N

N

Designing dependable logic controllers using the
supervisory control theory

Jean-Marc Roussel, Alessandro Giua

» To cite this version:

Jean-Marc Roussel, Alessandro Giua. Designing dependable logic controllers using the supervisory
control theory. Proceedings of the 16th IFAC World Congress, Jul 2005, Praha, Czech Republic.
CDROM paper n°04427. hal-00344918

HAL Id: hal-00344918
https://hal.science/hal-00344918
Submitted on 6 Dec 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00344918
https://hal.archives-ouvertes.fr

DESIGNING DEPENDABLE LOGIC CONTROLLERS
USING THE SUPERVISORY CONTROL THEORY

Jean-Marc ROUSSEL(I), Alessandro GIUA®

(1)LURPA, ENS de CACHAN, 61 avenue du président Wilson,
F-94235 CACHAN Cedex, France.
Jjean-marc.roussel@lurpa.ens-cachan.fr
(2)DIEE, Universita di Cagliari, Piazza d'Armi,

09123 Cagliari, Italy.
giua@diee.unica.it

Abstract: In this paper we deal with the problem of designing a controller for a discrete
event system. We argue that the classical approach of supervisory control theory (SCT) can
be used as an essential step of such a procedure. However, some of the features that make
supervisory control an attractive paradigm to solve theoretical problems are often a major
source of difficulty in implementing a controller: such is the case, for instance, of the ab-
straction level usually considered in SCT. We define a method to obtain the correct abstrac-
tion level and present a procedure to design a controller using SCT. This approach is

applied to a simple but realistic example: an automatic gate.

Copyright © 2005 IFAC

Keywords: Logic control systems, Supervisory control theory, Dependabilility, Implemen-

tation, Programmable Logic Controller (PLC).

1. INTRODUCTION

The automatic design of logic control devices for dis-
crete event systems is a problem that has received a lot
of attention in the last 40 years since the first Program-
mable Logic Controllers (PLC) appeared on the mar-
ket. Several ad hoc design approaches and examples
are discussed in the literature, but it is difficult to gen-
eralize them and human ingenuity is still an essential
component of the design procedure although formal
approaches for the design of logic controllers go back
to the 80's (Crockett, et al., 1987; Zhou, et al., 1992).

Supervisory control theory (SCT) is an approach based
on formal languages that, has influenced much of the
research on discrete event systems, since the publica-
tion of the seminal works by Ramadge and Wonham
(1989). A large body of theoretical results have ap-
peared since then, and it was expected that eventually

it would provide the basis for a technical transfer to the
industry. Unfortunately, there is still a gap between the
theoretical development and the number of applica-
tions of SCT in the industry, which are still far from
what most of the discrete event community expected
fifteen years ago.

There was an early attempt to enrich the theory with
primitives that should help in the implementation
phase, such as the notion of forcible event (Brandin
and Wonham, 1994), or to apply it to the design of
control logic for PLC (Brandin, 1996). However, ten
years later the implementation of supervisory control-
lers is still an open issue that seems to be attracting the
interest of many researchers (Balemy et al., 1993;
Akesson and Fabian, 1999; De Queiroz and Cury,
2002; Dietrich, et al., 2002; Fabian and Hellgren,
1998; Flochova, 2003; Hellgren, et al., 2002; Hollo-
way et al., 2000a; Holloway, et al., 2000b; Jeron, et
al., 2003; Leduc, et al., 2001; Liu an Darabi, 2002).

We believe that some key features that make SCT such
an attractive theoretical framework are often a major
source of difficulty in implementing a controller. We
mention three of them.

* Firstly, SCT is essentially a theory for "safeness"
control, i.e., for restricting the behaviour of the
plant to satisfy a "safety specification" that speci-
fies which evolutions of the plant should not be
allowed (what the plant should not do). However, in
most cases we have "liveness specifications" that
specify which evolutions of the plant should occur
in certain given conditions (what the plant should
do).

