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Abstract

The purpose of this note is to discuss how various Sobolev spaces defined on
multiple cones behave with respect to density of smooth functions, interpolation
and extension/restriction to/from R

n. The analysis interestingly combines use
of Poincaré inequalities and of some Hardy type inequalities.
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1 Introduction

The theory of Sobolev spaces on domains of the Euclidean spaces is well devel-
oped and numerous works and books are available. For multi-connected open
sets, there is apparently nothing to say. However, depending on the topology of
the boundary, the closure of the space of test functions (ie compactly supported
in R

n) might be a subtle thing. We propose here to investigate the Sobolev
spaces on multiple cones with common vertex as unique common point of their
boundaries. Surprisingly, we did not find a treatment in the literature.

Our motivation comes from Badr’s PhD thesis where interpolation results
for Sobolev spaces on complete metric-measure spaces are proved upon the
doubling property and families of Poincaré inequalities. A question remained
unsettled, namely whether the result is sharp, that is whether the conclusion
is best possible given the hypotheses. Multiple (closed) cones are sets where
doubling (for Lebesgue measure) holds and Lp-Poincaré inequalities hold for
some but not all p, more precisely for p greater than dimension. Cones are
therefore simple but important examples for this matter. The study of Sobolev
spaces on such sets provides us with the positive answer to our question and, in
addition, we complete the interpolation result in this specific situation. As we
shall see, these Sobolev spaces can be identified with the closure of test functions
in the classical Sobolev space on open multiple cones.

∗Univ Paris-Sud, Laboratoire de Mathématiques, UMR 8628, Orsay, F-91405;
†CNRS, Orsay, F-91405
‡Université de Lyon; CNRS; Université Lyon 1, Institut Camille Jordan, 43 boulevard du 11

Novembre 1918, F-69622 Villeurbanne Cedex, France.
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For simplicity, we work on Ω the Euclidean (double) cone defined by x21 +
. . .+x2n−1 < x2n, n ≥ 2, but all the material extends right away to multiple cones
with common vertex point (see Section 7 for natural extensions), and the cones
need not be of revolution type. Consider W 1

p (Ω) the usual first order Sobolev

space on Ω and W̃ 1
p (Ω), the closure of smooth compactly supported functions

in R
n in W 1

p (Ω) if p <∞, and the space of bounded and Lipschitz functions on
Ω that extend continuously at the origin if p = ∞.

The question we ask is: how do they behave with respect to density of
smooth functions, interpolation and extension/restriction to/from R

n?
Our results (Sections 2,3,4 and 5) exhibit the specific role of the vertex point.

This role translates into a critical exponent (equal to dimension) and the Lp

Sobolev spaces have different behaviors with respect to the various actions listed
above. The following list illustrates their properties :

1. The space W̃ 1
p (Ω) coincides withW

1
p (Ω) if 1 ≤ p ≤ n but is of codimension

1 in W 1
p (Ω) for n < p ≤ ∞. (Section 2)

2. The spaces W 1
p (Ω), 1 ≤ p ≤ ∞, form a real interpolation family (Section

3)

3. The spaces W̃ 1
p (Ω), 1 ≤ p ≤ ∞, do not form a real interpolation family.

To obtain such a family, one needs to replace W̃ 1
n(Ω) by a strict and dense

subspace of it described in the text. (Sections 3, 4)

4. For p ∈ [1,∞], p 6= n, the restriction operator to Ω mapsW 1
p (R

n) continu-

ously onto W̃ 1
p (Ω) and there exists a common linear continuous extension

operator from W̃ 1
p (Ω) to W 1

p (R
n). For p = n, these results hold with

W̃ 1
n(Ω) replaced by the strict and dense subspace mentioned above. In

particular, Ω has the extension property for W 1
p if and only if 1 ≤ p < n.

(Section 5)

Of course, some of these results are known and we give references along
the way when we have been able to locate them. But some results, like the
interpolation results, are new. We also point out that we give two proofs of
the interpolation result. Although the one presented in Section 5 using restric-
tion/extension looks more natural to users of Sobolev spaces on subsets of the
Euclidean space, we prefer the one done in Sections 3 and 4, because it is more
in the spirit of analysis on metric spaces and contains ideas that we believe
could be used in this context elsewhere. In particular, a special feature is that
it allows to pass below the Poincaré exponent threshold by using Hardy type
inequalities.

