, de)

(x, id_PLC, Dest(x,Id_PLC))

Buffer

input

Execution

Output

Update

Input

Scan

Send

Output

Receive

from Prog.

Send to

Prog.

x x

x

x

x

x

x

e

e

e

e

e

0

0

t

t+1

t
t-1

t

t+1

t

t-1

1’e

1’0

1’0

P1

P8 P9

P2

P3

P4

P13

P10

P11

P12

P14

P5

P6

P7

(x, so, 0)

[de<>0]

Net

Input

Local

Input

Local

Output

Net

Output

(x,so,id_PLC)(x,0,id_PLC)

(x,id_PLC,0) (x,id_PLC,de)

x

x

@+DelayIn @+DelayInNet

@+DelayOutNet@+DelayOut

e@+DelayO

e@+DelayEX

e@+DelayI

(x, so, de)

(x, id_PLC, Dest(x,Id_PLC))

Buffer

input

Execution

Output

Update

Input

Scan

Send

Output

Receive

from Prog.

Send to

Prog.

x x

x

x

x

x

x

e

e

e

e

e

0

0

t

t+1

t
t-1

t

t+1

t

t-1

1’e

1’0

1’0

P1

P8 P9

P2

P3

P4

P13

P10

P11

P12

P14

P5

P6

P7

(x, so, 0)

[de<>0]

 

Fig. 6 Coloured Timed Petri Net of PLC behaviour 

To achieve the correct behaviour, the Petri net model 

deals with two types of tokens for data modelling:  

- tokens that model only data to be transmitted. For 

example (X) where "X" is the data 

- tokens that model the data its destination and its 

source. For example (X, so, de) where "X" is the 

data, "so" is the identifier of source component 

and "de" is the identifier of destination 

component). 

When a PLC input data produces a consequence on a 

PLC output, a data token flows the following way: P1, 

P2, P3, P4, P5, P6, P7 and finally P8 or P9. An input 

token in P1 goes to P2 then to P3 where it is buffered. 

All the data buffered into P3 are counted and the sum 

is stored into P13. As soon as the transition “Input 

scan” is fired the presence of a token in the place P10 

ensures the transfer of all the data buffered into P3 to 

P4. Thus the counter into P13 falls down to zero and 

the transition "Execution" is fired. Without time-

consuming, another module gets data in P4 to produce 

result data into P5.  All the result data are buffered and 

counted into P6 and the sum is stored into P14. As 

soon as the transition “Output update” is fired the 

presence of a token in the place P12 ensures the 

transfer of all the data buffered into P6 to P7. Thus the 

counter into P14 falls down to zero and the transition 

"Input Scan" is fired. From P7, data are switched to 

the right output place P8 or P9 depending their 

destination. This switch is obtained thanks to the 

“Dest” function used in the weight expression of the 

arc between the transition "Send Output" and the place 

P7. This function gives the next destination of a data 

from its identifier and its current location (source). 

In accordance with the syntax of CPNTools, time 

modelling can be associated as well with the 

transitions as with the outgoing arcs of the transitions. 

Delays to input or output data from or to other 

hardware component are modelled by timed transition 

while delays of each step of the PLC cycle are 

modelled by timed arcs. 

At the time of the instantiation of this generic model 

the following parameters will have to be instantiated: 

the component identifier (Id_PLC), the input delays 

(DelayIn, DelayInNet), the output delays (DelayOut, 

DelayOutNet) and the PLC cycle delays (DelayI, 

DelayEX, DelayO). 

Before adding this generic model of PLC behavior in 

a library, we have validated it by comparison between 

simulation results and measurements on real PLC. The 

validation of this generic model showed that it 

provided very realistic results but it costs a lot of 

computer time. This drawback is due to the cyclic 

firing of transition, even if no data is to be treated. We 

thus developed a “faster” model but less readable 

presented in [5]. In the next section, we will present 

the construction of a complete model. 

3.3 Construction of control architecture model 

Each of the behavioural models of the different 

components has been obtained according to the 

method described in section 3.1. The whole model of 

a specific architecture has now to be built by 

instantiation of generic model of components and then 

assembly of component models taking into account 

information flows. 