This appears obvious if one looks at the notion of
controllability of an event, that is based on the pos-
sibility of preventing an event occurrence. In most
cases, however, an event needs also to be forced.
This problem was discussed by Brandin and Won-
ham giving rise to the notion of forcible event
(1994) and by Holloway et al. (2000b).

Another aspect of the issue is the fact that the
notion of optimality in SCT is based on the idea of
maximal permissive control policy. This is a good
paradigm if one wants to enforce a "safety specifi-
cation" by means of a supervisor. A supervisor is a
special controller that in normal conditions should
do nothing, whereas it has to intervene when the
plant is about to enter a dangerous (or forbidden)
state. In most control applications, on the contrary,
a control law consists in choosing a particular
action without leaving any "choice" if possible (the
choice is used only to model the nondeterministic
effect of disturbance but no choice among control-
lable actions is desired. This problem was discussed
by Dietrich et al. (2001) giving rise to the notion of
"implementation" of a supervisor, i.e., of a particu-
lar controller that enables only one controllable
event at each time.

* In SCT the modelling focus is on the state of the

system and its evolution: the open loop system is
first described, then the model of the supervisor is
kept at a level of detail such that it can be used to
derive the model of the controlled system — by
standard operators, such as the concurrent composi-
tion or the computation of the supremal controllable
sublanguage.
However the purpose of modelling a discrete event
system is the design of a control structure to drive
its state space trajectories. This problem could be
approached in a different way. Given a physical
device that we will call the operating unit, i.e., the
machine in this example, we could model the con-
trol unit that effectively drives the operating unit
according to the orders received from the supervi-
sor, 1.e., from the external agent that chooses which
sequences of operations are to be executed next.
This control unit can be specified in terms of inputs
and outputs.

* Finally, while it is true that the SCT provides a gen-

eral automatic synthesis rule based on standard
operators once the plant model and the specification
language are given, formalizing a specification may
often be an exceedingly difficult task, that can only
be solved by trial and error. Personally, while work-
ing on a few simple test cases, we observed that it
was almost impossible to write a correct specifica-
tion unless a solution for the control problem was
clearly oulined.

Usually, this problem is solved by choosing a high-
level of abstraction. A higher-level description
often leads to a SCT problem that is easy to solve
but may not be the right level for converting this
solution into a control code. Thus the solution
obtained at a higher-level may be useless for imple-
mentation. This problem was discussed in the liter-
ature giving rise to the notion of "hierarchical
control" where the solution obtained at a higher-
level may help to derive a lower-level controller
(Leduc, et al., 2001), or to the notion of "conform-
ance" (Jeron, et al., 2003).

We nevertheless believe that SCT is a keystone ap-
proach for automatic design of logic controllers. But it
is also necessary to complement it with a formal meth-
odology to obtain plant and specification models at a
proper level of abstraction. In this paper, we present a
technique to verify if the abstraction-level chosen for
the plant model is correct. We also propose a design
procedure to obtain a final automaton on which the
forcible events are automatically identified.

The paper is structured as follows. In Section 2, we
present an example as a case-in-point. In Section 3 we
present a procedure to obtain the correct level of ab-
straction for the plant model. In Section 4, we present
amethod to express the specifications according to the
plant model proposed. In section 5, we give a tech-
nique to code the final automaton in an industrial con-
troller. We felt that a background section to present
SCT was not necessary: the reader is referred to the
book written by Cassandras and Lafortune (1999) for
details.

2. DESCRIPTION OF THE CASE STUDY
2.1 Structure of the system

The selected case taken from (Roussel and Faure,
2004) deals with the control of an automatic gate for a
car park. The overall system could be partitioned into
two parts: the plant to be controlled and the control
unit (figure 1). The boundary between the two parts is
imposed by the technology, and more precisely, by the
choice of inputs and outputs of the industrial control-
ler. From a technical point of view, the inputs and the
outputs of the control unit are electrical signals (which
can be modelled by Booleans) from sensors or for ac-
tuators.