We shall make use of the Sobolev space H1
p (X) arising from geometric mea-

sure theory on X = Ω. It is defined as the completion for the W 1
p (Ω) norm of

the space of Lipschitz functions with compact support for p < ∞ and as the
space of bounded and Lipschitz functions in X for p = ∞. It is easy to show
it agrees with W̃ 1

p (Ω) and it turns out that it will be easier to work with the
former in Section 3. Finally, we make a connection with the Hajlasz-Sobolev
spaceM1,p(X). In particular, we will show (Section 5) that the Hajlasz-Sobolev
space M1,n(X) is a strict subspace of H1

n(X), which can be surprising.
In Section 6, we shortly describe the situation pertaining to these questions

for homogeneous Sobolev spaces.
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2 Density

Let 1 ≤ p ≤ ∞ and O an open set of R
n. Define W 1

p (O) as the space of
functions1 f ∈ Lp(O) such that

‖f‖W 1
p (O) = ‖f‖Lp(O) + ‖∇f‖Lp(O) <∞.

The gradient is defined in the distributional sense in O. For p < ∞, denote
by W̃ 1

p (O) the closure of the space of C∞
0 (Rn) (the subscript 0 means compact

support) functions restricted to O in W 1
p (O). Among classical texts, we quote

[1, 10, 16, 17, 21, 23].
If n < p < ∞, recall that the Morrey-Sobolev embedding implies that if

f ∈ W 1
p (Ω) then f is Hölder continuous on each connected component Ω± of

Ω, the half-cones defined by x ∈ Ω and sign(xn) = ±1. Hence f has limits
in 0 from Ω+ and Ω−. These limits, which we call f(0+) and f(0−), may be
different.

This lemma is classical and we include a proof for convenience.

Lemma 2.1. Let 1 ≤ p <∞ and f ∈W 1
p (Ω). Assume 1 ≤ p ≤ n or n < p <∞

and f(0+) = f(0−) = 0. Then there exists a sequence of C∞
0 (Rn) functions (ϕk)

with support away from 0 such that ‖f − ϕk‖W 1
p (Ω) tends to 0.

Proof. First, it is enough to consider f ∈ W 1
p (Ω+), with f(0) = 0 if p > n.

Second, we may also assume f bounded by using the truncations fN = hN (f)
and N → ∞, where hN (t) = −N if t ≤ −N , hN (t) = t if −N ≤ t ≤ N and
hN (t) = N if t ≥ N . Next, we claim that we can approximate f by a function in
g ∈W 1

p (Ω+) supported away from a ball centered at 0. Assuming this claim, it
suffices to convolve this approximation with a smooth mollifying function which
has compact support inside Ω+ to conclude.

It remains to prove the above claim. Take χ ∈ C∞
0 (Rn) a positive, radial

function, bounded by 1, supported in the unit ball with χ = 1 in the half-unit
ball. For ǫ > 0, define χǫ(x) = χ(xǫ ) and take fǫ(x) = f(x)(1 − χǫ(x)). Every
fǫ = 0 on the ball of radius ǫ/2. We distinguish between 3 cases:

Case 1 ≤ p < n: By dominated convergence fǫ converges to f in Lp(Ω+).
For the gradient, as f is bounded and ‖∇χǫ‖p ≤ Cǫn/p−1, we conclude that ∇fǫ
converges to ∇f in Lp(Ω+).

Case p = n: The function fǫ does not converge to f in this case and we
have to modify the construction. For 0 < δ < 1, we introduce the function
ηδ(x) =

| ln δ|
| ln |x|| if |x| ≤ δ and ηδ(x) = 1 if |x| > δ. Take fǫ,δ = fηδ(1−χǫ) = fǫηδ

with δk = ǫ and k > 0 large. It is easy to show that fǫ,δ converges to f in
Ln(Ω+) for ǫ→ 0 and any k fixed. For the gradient, using |1−χǫ| ≤ 1, we have

|∇(f − fǫ,δ)| ≤ |(1− ηδ)∇f |+ |χǫ∇f |+ |f∇ηδ|+ |fηδ∇χǫ|.