To build a behavioural model of control architecture 

the following information is necessary: the description 



of hardware architecture, the description of functional 

structure and the mapping of the functions into the 

hardware components. Fig. 7 presents a hardware 

architecture built around five PLC, one network of 

PLC and one network of remote input-output (AS-i). 

Fig. 8 presents the functional structure. For example, 

data O is computed by the functions F1, F3, F8, and 

F12 to produce the data O1, O2 and O3, while 

function F2 queries periodically the three functions 

F7, F11 and F16 for data exchange. Finally, Fig. 9 

shows in which hardware component each function is 

located. 

PLC1

PLC2 PLC3 PLC4

PLC5

Fieldbus

AS-i

PLC1

PLC2 PLC3 PLC4

PLC5

Fieldbus

AS-i

 

Fig. 7 Hardware architecture 

The whole model of the control architecture has now 

to be built according the three following steps. 

- Instantiation of all the generic modules useful for 

the modelling of the control architecture, and if 

necessary design of specific modules. 

- Assembly of all modules by the creation of fusion 

sets with the interface places . 

- Development of the function “Dest” from the 

functional structure and of the mapping of the 

functions into the hardware components. 
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Fig. 8 Functional 

structure
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Fig. 9 Mapping of the functions into the hardware 

components 
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Fig. 10 Top-level of the hierarchy of the control architecture behaviour model 



Fig. 10 presents the result of instantiation. Twenty 

seven modules have been instantiated from six generic 

modules: PLC, master-slave PLC fieldbus, remote 

input output fieldbus, regular data processing function, 

data polling function, data answering function. The 

instantiation task includes the setup of parameters 

such as delays and data transformation. Fig. 10. also 

present three fusions of the assembly task. The set of 

obliquely hatched places is the fusion place which 

models how the networks outputs are connected to the 

PLC inputs. 

The set of three vertically hatched places is the fusion 

set which models the start of computation of functions 

F18 and F19 into PLC5 while the set of three filled 

places is the fusion set which models the end of 

computation of functions F18 and F19. Finally Tab. 1 

gives a part of “Dest” function obtained by crossing 

the data of the Fig. 8 (functional structure) and Fig. 9 

(mapping architecture). 

Fig. 11 presents the whole Petri net model of the 

control architecture described Fig. 8, Fig. 9 and 

Fig. 10. 

Tab. 1 “Dest” function definition table 

Function inputs Result 

Data name Id of source 

component 

Id of destination 

component 

O Process PLC1 

PLC2 PLC1 
O1 

PLC1 Process 

SD1 PLC1 PLC2 

ED1 PLC2 PLC1 

… … … 

 

4 Results 

In this section an example is used for three purposes: 

first purpose aims to give experimental results of Petri 

net simulation for four temporal performances, second 

purpose aims to validate our choice of simulation of 

Timed Coloured Petri net, and third purpose aims to 

validate our modelling and simulation approach by 

comparison between simulation results and 

measurement data on a same architecture. 

 

 

Fig. 11 Control architecture Petri net behaviour model 



4.1 Simulation setup 

Petri net simulation tools allow us to simulate marking 

evolution of the model from the initial marking. To 

excite the model built in section 3, we can either 

define a huge initial marking to model a scenario of 

events or add event generators to the model. We 

choose to define event generators. Fig. 12 presents a 

generator of three events (I1, I2, I3) according 

uniform distributions. 
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Fig. 12 Generic events generator 

To collect performance results, rather than extract 

them from the full log file of fired transition we enrich 

the model with two non-intrusive event observers, one 

at the beginning of the evaluated delay (Fig. 13) and 

one at the end of the evaluated delay (Fig. 14). Each 

one store the token time stamp in a specific log file. 
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Fig. 13 Event observers 
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Fig. 14 Effect observers 

4.2 Simulation results [6] 

The simulation of the behaviour model of the control 

architecture presented Fig. 11 was carried out. The 

computing time to simulate one hour of operating 

architecture is 17 minutes. Four performances are 

studied:  

- the response time of a bottom-up transmission of 

A1 data (alarm type), 

- the response time of a top-down transmission of 

O1 data (order type), 

- the response time of a horizontal transmission of 

T1 data, and  

- delay between two reactions (O1 and O3) due to a 
top-down transmission. 