Control
Electrical Unit (PLC) Electrical
signals signals
from sensors Controlled for actuators
Process

Fig. 1 Decomposition of the system

In this case study, the plant was composed of several

elements:

+ a gate with 2 limit switches to indicate when the
gate is fully open or fully closed,

* an electrical motor with 2 contactors to control the
direction (one per direction),

* areceiver for the user’s remote controls,

+ a sensor to detect the presence of a vehicle in front
of the gate.

This choice of technology imposes the inputs and the
outputs of the Control Unit (figure 2).

Vehicle detected (V)—p|
Gate Closed (CG)—p — (Op) Open
Gate Opened (OG)—p — (CD) Close

Remote Control (RC)—p

Fig. 2 Inputs and outputs of Control Unit (PLC)

2.2 Control specifications

The desired behaviour of the plant may be expressed
by the set of specifications given hereafter in plain nat-
ural language. Among these 7 specifications, the first
three are related to liveness requirements (what must
be done to perform the expected task). Specification
P4 expresses a safety requirement. Specifications P5
and P6 express constraints coming from actuators and
the last one is an assumption on the correct operation
of the sensors (the problem of sensors monitoring is
not dealt with in this study).
P1 When the remote control is activated, the gate
should open.
P2 When the gate is open with no request from the
user or no detection of a car, the gate should close.
P3 While the gate is not totally closed, the detection
of a car should cause the reopening of the gate.
P4 The gate should never be simultaneously
controlled to open and to close.
PS5 An open gate should not be controlled to open.
P6 A closed gate should not be controlled to close.
P7 The gate is never simultaneously open and closed.

2.3 Problems to solve

The code implements a procedure to compute the val-
ue of all output signals (on/off) as a function of the
state of the controlled system. This state cannot be di-
rectly observed but can be reconstructed by means of
the available sensor signals if a model of the plant is
inserted into the controller. In this approach we model
the system by a simple automaton whose change of

state is triggered by the occurrence of particular events
corresponding to the rising or falling edge of an input/
output signal. This model is constructed following the
SCT approach.

Notations:

+ Parallel composition is denoted by G = G, Il G, .

» Supremal controllable sublanguage of H based on
G is denoted by S = Supcon(H, G)

3. DESIGN OF THE PLANT MODEL

We consider that this step is the most difficult task and
that it requires particular care. The desired model must
describe the behaviour of the plant with an abstraction
level adapted to our objective: the definition of the
system control laws.

In the examples presented in the literature the level of
abstraction is often too high to allow a correct defini-
tion of the control code: the events do not always cor-
respond to the changes of value of inputs or outputs of
the control unit. A common problem consists in the
fact that there is not a clear separation between the
model of the plant and the model of controller: the
plant model in fact implicitly contains significant as-
pects that belong to the controller. To avoid this prob-
lem, we propose the following procedure.

3.1 Methodology

The procedure we propose is composed of four steps:

1 Identification of the boundary of the model. To
obtain it, it is necessary to partition the global model
in two parts: the plant and the control unit (figure 1).
The boundary of each part is imposed by the choice
of inputs and outputs of the industrial controller.

2 Definition of the list of events. To model the behav-
iour of a Boolean variable with events, it is necessary
to associate 2 events to each Boolean (Zaytoon and
Carré-Ménétrier, 2001): one for the change from 0 to
1 (rising edge) and one for the change from 1 to 0
(falling edge).

As the values of the inputs are imposed by the plant,
the corresponding events are uncontrollable.

As the values of the outputs are imposed by the con-
troller, the corresponding events are controllable.
Only events that correspond to input/output should
be used to define the model of the plant at step 3.

3 Definition of the behaviour of the plant. To avoid a
model with too high an abstraction level, we suggest
to begin with a model for each element (an elemen-
tary component) without synchronisation. In a sec-
ond step, the elementary models are composed by
means of synchronous product. The overall result of
all proposed synchronizations must be graphically
controlled to manually detect inconsistency.

4 Test for absence of control parts in the plant model.
From a technical point of view, the plant has no
means to restrict the behaviour of the control unit.
The control unit could change the values of its out-
puts as one likes. The proposed plant model must
integrate this feature. To test this point, it is neces-
sary to analyse each state of the plant model in order
to verify if the evolution of each output is possible in
the current state. If such it is not the case, a self-loop
with the forgotten event must be added.