We observe that we assumed f bounded. A computation shows that ‖ηδ∇χǫ‖n
is bounded by C/k. So we pick and fix k big enough. Next, ‖∇ηδ‖n goes to 0
as ǫ → 0 and the remaining term ‖(1− ηδ)∇f‖n + ‖χǫ∇f‖n → 0 by dominated
convergence.

1We consider real functions but everything is valid for complex functions.
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Case p > n: By dominated convergence, fǫ converges to f in Lp(Ω+). For
the gradient, we have (1 − χǫ)∇f converges to ∇f in Lp(Ω+) by dominated
convergence. It remains to prove that ‖f∇χǫ‖Lp(Ω+) tends to 0. By Morrey’s
theorem and recalling that f(0) = 0 we have for every x ∈ Ω+, |x| < ǫ,

∣∣∣∣
f(x)

ǫ

∣∣∣∣ ≤ C

(
|x|

ǫ

)1−n/p
(∫

{|y|<2ǫ}∩Ω+

|∇f |p(y)dy

)1/p

. (2.1)

This implies

∫

Ω+

|f(x)∇χǫ(x)|
pdx ≤

∫

{|x|≤ǫ}∩Ω+

∣∣∣∣
f(x)

ǫ

∣∣∣∣
p

dx

≤

∫

{|x|≤ǫ}∩Ω+

(
|x|

ǫ

)p−n

dx
1

ǫn

∫

{|y|≤2ǫ}∩Ω+

|∇f |p(y)dy

≤ C

∫

{|y|≤2ǫ}∩Ω+

|∇f |p(y)dy.

We conclude noting that the last integral converges to 0 when ǫ → 0 by the
dominated convergence theorem.

Remark. The density of functions in W 1
n(Ω±) supported away from a ball cen-

tered at 0 was also proved in [8, Lemma 2.4] for the special case of dimension
n equals 2 (We are thankful to Monique Dauge for indicating this work). Their
proof applies mutatis mutandis for dimensions higher.

Corollary 2.2. Let 1 ≤ p ≤ ∞. If p ≤ n, W̃ 1
p (Ω) = W 1

p (Ω) and if n < p,

W̃ 1
p (Ω) = {f ∈ W 1

p (Ω) ; f(0
+) = f(0−)}, and hence is of codimension 1 in

W 1
p (Ω).

Proof. For 1 ≤ p ≤ n, the equality follows immediately from Lemma 2.1. As-
sume now n < p ≤ ∞. Trivially W̃ 1

p (Ω) ⊂
{
f ∈W 1

p (Ω); f(0
+) = f(0−)

}
. Con-

versely let f ∈ W 1
p (Ω), f(0

+) = f(0−) := f(0). Then g = f − f(0)χ, with
χ ∈ C∞

0 (Rn) supported in the unit ball with χ ≡ 1 in a neighborhood of 0
verifies g(0+) = g(0−) = 0. By lemma 2.1 for p < ∞ and by definition for

p = ∞, this yields g ∈ W̃ 1
p (Ω) and therefore f = g + f(0)χ.

3 Real interpolation

As far as W 1
p (Ω) is concerned, we have if 1 ≤ p ≤ ∞ that W 1

p (Ω) = W 1
p (Ω+)⊕

W 1
p (Ω−) using restriction to Ω± and extension by 0 from Ω± to Ω. That is, if

f ∈W 1
p (Ω), we write

f = 1Ω+
f + 1Ω−f. (3.1)

Since Ω± is a Lipschitz domain, it is known [9] that the family of Sobolev
spaces (W 1

p (Ω±))1≤p≤∞ forms a scale of interpolation spaces for the real inter-
polation method. Hence the same is true for (W 1

p (Ω))1≤p≤∞.
There is a second chain of spaces appearing in the axiomatic theory of

Sobolev spaces on a metric-measure space ([11], [12], [14]). Let X be the
closure of Ω. Then X equipped with Euclidean distance and Lebesgue mea-
sure, which we denote by λ, is a complete metric-measure space. The balls
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are the restriction to X of Euclidean balls centered in X. For 1 ≤ p < ∞,
we denote by H1

p(X) the completion for the norm W 1
p (Ω) of Lip0(X), the

space of Lipschitz functions in X with compact support. For p = ∞, we set
H1

∞(X) = Lip(X) ∩ L∞(X). Identifying a Lipschitz function on Ω with its
unique extension to X, H1

∞(X) =
{
f ∈W 1

∞(Ω); f(0+) = f(0−)
}
. There are

also other Sobolev spaces of interest, like the Hajlasz spaces M1,p(X). We shall
come back to this in Section 5.

