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Summary  

We investigate, using laboratory experiments, the behavior of subduction-collision transition. These experiments 

help understanding of the tectonics at the transition between the Zagros collision ranges and the Makran emerged 

accretionary prism in south-eastern Iran. Lithospheric plates are modeled by sand-silicone plates floating on glucose 

syrup, and the density contrast between oceanic and continental lithospheric plates and asthenosphere is reproduced. 

Analogue experiments model the convergence between two lithospheric plates, a small continent indenting a large 

continental plate. These experiments provide evidence for surface deformation in front of the indenter and above the 

oceanic subduction zone that depend on the behavior of the slab below the collision zone. Slab break-off following 

the subduction of the small continent favors the indentation process, because it results in an increasing compression 

in front of the indenter, and extension above the neighbouring oceanic subduction, both of them being responsible 

for the appearance of the indenter-like geometry of the plate boundary. When the slab does not deform significantly 

at depth, in contrast, the closure of the oceanic domain in front of the indenter is followed by a longer period of 

continental subduction, during which the tectonic regime within the large continent remains quite homogeneous. In 

south-east Iran, the transition between Zagros and Makran is accommodated over a large area, from the Hormoz 

strait to the East-Iranian ranges; it suggests that the slab is continuous at depth. On the contrary, the Chaman fault 

zone between Makran and Himalayas is a narrow zone and is clearly related to a tear away of the underlying slab. 

1. Introduction 

Indentation is defined as the collision of a relatively small “indenter” with a large continental domain, generally 

flanked on its sides by subduction zones. The “indenter” is globally buoyant and has drifted towards the indented 

continent by subduction of the oceanic domain that initially separated them. Presently, many studies argue in favor 

of combined or successive vertical/horizontal extrusion to explain deformation related to collision (Johnson, 2002). 

Consequently, to understand collision processes, it appears necessary to look at the indentation mechanisms in 3 

dimensions. The Makran subduction zone is flanked by two indenters, Arabia and India. Indentation is expressed 

differently to the West (transition toward the Zagros) than to the East (transition toward Himalayas). 

The tectonic process driving and accompanying indentation has been investigated especially for those aspects 

concerning the way the upper plate deforms. It has been pointed out that a major role is played by the strength of the 

upper plate, providing the possibilities to squeeze and thicken the crust or producing the lateral escape of crustal 

blocks along strike-slip faults (e.g., Molnar and Tapponnier, 1975; Shen et al., 2001). In particular, it seems that a 

tectonic escape must be allowed by the presence, at the sides of the indented continent of free boundaries, i.e., not 

exerting any confining force. Indeed, if one compares subduction zones, it is evident that the effects of the 

subduction dynamics vary, for the upper plate, from compressional to extensional deformation (for example Andes 

and Aegean domain, e.g., Sébrier and Soler, 1991, Mercier et al., 1989). Consequently, the role played by 
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subduction zones laterally bounding the “indenter” must be of high importance, but has not received the interest it 

deserves. 

We present laboratory experiments performed to define the role of subduction in the tectonics of indentation. These 

experiments are part of an experimental program devoted to the investigation of the physical parameters that drive 

subduction/collision processes. We first describe 2D experiments to illustrate the way continental lithosphere 

subducts prior to collision, and following oceanic subduction. The results of this set of experiments show that the 

possibility for the continent to subduct is related to the pull exerted by the previously subducted oceanic lithosphere, 

and, therefore to the way the slab deforms at depth. We express our results by means of two dimensionless numbers 

(F) where the slab pull force is normalized to the strength of the slab: Favorable conditions for continental 

subduction require low values of F, or, in other words, the oceanic slab is more prone to maintain its integrity and to 

exert a higher pull on the subducting continent. If this analysis applies well to the central part of the Arabia-Eurasia 

collision zone, it is worth noting that side effects would change its conclusions for external zones, e.g. Aegean and 

south-eastern Iran. To complement this analysis we developed a more complex 3D configuration with a lateral 

transition from oceanic to continental subduction. 