This step is very important because these errors are
easy to make and they have important consequences.

3.2 Application to the case study

In section 2, we outlined how steps 1 and 2 can be car-
ried out for the considered example. To each Boolean
B, we have associated 2 events (">B": change from 0
to 1, "<B": change from 1 to 0).

The model of the plant is given by the 4 automata pre-

sented on figure 3 L.

* Gate: the gate has 3 states (GC: Gate fully Closed,
GO: Gate fully Opened, GhO: Gate half-Opened).
The changes of states can be directly detected
thanks to the limit switches.

* Motor: the motor has 3 states (Stop, Open, Close).
The change of states is imposed by control unit by
the changes of values of outputs. When the motor is
active, it is impossible to change the direction
because of security element in the electrical circuit.
Interactions between gate and motor are included in
this model. The position of the gate can change
only if the motor is activated in the correct direc-
tion.

The selfloop with ">op", "<op", ">cl" or "<cl"
events are necessary to avoid restricting the behav-
iour of the most permissive control system.

* Vehicle Sensor: There are only 2 states (Vehicle
detected, No Vehicle detected).

* Remote control: There are only 2 states too.

<GC >GO
LA e Gue
. <op, <cl
v @ Vehicle
T

Fig. 3 Plant Model of the automatic gate

<GC, >G0

()

Motor

The model of the plant is obtained as follows?:
Plant = (Gate || Motor || Remote || Vehicle)

1. Graphical representations of automata are obtained with
Graphiz: http://www.research.att.com/sw/tools/graphviz/

2. The composition was obtained with umdes:
http://www.eecs.umich.edu/umdes/)

4. DESIGN OF THE CONTROL MODEL

To write specifications, interactions between the con-
trol unit and the controlled process, should be clearly
expressed. In the literature, this aspect is only
broached during the implementation step. We think
that this point must be detailed earlier.

4.1 Modelling of the control unit

From a technical point of view, a control unit imple-
mented in a PLC could be considered as an infinitely
reactive system. It can distinguish all input events and
can always calculate all the consequences of each
event. We propose to model the PLC scan cycle with
an automaton with 2 states (cf. figure 4) — "Read":
Data acquisition, "Exe": Program Execution. The
change from "Read" to "Exe" depends on an uncon-
trollable event. In state "Exe", one or more controlla-
ble events could be sent. The change from "Exe" to
"Read" is conditioned by a controllable event "end".
This event signals the end of the program execution.
This event is used to simplify the specification written.

N
Read

2ce Con. events Set

Zue @ end: Controllable event

Control Unit ce

Zue Unc. events Set

Fig. 4 Model of the control system: generic part

This model must be completed with models of inputs
and outputs. We propose to model each element by an
automaton with 2 states (one for each value of the
Boolean). For an output, the initial state corresponds to
the 0 value. For an input, the initial state must be fixed
according to hypotheses taken for the plant model.
We denoted G the automaton, obtained as follows:
G = (Plant || Control Unit Il Inputs || Outputs)

This automaton G depicts the behaviour of the auto-
matic gate without any control law. This behaviour
must be restricted to obtain the only desired part S. We
must now define the H automaton with which:

S = Supcon(H, G)

4.2 Expression of the specification

The specification could be separated in two parts:

+ the "safety specification” that specifies which evo-
lutions of the plant should not be allowed (what the
plant should not do).

» the "liveness specifications" that specify which
evolutions of the plant should occur in certain given
conditions (what the plant should do).

In several cases, to satisfy a "safety specification” it is
not sufficient to prevent an event occurrence. It might

be necessary to force a controllable event to appear.
For example, for the specification P5, it is necessary:
* to prevent the event occurrence of ">op" (the motor
starting) when the gate is fully opened,
* but also to force the event occurrence of "<op" (the
motor stop) at the end of the gate opening.
With the proposed model for the control unit, we have
a global solution to express this type of specifications.
We suggest to prevent the "end" event in all dangerous
states (cf. figure 5). Each "safety specification" could
independently be expressed and composed together
after.