We recall the definitions of doubling property and Poincaré inequality:

Definition (Doubling property). Let (E, d, µ) be a metric-measure space. One
says that E satisfies the doubling property (D) if there exists a constant C <∞
such that for all x ∈ E, r > 0 we have

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r)). (D)

Definition (Poincaré Inequality). A (complete) metric-measure space (E, d, µ)
admits a q-Poincaré inequality for some 1 ≤ q < ∞, if there exists a positive
constant C <∞, such that for every continuous function u and upper gradient
g of u, and for every ball B of radius r > 0 the following inequality holds:

(∫

B
|u− uB |

q dµ

) 1

q

≤ Cr

(∫

B
gq dµ

) 1

q

. (Pq)

There are weaker ways of defining the Poincaré inequalities but it amounts
to this one when the space is complete. See [12] for more on this and definition
of upper gradients. On X, |∇u| is an upper gradient of u.

Let us recall Badr’s theorem in this context ([3], Theorem 7.11). On a
metric-measure space there is a definition H1

p (E) for p ≤ ∞ which, for X = E,
is equivalent to the one given here.

Theorem 3.1 (Badr). Let 1 ≤ q0 <∞. Assume (E, d, µ) is a complete metric-

measure space with the doubling property and q-Poincaré inequalities with q >
q0. Then for q0 < p0 < p1 ≤ ∞ and 1/p = (1− θ)/p0 + θ/p1,

(H1
p0(E),H1

p1(E))θ,p = H1
p(E). (3.2)

The space (X, d, λ) has the doubling property and, as shown in [12] p.17, it
supports a q-Poincaré inequality if and only if n < q. Thus, (H1

p(X))n<p≤∞ is a
scale of interpolation spaces for the real interpolation method. As observed and
proved in [2], Chapter 4 (see also Section 9 of [3]), with arguments we reproduce
here, H1

p (X) =W 1
p (Ω) when 1 ≤ p < n, and this allowed her to identify H1

p (X)
as the interpolation space (H1

p0(X),H1
p1(X))θ,p when 1 ≤ p0 < p < p1 ≤ ∞ and

1/p = (1− θ)/p0 + θ/p1 with the restriction that either n < p or p1 < n.
The missing cases are somehow intriguing and for the sake of curiosity we

provide a complete picture in the following result. More interestingly, we provide
two proofs that cover all cases at once.

Theorem 3.2. If 1 ≤ p0 < p < p1 ≤ ∞ and 1/p = (1− θ)/p0 + θ/p1, then

(H1
p0(X),H1

p1(X))θ,p =

{
H1

p (X), if p 6= n,

Ĥ1
n(X), if p = n.

(3.3)
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We shall see that Ĥ1
n(X) is a strict subspace of H1

n(X). This implies in
particular that Badr’s interpolation result is sharp in the class of Sobolev spaces
on metric-measure spaces: in this example, the infimum of Poincaré exponents
is also the smallest exponent p0 for which the family (H1

p (X))p0<p≤∞ is a scale
of interpolation spaces for the real interpolation method. Hence, she could not
get a better conclusion in general. See section 5 for a further discussion on this.

The space Ĥ1
n(X) will incorporate a sort of Hardy inequality with respect

to the vertex point. To describe it, we need the following definition.

Definition. For a function f : X → R, we define its radial part fr and its anti-
radial part fa as follows: fr(x) is the mean of f on the sphere S|x| of radius |x|
restricted to Ω with respect to surface measure and fa(x) = f(x)− fr(x).

The number fr(x) depends only on the distance of x to the origin, hence the
terminology radial (even if Ω is not invariant by rotations). But note that both
fr and fa depend on Ω. Note that f 7→ fr is a contraction on H1

p (X). Denote
by r : Rn → R, r(x) = |x|.

Definition. Ĥ1
n(X) = {f ∈ H1

n(X) ; fa/r ∈ Ln(X)} with norm

‖f‖
Ĥ1

n(X)
= ‖f‖H1

n(X) + ‖fa/r‖Ln(X).

