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Abstract

In mobile outdoor augmented reality applications, accurate local-
ization is critical to register virtual augmentations over a real scene.
Vision-based approaches provide accurate localization estimates
but are still too sensitive to outdoor conditions (brightness changes,
occlusions, etc.). This drawback can be overcome by adding other
types of sensors. In this work, we combine a GPS and an iner-
tial sensor with a camera to provide accurate localization. We will
present the calibration process and we will discuss how to quantify
the 3D localization accuracy. Experimental results on real data are
presented.

CR Categories: K.6.1 [Infomation Systems]: Outdoor Aug-
mented Reality—; K.7.m [Computer Vision]: 3D localization—
Hybrid sensor Calibration
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1 Introduction

Vision-based methods are widely used in augmented reality (AR)
applications to obtain an accurate registration. In outdoor scenes,
these types of methods lack of robustness and accuracy mainly due
to outdoor conditions. Adding other types of sensors improves
vision-based approaches. Indeed, we can combine GPS to initial-
ize visual tracking [Reitmayr and Drummond 2007], fuse inertial
sensor data with a visual tracking [Bleser and Stricker 2008] to im-
prove stability and robustness, or assist visual tracking with inertial
sensor [Aron et al. 2007].
In our work, we combine a GPS with an inertial sensor to assist a vi-
sual tracking process. The combination of GPS and inertial sensor
represent our Aid-localization system. This combination is used to
estimate continuously the user’s position and orientation even when
vision tracking fails. The accuracy of this hybrid sensor depends on
the accuracy of the calibration procedure that determines the rela-
tionship between the different used references frames. We propose
two calibration processes to estimate the relationship between iner-
tial sensor and camera and the transformation which maps the GPS
position to the camera position. The measures provided by the Aid-
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localization module are less accurate. So, we need to quantify these
errors in order to correct the estimated position and orientation.

2 Calibration Procedure

Each sensor provides data in its own reference frame. The inertial
sensor computes the orientation between a local inertial reference
frame RI attached to itself and a global inertial reference frame
RG. The GPS’s position is expressed in a global reference frame.
For registration, we need to estimate continually the camera’s pose
which relates the world reference frame RW and the camera refer-
ence frame RC. Thus, the pose provided by the Aid-localization
system must be aligned with the camera reference frame RC.

2.1 Inertial/Camera Calibration

We need to estimate the rotation between reference frames attached
to the camera and the inertial sensor in order to transpose the ori-
entation obtained from one sensor into the reference frame of the
other. We define RCW , obtained from the camera pose estimation,
the rotation of the world reference frame RW with respect to the
camera reference frame RC. The rotation of the local inertial refer-
ence frame RI with respect to RC is RCI . Also, RIG is the rotation
between RI and the global inertial reference frame RG provided
by inertial sensor. The rotation between the RW and RG is defined
by RGW . Thus, the transformation between the camera and inertial
sensor is defined by RCI and RGW and expressed as:

RCW = RCIRIGRGW (1)

In our case, the Inertial/Camera calibration process consists in esti-
mating a rotation matrix RCI and deducing the second rotation ma-
trix RGW . We assume that the Z axis of the global inertial reference
frame RG is pointing up along vertical. To simplify the equation
(1), we define the Z axis of the world reference frame collinear with
it (Z axis is along vertical and pointing up). Therefore, RGW is only
a rotation around the Z axis with an angle θ . With this configura-
tion, we estimate RCI using least mean squares from the following
equation:

rCW
3 = RCIrIG

3 (2)

With rCW
3 and rIG

3 are the third column of RCW and RIG respectively.
Then, RGW is deduced using (1):

RGW = RT
IGRT

CIRCW (3)

2.2 GPS/Camera Calibration

The GPS/Vision calibration estimates the rigid transformation (ro-
tation + translation) which allows to deduce the camera’s position
from the position provided by the GPS. For each GPS position pgps,
we associate a camera’s position pcam obtained from the estimated
pose (pcam = −RT