<op, end

PS5 Specification

Fig. 5 Safety specification between inputs and outputs

To express "liveness specifications", it is often neces-
sary to force starting events and prevent stop events.
We propose to use the same approach. In our tests, we
have noted that the "liveness specifications" could not
be express independently (cf. figure 6).

>RC, >V, <GC, end >RC, >V, <op, <cl, end

Specification P1, P2, P3

<cl

Fig. 6 All liveness specifications

The proposed model for the control unit, permits to
link together several controllable events, between an
uncontrollable event and the "end" event. The ob-
tained control law must be stable for each output. To
obtain this result, it is necessary to prevent two chang-
es of the same output, as shown in figure 7.

Fig. 7 Stability of the outputs

4.3 Application to the case study

For the case study, the complete specification H is
composed of 8 automata. The final automaton S
(S = Supcon(H, G)) is composed of 57 states and 85
transitions. For sake of brevity, these automata are not
given in this paper. Graphical and textual descriptions
can be obtained at http://www.diee.unica.it/~giua/
IFACO5.

5. IMPLEMENTATION

To be correctly implemented in the control unit, the
automaton S must be deterministic. Namely, this
means that it does not contain any state from which the
"end" event and another different controllable event
are both enabled. The detection of these errors is im-
mediate by a simple inspection of the graph. If S is not
deterministic a new specification must be introduced
to remove this undesirable degree of freedom.

The automaton S could also include states from which
two (or more) controllable events are both enabled.
This case, that we call choice, is different from the
non-determinism previously described. It simply im-
plies that there exist two (or more) different ways of
implementing the control law. In this case, it is suffi-
cient to implement only one solution.

For the case study, the automaton S contains 2 nonde-
terministic states but no choice. To remove the unde-
sirable nondeterminism we introduce a new
specification and use it to compute a new automaton
S'. The new specification H' and the automaton S' can
be found in the above mentioned web page.

Standard techniques could be used to transform a de-
terministic and choice-free automaton into a Mealy
machine than can be directly implemented into the
control unit. For the case study, the Mealy machine
contains only 16 states and 42 transitions (figure 8).

6. CONCLUSIONS

We have shown a method to use SCT to obtain an im-
plementation for a control unit. This method is based
on a specific model for unit controls. This model per-
mits to determine which controllable events must be
forced and to control if the final automaton contains
nondeterministic parts. In this paper we have briefly
outlined the proposed approach and have applied it to
the design of a controller for an automatic gate.

There are several issues that deserve to be further ex-
plored. While working on a few simple test cases, we
have observed that it was almost impossible to write a
correct specification of liveness unless a solution for
the control problem is clearly outlined. We propose to
complete this approach with other techniques, like
task specifications as proposed in (Holloway, et al.,
2000D).

REFERENCES

Akesson, K., M. Fabian, (1999). Implementing supervi-
sory control for chemical batch processes. In: Pro-
ceedings of the IEEE Conf. Control Applications,
Kohala Coast, Hawaii, USA, 1999, pp. 1272-1277.

Balemi, S., G.J. Hoffmann, P. Gyugyi, H. Wong-Toi,
G.F. Franklin, (1993). Supervisory control of a rapid
thermal multiprocessor. In: /EEE Trans. on Auto-
matic Control, 38-7, 1040-1059

Fig. 8 Mealy machine implemented into Control Unit

Brandin, B.A., (1996). The real-time supervisory con-
trol of an experimental manufacturing cell. In: /[EEE
Trans. on Robotics and Automation, 12-1, 1-14.

Brandin, B.A., W.M. Wonham (1994). Supervisory
control of timed discrete-event systems, In: /EEE
Trans. on Automatic Control, 39-2, 329-342.

Cassandras, C.G., S. Lafortune (1999). Introduction to
Discrete Event Systems, Boston, Kluwer Academic
Publishers.