The following example shows that Ĥ1
n(X) is a strict subspace of H1

n(X).
Assume n = 2 and β > 0, and consider the function f on X, supported on
r ≤ 1/2, C∞ away from 0, which is sign(x2)| ln r|

−β for r ≤ 1/4. It is easy to
check that f ∈ H1

2 (X) for all β > 0. Clearly, f = fa and f/r ∈ L2(X) if and

only if β > 1/2. Hence for 0 < β ≤ 1/2 we have f /∈ Ĥ1
2 (X).

Before we move on, the relation between H1
p(X) andW 1

p (Ω) is the following.

Lemma 3.3. For 1 ≤ p ≤ ∞, H1
p (X) = W̃ 1

p (Ω) with the same norm.

Proof. The equality at p = ∞ is obvious. Assume next that p < ∞. It is
clear that W̃ 1

p (Ω) ⊂ H1
p (X) ⊂ W 1

p (Ω). Thanks to Corollary 2.2, we have our
conclusion if 1 ≤ p ≤ n. Assume further n < p. Then functions in Lip0(X)
satisfy f(0+) = f(0−). Since f 7→ f(0±) are continuous on W 1

p (Ω), this passes

to H1
p (X). Applying again Corollary 2.2, we deduce that H1

p(X) ⊂ W̃ 1
p (Ω).

To prove our theorem, we first introduce the following spaces.

Definition. For 1 ≤ p ≤ ∞, set H̃1
p (X) = {f ∈ H1

p(X) ; f/r ∈ Lp(X)} with
norm

‖f‖H̃1
p(X) = ‖f‖H1

p(X) + ‖f/r‖Lp(X) = ‖f‖W 1
p (Ω) + ‖f/r‖Lp(Ω).

Lemma 3.4. For 1 ≤ p ≤ ∞, H̃1
p (X) is a Banach space which can be identified

isometrically to {f ∈W 1
p (Ω) ; f/r ∈ Lp(Ω)}.

Proof. There is nothing to prove if 1 ≤ p ≤ n thanks to Corollary 2.2 and
Lemma 3.3. Assume next n < p ≤ ∞. Let f ∈ H̃1

p (X), then the restriction
of f to Ω belongs to {f ∈ W 1

p (Ω) ; f/r ∈ Lp(Ω)}. Conversely if f ∈ W 1
p (Ω)

and f/r ∈ Lp(Ω), then f has a unique extension to a Hölder (Lipschitz if
p = ∞) continuous function in both Ω±. The condition f/r ∈ Lp(Ω) forces
f(0+) = f(0−) = 0. Hence this extension is in H1

p (X) and thus in H̃1
p(X).
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The next result is the main step.

Theorem 3.5. The family (H̃1
p(X))1≤p≤∞ is a scale of interpolation spaces for

the real interpolation method.

This result is proved in the next section. We continue with

Proposition 3.6. If 1 ≤ p < n, H̃1
p(X) = H1

p (X). If n < p ≤ ∞, H̃1
p (X) =

{f ∈ H1
p(X) ; f(0) = 0} and has codimension 1 in H1

p(X).

Before we prove this proposition we need the following Hardy type inequality
(we thank Michel Pierre for indicating a simple proof):

Lemma 3.7. Let 1 ≤ p ≤ ∞ with p 6= n. Then there exists a constant C =
C(p,Ω) such that ∫

Ω

∣∣∣∣
f

r

∣∣∣∣
p

dx ≤ C

∫

Ω
|∇f |p dx (3.4)

for every f ∈ H1
p(X) with, in addition, f(0) = 0 if p > n, and (3.4) is under-

stood with L∞ norms if p = ∞.

The example above shows that the lemma is false when p = n.

Proof. Assume first 1 ≤ p < n. Take f ∈ Lip0(X). We have

∫

Ω+

∣∣∣∣
f

r

∣∣∣∣
p

dx =

∫

Ω+∩S1

∫ ∞

0
rn−1−p|f(r, θ)|pdrdσ(θ)

=

∫

Ω+∩S1

[
1

n− p
rn−p|f(r, θ)|p

]∞

0

dσ(θ)

−

∫

Ω+∩S1

∫ ∞

0

1

n− p
rn−pp|f |p−1 sign f

∂f

∂r
drdσ(θ)

= −
p

n− p

∫

Ω+∩S1

∫ ∞

0

∣∣∣∣
f

r

∣∣∣∣
p−1

sign f
∂f

∂r
rn−1drdσ(θ)

≤
p

n− p

(∫

Ω+∩S1

∫ ∞

0

∣∣∣∣
f

r

∣∣∣∣
p

rn−1drdσ(θ)

) p−1

p

×

(∫

Ω+∩S1

∫ ∞

0

∣∣∣∣
∂f

∂r

∣∣∣∣
p

rn−1drdσ(θ)

) 1

p

.