2. Experiments on the transition subduction-collision 

Experimental setup 

We simulate the stratified lithospheric rheological profile (e.g., Ranalli and Murphy, 1987), by constructing a 

brittle-ductile layered model, with a sand mixture to model the brittle behavior of the upper crust and silicone putty 

to model the ductile behavior of the lower crust and mantle lithosphere. The sand-silicone layering rests on honey, 

which simulates the upper mantle (Fig. 1). We use two different kinds of sand-silicone layers, either lighter or 

denser than the glucose syrup, to represent continental or oceanic lithospheres, respectively. Continental and oceanic 

plates differ in thickness, density and viscosity of the upper silicone layer, and in thickness and density of the sand 

layer. The lower boundary of the box approximates a high gradient viscosity transition. Models are constructed 

inside a rectangular Plexiglas tank (50 cm long, 30 cm wide and 11 to 19 cm deep; Fig. 1). Horizontal shortening is 

achieved displacing a rigid piston at constant velocity perpendicular to the plate margins. A squared grid of passive 

sand markers enables visualization of the surface deformation.  

 

 

 

Figure 1. Experimental set up: (a) upper view 

and (b) cross-section of the western part of the 

model. Sand/silicone plates modeling the 

lithosphere are lying above honey that 

represents the asthenosphere. These plates are 

lighter or denser than honey, to represent 

continental or ocean lithosphere, respectively. 

The set up presented is 3-dimensional in the 

sense that at south the subducting plate is 

divided into a continental part (SW) and an 

oceanic part (SE). Close to the trench however 

the southern plate is oceanic from east to west to 

allow a 2D subduction initiation. The piston is 

pushing northward at a constant velocity of 

4.4 mm/h scaled to represent 2.3 cm/yr in nature. 

The oceanic plate will subduct below the 

northern continent, the subduction place being 

controlled by the removal of a 1 cm-wide band of 

sand that weakens the northern margin of the 

oceanic plate. 

2D temporal transition from subduction to collision 

2D experiments where conducted to investigate the role of preceding subduction in the beginning of collision, and 

in particular to determine the physical parameters that drive collision processes. The experiments are characterized 

by the subduction of an oceanic plate leading to oceanic closure, and then to collision. They are described in details 

in a previous paper (Regard et al., 2003). They illustrate the way continental lithosphere subducts prior to collision, 

and following oceanic subduction. Indeed, we observed three possible modes of slab deformation, i.e., ranked by 

deformation magnitude, (i) low deformation, (ii) development of viscous instabilities, or (iii) slab break-off. We 
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observed that greater is the deformation magnitude, shorter is the delay between oceanic closure and continental 

collision. In other words, the possibility for the continent to subduct is related to the pull exerted by the previously 

subducted oceanic lithosphere and, therefore, to the way the slab deforms at depth.  

Within the Arabia-Eurasia collision zone in Iran, the geodynamics is characterized by 2D deformation process in the 

Northwestern and central Zagros (e.g., Keskin et al., 2003), but require considerations about the third dimension at 

the sides of the system, e.g., at the transition between Zagros and Makran (e.g., Regard et al., 2004) (figure 2).  

 

 
Figure 2. Present-day tectonics of the Middle East, modified after Dercourt et al. (1986). White arrows indicate 

local deformation and solid arrows indicate velocities with respect to stable Eurasia (DeMets et al., 1990; 

McClusky et al., 2000; Vernant et al., 2004). NAF: North-Anatolian fault; EAF: East-Anatolian fault (McClusky et 

al., 2000); NGF: Nayband and Gowk faults (Walker and Jackson, 2002); NZF: Neh and Zahedan faults (Freund, 

1970; Tirrul et al., 1983; Walker and Jackson, 2002); CF: Chaman fault (Lawrence et al., 1992). The transition 

between Zagros and Makran is located inside the gray rectangle. 

3D spatial transition from subduction to collision 

Consequently it is important to determine what controls at depth the superficial features at a spatial transition 

between subduction and collision. We investigated these 3D effects in analogue experiments (cf. Regard et al., 

2005b).  

In the reference experiment (Figure 3), a narrow 3 cm-large ocean (equivalent to roughly 200 km in nature) initially 

separates the indenter from the main continent. Under this condition the subducting plate does not deform much at 

depth. During the 12 first hours of the experiment, E-W folds, i.e., compressional structures, localize at the weak 

oceanic plate margin and, subordinately, near the boundaries of the box. This compressional deformation 

characterizes the initiation of subduction (e.g. Faccenna et al., 1999; Regard et al., 2003). After 12 hours, the 

oceanic basin closure is completed, causing an increase of the shortening rate to 2 mm/h, demonstrating the low 

efficiency of the subducting system during the first phase of subduction in both the eastern and western sides of the 

experiment. Compressional deformation concentrates on a linear E-trending fold belt that develops in the middle of 

the plate in correspondence of the end of the model/box boundary sand-less strip (Figure 3). Only after 29 hours of 

deformation, the shortening rate in front of the indenter becomes larger than that accommodated in the area where 

oceanic subduction takes place. The western domain shortens more, and the difference in shortening rate is 

accommodated by a N-trending strike-slip zone that links the trench with the main intracontinental zone of 

deformation, located far from the trench at the centre of the overriding plate. This strike-slip zone accommodates 

about 20 mm between 30 and 50 h, i.e. 1 mm/h on average (Regard et al. 2005b).  