CW tCW ). The relationship between the two posi-
tions is given by: pcam = Rpgps + t. The rigid transformation is
obtained by minimizing the following criterion:

n

∑
i
‖pi

cam−Rpi
gps + t‖2 (4)



We introduce then the vectors
−→
N i

gps = p j
gps − pi

gps and
−→
N i

cam =

p j
cam− pi

cam with i = 1.. n
2 and j = n

2 + 1..n.. The relationship de-
duced from (4) between them is:

n
2

∑
i
‖−→N i

cam−R
−→
N i

gps‖2 (5)

From equation (5), we can estimate the rotation R. The translation is
then deduced from the following equation (With pcam = 1

n ∑n
i pi

cam
and pgps = 1

n ∑n
i pi

gps):

t = pcam−Rpgps (6)

We use GPS to obtain a 2D localization (longitude and latitude).
Concerning the altitude, we fixed it according to where we are in
the environment.

3 Error Prediction

The error estimation is important in the localization process. In-
deed, it allows quantifying the quality of measurements and im-
proving the estimate provided by the aid-localization module. Our
error represents the difference with respect to the camera’s pose
provided by vision method. When the vision fails, we need to pre-
dict this error. So, we opt for a regression with a Gaussian process
[Williams 1997]. A Gaussian process is a stochastic process which
generates samples and can be used as a prior probability distribu-
tion over functions in Bayesian inference. During visual tracking,
we record the offset between the hybrid sensor and camera pose.
When the visual tracking fails, the Gaussian process allows predict-
ing the offset made by hybrid sensor and improves the localization
estimate.

4 Experiments and Results

We use data acquired in an outdoor environment to calibrate the dif-
ferent sensors and validate the 3D localization using GPS and iner-
tial sensor. The camera’s pose used to calibrate the hybrid sensor
is estimated using a manual 2D/3D points matching (for accurate
estimate). The camera poses are estimated along the images se-
quence using a point-based visual tracking and was used as ground
truth. To validate Inertial/Camera Calibration, different views were
taken with various rotation angles. For each view, we estimated
the camera’s rotation using inertial orientation and vision method.
The means errors obtained between the two estimated rotations are
shown in table 1. The use of inertial sensor allows us to cover the
camera’s orientation with low errors. This represents a good result
for registration. Concerning position, the transformation between

φ θ ψ
Mean error −0.3460◦ −0.7211◦ −2.293◦

Table 1: Angular means errors in degree

the GPS and the camera was estimated using a set of fixed images
(20 images) with geo-referenced coordinates provided by the GPS.
The different positions are well spread over the work area. There-
after, we tested the validity of the calibration procedure on a set of
data taken continuously. Figure 1 and table 2 show the errors ob-
tained on meters (red line). The obtained results are satisfactory for
the purposes of the application (i.e. to assist visual tracking). The
GPS position can move closer to the real position using the pre-
dicted errors. In our experimentation, predicted error is estimated
with a set of N = 40 last sample (empirically determined). We can
see the predicted errors in figure 1 (green line) and table 2.
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Figure 1: Estimated Error vs. Predicted Error

Errors µx σ2
x µy σ2

y
Estimated 0.7572m 1.7087m2 2.344m 1.8473m2

Predicted 0.8604m 0.4588m2 0.9015m 0.3174m2

Table 2: Mean errors and variation in meters

5 Conclusion

In this work, we present our hybrid sensor composed of a camera
coupled with a GPS and an inertial sensor. The use of the GPS and
the inertial sensor provide an estimate of the camera’s pose when
visual tracking fails. For this, we propose two calibration processes
allowing to deduce the camera’s pose from data provided by these
two other sensors. Our calibration processes are distinguished by
its simplicity and efficiency. In addition, our methods do not re-
quire heavy assumptions. Also, to characterize the quality of the
localization of the system, the use of Gaussian process allows pre-
dicting the obtained error and thence improving the estimate. The
results obtained are quite satisfactory.
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