To obtain at least 10,000 values for each performance, 

12 hours of computation were necessary. Fig. 15 

presents the simulation results.  

 

 

 

 

Fig. 15 Simulation results of four evaluated 

performances 

4.3 First analysis: Validation of the choice of 
Coloured Timed Petri nets simulation 

We chose to carry out a simulation of Coloured Timed 

Petri nets where all the model delays (except for 

model excitation) have deterministic duration. This 

choice has constrained us to design detailed models to 

be able to only deal with elementary delays of 



constant duration. But was this the best choice to 

evaluate the temporal performances? Could we use 

Temporal Petri nets or Stochastic Petri nets to evaluate 

the same performances with less detailed models? 

Let us take the simple case where E1 data cross two 

interconnected PLC as represented on Fig. 16 to 

produce the R1 reaction. If we consider an approach 

which models the treatment delay of a PLC by a 

uniform distribution, the evaluated performance will 

have the shape presented in Fig. 16. 
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Fig. 16 Stochastic approach without correlation 

That comes from the result of the sum of three random 

drawings. This approach does not take into account 

the correlation between these phenomena: the 

transmission crossing twice the same PLC, the second 

delay is not independent of the first. The second 

crossing is correlated with the first (Fig. 17). 
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Fig. 17 determinist approach with correlation 

The Stochastic Petri nets and the Temporal Petri nets 

cannot thus meet our requirements in evaluation for 

temporal performances. Our choice of Coloured 

Timed Petri nets for architecture modelling is 

validated. 

4.4 Second analysis: Simulations results versus 
measurement results 

To validate simulation results, it is necessary to check 

their accuracy and their relevance. For that, an 

experimental platform dedicated to the measure of the 

temporal performances has been used to measure on a 

real architecture. To check the accuracy of our 

simulation, we compare the statistics of the 

measurement results with simulation results. 

Tab. 2 presents the absolute and relative deviations on 

minimum, average and maximum values of temporal 

performances A1, O1, O3-O1 and T1. 

Tab. 2 Comparison of performance statistics obtained 

from measure and simulation 

 A1 T1 O1 O1-O3 

Minimum +28ms 

(25%) 

16ms 

(33%) 

+4ms 

(7%) 

22ms 

(24%) 

Mean -5ms 

(2%) 

13ms 

(14%) 

-1ms 

(1%) 

-2ms 

(22%) 

Maximum 239 ms 

(60%) 

151ms 

(58%) 

+17ms 

(9%) 

-22ms 

(20%) 

 

The comparison shows that simulation allows a very 

good estimation of the average and a rather good 

estimation of the minimal value. On the other hand the 

maximum value gives of worse results. That is 

because the maximum value of transmission is 

obtained when a conjunction of many phenomena 

appears. If during measurement or simulation, this 

conjunction is not observed, then the maximum value 

cannot be known. 

Moreover, we compare simulation distributions and 

measure distributions. The covering rate between the 

distributions is used as comparison criteria. Fig. 18 

presents coverings between the distributions of 

simulation and those of measurement. 

The covering rates are very good. The small 

deviations are explained because PLCs are modelled 

with constant cycle times, whereas they are slightly 

variable in reality. Simulations give a very good 

estimation of the distributions of the temporal 

performances of control architecture. 

5 Conclusion 

In this paper, we have presented a modelling method 

of control architecture based on the assembly of 

generic modular models described by Timed Coloured 

Petri nets with deterministic delay. We showed then 

how to enrich the model to carry out an evaluation of 

temporal performances using simulation. Finally 

simulation results have been presented. 

These results were confronted with measurements on 

real control architecture. This comparison have shown 

that our approach which take into account the 

correlation between modular behaviour gives results 

very close from the real. Only the estimation of the 

maximum value of performance is still difficult to 

correctly evaluate with non exhaustive evaluation 

method. 

Our current works aim to use exhaustive methods of 

exploration like model-checking to obtain a 

guaranteed value of the maximum delay and to keep 

simulation approach to get performance distribution. 
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Fig. 18 Comparison of performance distributions obtained from measure and simulation – bleu union green bars 

are simulation results, red union green bars are measure results whereas green bars are intersections between 

simulation and measure results 
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