Experiment 2 differs from ref. experiment as the oceanic domain, i.e. the distance separating the indenter and the 

target continents, is wider (7 cm). In this manner we obtain a longer oceanic slab that exerts a larger slab pull force. 

To obtain a maximum level of slab pull we also increase the depth of the box. Under this condition, the 

experimental slab must be prone to deform at depth. The initial stage of the experiment is similar to what observed 

in the previous experiment, with some E-W compressional folds characterizing the subduction initiation occurring 

in the experiment outside the trench (Faccenna et al., 1999; Regard et al., 2003). This phase lasts for around 10 

hours producing a shortening of about 10-15 mm. Afterwards, the subduction zone accommodates efficiently the 

imposed convergence and the oceanic domain located in front of the indenter is entirely consumed after 18 hours of 
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deformation. During the final stage of oceanic closure, extension appears within the upper plate: E-trending normal 

faults are observed within the overriding plate. The beginning of continental subduction, as observed in 2D 

experiments (Regard et al., 2003), does not change significantly the subduction dynamics. Extension lasts up to 26 

hours of deformation. The extensional phase of deformation is related to the slab growth at depth. The slab pull 

resulting from the previous entrance of the dense oceanic plate counterbalances both the effect of the positive 

buoyancy of the continental part of the slab, and the effect of the piston-imposed shortening (Regard et al., 2005b). 

After about 30 hours of model run, under the collisional zone (western part of the experiment), we observe that the 

slab breaks and that the subducting oceanic lithosphere detaches from the continental part of the slab. Afterwards, 

the detachment progresses eastward under the boundary between the two continents. Even if it is difficult to 

establish the rate of lateral propagation of the detachment, it seems to have occurred quite rapidly. As a matter of 

fact, we note that in surface, on the western side of the experiment, E-striking folds and thrust-faults develop just 

after the slab detachment, reactivating and inverting normal faults related to the previous stage (Figure 3). Surface 

deformation is then strongly influenced by the detachment process. After this break-off, the shortening in front of 

the indenter reaches a rate of 2.8 mm/h, accommodating 65% of the total amount of convergence. On the eastern 

side, conversely, the speed of the oceanic subduction increases with a maximum velocity of about 10 mm/h, twice 

the convergence velocity. It results in a rapid back-arc extension (Figure 3). We observe that till the end of the 

experiment, the break-off of the slab remains confined to the continental collision zone, in front of the indenter. This 

deep behavior increases dramatically the pull exerted by the rest of the oceanic slab on the active oceanic 

subduction, explaining the large amount of back-arc extension in the western part of the experiment. The contrast 

between shortening in front of the indenter, and extension above the oceanic subduction zone, is responsible for the 

appearance of the indenter-like geometry of the plate boundary (cf. Regard et al., 2005b). 

 
Figure 3. Comparison of experiments. In white are the continents, in gray the ocean. The reference experiment is 

characterized by low slab deformation. Both the collision part and the subduction part are undergoing 

compression. Exp 2 is characterized by break-off under the continental collision, and the transition zone between 

subduction and collision is very narrow. Exp.3 is characterized by low slab deformation and high lithospheric 

strength. In this experiment, the transition subduction-collision is accommodated over the entire experiment.  

 

Experiment 3 differs from experiment 2 by larger plate strength only. In this manner we obtain a long oceanic slab, 

as that of exp. 2, that exerts a large slab pull force, but we avoid the possibility of break-off. Again, at first the plates 

undergo compressional stress that is the cause for the development of folds at both North and South boundary of 

experiment (0-16 h). The second phase of simple subduction is not marked by superficial deformation. Oceanic 

closure is completed at around 30 h, followed by continental subduction in the west whereas to the east subduction 

pursues normally. Tiny compression occurs in the western part of the box before 44 h. It is followed by moderate 

shortening and little compressional deformation, marked by folding at box boundaries and near the trench. During 

the same time strong, but localized, extension occurs to the east, causing the development of 2 large grabens within 

the northern continent (Fig. 3). As a consequence of the competition between subduction and collision process the 