Crockett, D., A. Desrochers, F. Dicesare, T. Ward
(1987). Implementation of a Petri Net Controller for
a Machining Workstation, In: Proceedings of the
IEEE Conf. Robotics and Automation, Raleigh,
North Carolina, USA, April 1987, pp. 1861-1867.

De Queiroz, M.H., J.E.R. Cury (2002). Synthesis and
implementation of local modular supervisory con-
trol for a manufacturing cell, In: Proceedings of 6th
Int. Workshop on Discrete Event Systems, Zaragoza,
Spain, October 2002, pp. 377-382.

Dietrich, P., R. Malik, W.M. Wonham, B.A. Brandin
(2002). Implementation Considerations in Supervi-
sory Control. In: Synthesis and Control of Discrete
Event Systems, B. Caillaud, X. Xie, Ph. Darondeau
and L. Lavagno (Eds.), pp. 185-201, Kluwer.

Fabian, M., A. Hellgren (1998). PLC-based Implemen-
tation of Supervisory Control for Discrete Event
Systems, In: Proceedings of 37th IEEE Conf. on De-
cision and Control, Tampa, Florida, USA, Decem-
ber 1998, pp. 3305-3310.

Hellgren, A., B. Lennartson, M. Fabian (2002). Model-
ling and PLC-based implementation of modular su-
pervisory control Discrete Event Systems, In:
Proceedings of 6th Int. Workshop on Discrete Event
Systems, Zaragoza, Spain, Oct. 2002, pp. 371-376.

Flochova, J. (2003). A Petri net based supervisory con-
trol implementation. In: Proceedings of IEEE Int.
Conf. on Systems, Man and Cybernetics, Washing-
ton, DC, USA, October 2003, pp. 1039-1044.

Holloway, L.E., A. Callahan, J. O’Rear, X. Guan

(2000a). Spectool: Automated Synthesis of Control
Code for Discrete Event Controllers. In: Proceed-
ings of 5th Int. Workshop on Discrete Event Sys-
tems, Ghent, Belgium, August 2000, pp. 383-389.

Holloway, L.E., X. Guan; R. Sundaravadivelu, J. Ash-
ley JR. (2000b). Automated synthesis and composi-
tion of taskblocks for control of manufacturing
systems. In: JEEE Trans. on Systems, Man and Cy-
bernetics, Part B, 30-5, 696-712.

Jeron T., H. Marchand, V. Rusu, V. Tschaen (2003).
Ensuring the conformance of reactive discrete-event
systems using supervisory control. In: Proceedings
of 42nd IEEE Conf. on Decision and Control, Maui,
Hawaii, USA, December, 2003, pp. 2692-2697.

Leduc, R.J., B.A. Brandin, W.M. Wonham, M. Law-
ford (2001). Hierarchical interface-based superviso-
ry control: serial case. In: Proceedings of 40th IEEE
Conf. on Decision and Control, Orlando, Florida,
USA, December, 2001, pp. 4116-4121.

Liu, J., H. Darabi (2002). Ladder logic implementation
of Ramadge-Wonham supervisory controller. In:
Proceedings of 6th Int. Workshop on Discrete Event
Systems, Zaragoza, Spain, Oct. 2002, pp. 383-389.

Ramadge, P.J., W.M. Wonham (1989). The control of
discrete-event systems. Proceedings of the IEEE,
77, 81-97

Roussel, J.-M., J.-M. Faure (2004). Designing depend-
able logic controllers using algebraic specifications.
In: Proceedings of 7th Int. Workshop on Discrete
Event Systems, Reims, France, 22-24 September,
2004, pp. 313-318.

Zaytoon, J., V. Carré-Ménétrier, (2001), Synthesis of
control implementation for discrete manufacturing
systems. In: International Journal of Production
Research, 39-2, 329-345.

Zhou, M.C., F. Dicesare, D. Rudolph (1992). Design
and Implementation of a Petri Net Based Supervisor
for a Flexible Manufacturing System, In: Automati-
ca, 28-6, 1199-1208.