entire northern plate (8 cm-large at 56 h) is rotating. At 56 h of experiment the total rotation is estimated to be 

between 2° and 12° clockwise from West to East. This rotation results from the competition between subduction and 

collision processes. It is noteworthy that it involves the entire upper plate without any discontinuity between east 

and west as observed in the previous experiments.  
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In summary, our results show that the way the upper plate deforms during indentation depends much on the 

characteristics of the subduction system and on the history of subduction. Comparison between the reference 

experiments highlights the dependence of the pattern of collision and deformation in 3D on the way the subduction 

process develops. The reference experiment demonstrates that the plate boundary is likely to absorb several 

hundreds of kilometers of continent-continent convergence before an indenter-like geometry appears. In the 3D 

configuration, the subduction of the indenting continent is favored both by the pull of the previously subducted 

oceanic plate, and by the pull resulting from the lateral active oceanic subduction. Only during the last phases of this 

experiment, the different efficiency of the subduction system is accommodated in the surface with internal 

deformation and/or by the rigid rotation of the upper continental block. 

If we allow for a larger subduction system (larger initial ocean width, experiments 2 and 3), the slab pull level on 

the subducting slab can increase up to the point that the slab breaks (Regard et al., 2003): It occurs in exp. 2 but not 

in exp.3. The lateral propagation of this process (several cm/yr) results in a tremendous concentration of the slab 

pull effect at the tip of the propagating tear (Yoshioka and Wortel, 1995). This, in turn, may induce a large-scale 

back-arc extension above the oceanic subducting plate (Wortel and Spakman, 1992; Buiter et al., 2002). This 

process favors the appearance, in exp. 2, of an indentation-like geometry between the two lithospheric plates, 

whereas in exp. 3, the lack of slab detachment does not allow the development of such geometry. Then, in both exp. 

2 and exp. 3, the entrance of the indenter within the large continent results on the one hand from the shortening 

accommodated in front of the indenter, but also from the southern motion of the large continent on the sides of the 

indenter, and the way the eastern and western part are (de)coupled. In exp. 2, the slab break-off at moderate depth 

(ca. 100-200 km deep) allows decoupling the eastern and western upper plate domains. On the contrary, in exp. 3, 

the slab remains continuous from east to west, and the process related to the transition between subduction and 

collision are accommodated over the entire upper plate: The transition is progressive from 2D-collision far west and 

2D-subduction far east. 

3. Tectonics of subduction-collision transitions  

Zagros-Makran transition tectonics 

At Iranian longitude, the Arabian plate is moving northward relative to Eurasia (~20 mm a-1 according to GPS, 

Bayer et al., 2002, Sella et al., 2002, Vernant et al., 2004). To the east, this relative motion is accommodated by 

northward subduction under the E-W Makran emerged accretionary prism. To the west, it is accommodated partly 

by the Zagros fold-and-thrust belt and partly by the Alborz / Kopet Dagh deforming zones further north. The 

transition zone between Zagros and Makran has been the locus of several studies within the French-Iranian 

collaboration (e.g., Bayer et al., 2002, Yamini Fard, 2003, Molinaro et al., 2004, Regard et al., 2004, Aubourg et al., 

2004). We present in the following a synthesis of the major results resulting from the active tectonics study (Regard 

et al., 2004, Regard et al. 2005a) combined with GPS measurement and seismotectonics studies. 

Satellite images and structural and geomorphic field observations show a distributed deformation pattern covering a 

wide domain. Five N to NW-trending major faults were identified. They exhibit evidence for late Quaternary 

reverse right-lateral slip, and correspond to two distinct fault systems. The Minab-Zendan fault system (MZFS), to 

the south-west, is trending N160°E and transfers the Zagros deformation to the Makran prism. The N-trending 

Jiroft-Sabzevaran fault system (JSFS), to the north-east, is transferring a part of the Makran convergence to 

deforming zones more to the North (Alborz / Kopet Dagh), by connecting to other major N-trending strike-slip 

faults of eastern Iran (e.g. Nayband fault) between Makran in the south and Alborz-Kopet Dagh to the north. 

Tectonic study and fault slip-vector analyses indicate that the entire zone is currently undergoing a stress field 

characterized by regionally significant transpressional tectonic regime (oblique reverse strike-slip faulting) with a 

N45°E-trending σ1, indicating that in spite of its distribution, the deformation is not partitioned within this 

transpressional zone (Regard et al., 2004). 

The area is characterized by a well-defined succession of quaternary deposit levels. The age of these deposits were 

estimated by archeological data, regional paleoclimate correlations and constrained by additional in situ 10Be dating 

in a previous study (Regard et al., 2005a). These deposits exhibit offsets both lateral and vertical, which are 

evaluated by satellite image analysis, and GPS profiles. Thanks to offsets and ages the strike-slip rates associated 

with each one of the faults are calculated, of the order of 2-3 mm/yr. Each of the two fault systems has strike-slip 

rates of about 6 mm/yr; the strike slip rate integrated over the whole area being of about 12 mm/yr (Regard et al. 

2005a). The convergence vector accommodated over the entire area, i.e., the motion of Oman relatively to Jaz-

Murian (cf. Fig. 4) is about 12 mm/yr in a direction N10°E, in agreement with GPS measurement results obtained 

by Bayer et al. (2002) that give evidence for the same motion for about 10 mm/yr in a direction N10°E. 

Interestingly, GPS results indicate a northward motion of Oman of about 25 mm/y with respect to Eurasia (Bayer et 

al., 2002, Vernant et al., 2004), of which we propose that only ca. 10 mm/yr are accommodated through the Zagros-

Makran transition zone. The remaining 10-15 mm/yr could be taken through another fault system, described by 

Tirrul et al. (1983), the Neh-Zahedan fault system, lying in the East Iranian Ranges further east (e.g., Vernant et al., 

2004, Regard et al., 2004, 2005a) 
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Figure 4. Tectonics of the transition Zagros-

Makran. The active fault traces are mapped after 

Regard et al. (2004). The zone is undergoing a 

homogeneous stress field; the main horizontal 

compressional axis trends N45°E (white arrows, 

Regard et al., 2004). Two fault systems have been 

distinguished: the Minab-Zendan fault system 

(MZFS) and the Jiroft-Sabzevaran fault system 

(ZJFS). Both are accommodating a strike-slip 

component of the deforming rate of the order of 6 

mm/y. Their sum indicates a convergence vector of 

Munsandam (black arrow) relatively to Jaz Murian 

(black open circle) of about 12 mm/yr directed 

~N10°E (Regard et al., 2005a).  

 

Yamini Fard (2003) studied the Zagros-Makran transition zone using microseismicity recorded by a temporary 

seismological network. The recorded seismicity shows a northeast dipping plane, located 10-15 km under the MZFS 

and 20-30 km under the JSFS. In addition, Byrne et al. (1992) seismicity study indicates very low dips for the entire 

Makran subduction plane. In particular, in its western part (i.e., 250 km east from the Zagros-Makran transition 

zone), the subduction plane is only 50 km-deep under the Jaz Murian depression which is located 400 km north of 

the deformation front. The magmatic arc lies at the north of Jaz Murian at ca. 500 km from the deformation front, 

maybe 70-100 km above  the subduction plane. In conclusion, Yamini Fard (2003) shows a north-east dipping plane 

beneath the Zagros/Makran transition zone that may correspond to the boundary between the Arabian lithosphere 

and the Iranian one. Thus it should correspond laterally to the subduction plane highlighted by Byrne et al. (1992).  

In summary, at the transition between Zagros and Makran, deformation is accommodated by two fault systems, 

within a present-day regional transpressionnal regime with a N45°E-trending σ1. On one hand, the Minab-Zendan 

fault system (MZFS) corresponds to the boundary between the two plates. On the other hand, the Jiroft-Sabzevaran 

fault system (JSFS) is entirely located in the hanging wall (equivalent to the overriding plate, cf. Fig. 5). 

The Chaman fault tectonics 

It is interesting to note that the eastern termination of the Makran is also characterized by a subduction-collision 

transfer zone: The Chaman Fault System (CFS). It is constituted by 3 main faults (cf. Figure 5) (Lawrence et al., 

1992): The Chaman, Ghazaband and Ornach-Nal faults. The system connects the Makran accretionary prism to the 

Pamirs (Panjshir fault). Geological studies (Beun et al., 1979) permit us to determine an about 25-35 mm/yr strike-

slip displacement rate along the Chaman fault system, while global plate kinematics (NUVEL-1 model, DeMets et al., 

1990) allow us to calculate an about 40 mm/yr rate, for the lateral motion within the whole transition domain. The 

Chaman fault system is characterized by longer fault segments and an azimuth closer to the convergence vector than 

for the Zagros/Makran transition zone.  

The two systems differ in age: The Zagros-Makran fault system is young (probably younger than 5 My), whereas 

the Chaman fault system is mature, and it is probably developed since at least 20-25 My (Lawrence et al., 1992). On 

the contrary to the Zagros-Makran transition zone, the Chaman Fault system efficiently decouples its eastern and 

western walls. 

Insights from the models  

The two areas considered here (Zagros-Makran transition zone and the Chaman fault zone) bound the same 

subduction system: The Makran. To the west and to the east the Makran is pretty similar despite little variations 

(e.g., Byrne et al., 1992). It is characterized by a low dip of the subduction of the order of 5 degrees, slightly 
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increasing westward (up to 8°), and by the high elevation reached by the accretionary prism (up to 2000 m). The 

strong development and the high elevation of the Makran accretionary prism, although partly explained by the large 

sediment supply, suggest that the slab-pull force is moderate. This is not in agreement with the old age (at least 80 

My) of the Neo-Tethys oceanic lithosphere, which should imply an important slab-pull force. Nevertheless, this 

setting cannot explain the differences between Zagros-Makran transition zone and the Chaman fault zone, that are 

respectively characterised by a wide transition and a sharp transition zones. Interestingly, the Zagros-Makran 

transition involves a northward motion of the Lut block (fig. 5), that implies, at the longitude of the western Makran, 

an accommodation of the convergence partly by the Makran (19±2 mm/yr, Vernant et al., 2004) subduction and 

partly by intracontinental deformation zones more to the north (6±2 mm/yr, Vernant et al., 2004). On the other side, 

The Helmand block (i,e, Afghanistan), must have once moved northward as attested by the presence of the Hindu 

Kush range, but is currently fixed to Eurasia, all the convergence being accommodated by the Makran. 

 

Figure 5. 3D schematic diagram of subduction planes in the Iran-India region. Schematic slabs and lithospheric-

scale faults are represented. The slab may be continuous at the transition Zagros-Makran whereas it may be torn 

away at the transition Makran-Himalayas. Arrows represent convergent vectors (see Fig. 2). Asterisks are tertiary 

volcanoes. 

 

The presented experiments provide an interesting overview to highlight the causes of differences between the 

eastern and western sides of the Makran. Indeed, comparison between experiments 2 and 3 indicates that, instead of 

a similar initial setting, slab detachment occurrence conducts to major plate reorganization. In particular, no 

decoupling between east and west is possible without a discontinuity between the eastern and western slab. 

Following this conclusion, a continuous slab is expected under the Zagros-Makran transition zone whereas it must 

be discontinuous between Makran and Himalayas (fig. 5). Moreover, the flat-lying shallow Benioff suggests that the 

old and heavy ocean lithosphere is laterally supported by the continental subduction acting like a buoy, in particular 

at the transition with the Zagros.  

As previously mentioned, the main difference between the Makran transitions with the Zagros, in the west, and with 

the Himalayas, in the east, consists in the age of the two systems of the order of 5 and 20-25 My,  respectively. 

Thus, it can be considered that the two systems represent two stages within indentation evolution. Indeed, the 

Himalayas-Makran zone represents a mature transition domain, while the Zagros-Makran transition testifies for a 

juvenile stage of indentation accommodation. Between these two stages there may have occurred a tearing of the 

slab in two parts, one under the collision, and the other under the subduction.  

In summary, we propose that, following a collision the slab can detach or tear away. It results in a tremendous 

difference in the way both sides accommodate the transition between subduction and collision: By a relative 

coupling before detachment (Zagros-Makran) or by a decoupling of the subducting and colliding parts after break-

off (Makran-Himalayas). This highlights the first-order major role of deep processes on crustal tectonics. 

Lithospheric plate rheology seems to act only as a second-order role controlling parameter. Actually, in Iran it 

governs the structures that are reactivated, such as the N-trending Nayband-Gowk fault system that separates central 

Iran and the Lut Block (Walker and Jackson, 2002, Regard et al., 2004).  

4. Conclusion 

 

The indentation of Arabia and India within Eurasia has long been studied in regard to the upper plate tectonics. We 

propose that deep processes related to Tethyan subduction have been underestimated and they must play a first order 

role in the way Iran is deforming. Deep processes involved can be a slab break off or, a flexure of the slab without 

any discontinuity. A discontinuity in the slab (e.g., a detachment) is related to a sharp superficial decoupling zone 

between the collision and the subduction (ex. Chaman Fault System). Conversely, continuity in the shape of the slab 
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should permit to transfer progressively the deformation from the collision to the subduction domains (ex. Zagros-

Makran transition zone. 
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