After simplification, we get (3.4) on Ω+. We do the same for the integral on
Ω− and therefore (3.4) holds for every f ∈ Lip0(X). By density, (3.4) holds for
every f ∈ H1

p (X).

Assume next n < p < ∞. Let f ∈ Lip0(X) such that f(0) = 0. We denote
A =

∫
Ω+∩{|x|>ǫ}

∣∣f
r

∣∣pdx, where ǫ > 0. By Morrey’s theorem, we have for every

x ∈ Ω, |f(x)| ≤ C‖ |∇f | ‖p|x|
α with α = 1 − n/p. Repeating the computation

7



of (3.4) and since f has a compact support, one obtains

A =

∫

Ω+∩S1

∫ ∞

ǫ
rn−1−p|f(r, θ)|pdrdσ(θ)

=

∫

Ω+∩S1

[
1

n− p
rn−p|f(r, θ)|p

]∞

ǫ

dσ(θ)

−

∫

Ω+∩S1

∫ ∞

ǫ

1

n− p
rn−pp|f |p−1 sign f

∂f

∂r
dσ(θ)dr

=
ǫn−p

p− n

∫

Ω+∩S1

|f(ǫ, θ)|pdσ(θ) +
p

p− n

∫

Ω+∩S1

∫ ∞

ǫ

∣∣∣∣
f

r

∣∣∣∣
p−1

sign f
∂f

∂r
rn−1drdσ(θ)

≤ Cp‖∇f‖pp

+
p

p− n

(∫

Ω+∩S1

∫ ∞

ǫ

∣∣∣∣
f

r

∣∣∣∣
p

rn−1drdσ(θ)

) p−1

p
(∫

Ω+∩S1

∫ ∞

ǫ

∣∣∣∣
∂f

∂r

∣∣∣∣
p

rn−1drdσ(θ)

) 1

p

.

This yields

A ≤ Cp‖ |∇f | ‖pp +
p

p− n
A

p−1

p ‖ |∇f | ‖p.

Plugging

A
p−1

p ‖ |∇f | ‖p ≤
δp

′
A

p′
+

1

pδp
‖ |∇f | ‖pp

for every δ > 0, with p′ = p
p−1 , one obtains

A(1 −
pδp

′

(p − n)p′
) ≤ (Cp +

1

(p− n)δp
)‖ |∇f | ‖pp.

Choosing δ small enough, we deduce that

∫

Ω+∩{|x|>ǫ}

∣∣∣∣
f

r

∣∣∣∣
p

dx ≤ C

∫

Ω+

|∇f |pdx.

We then let ǫ → 0. We do the same for the integral on Ω− and therefore (3.4)
holds for every f ∈ Lip0(X) such that f(0) = 0. By density, (3.4) holds for
every f ∈ H1

p (X) such that f(0) = 0.

When p = ∞, (3.4) is a direct consequence of the definition of H1
∞(X) and

that f(0) = 0 with the mean value theorem.

Proof of Proposition 3.6. When 1 ≤ p < n, Lemma 3.7 shows that H1
p(X) ⊂

H̃1
p(X) and the proposition follows. Now, when p > n, Lemma 3.7 yields{
f ∈ H1

p (X); f(0) = 0
}
⊂ H̃1

p(X). Conversely if f ∈ H̃1
p(X), by the continuity

of f at 0 and the Lp integrability of f/r we easily see that f(0) = 0.
It remains to prove that H̃1

p(X) is of codimension 1 in H1
p (X). This follows

by writing f ∈ H1
p(X) as f = f − f(0)χ+ f(0)χ, where χ ∈ C∞

0 (Rn), suppχ ⊂
B(0, 1) and χ = 1 in a neighborhood of 0, and using the above characterization
of H̃1

p (X).

Although this is a simple description of H̃1
p (X), the jump at p = n does not

allow us to use this result to conclude for Theorem 3.2. We need to further
analyze the radial and antiradial parts of a function.
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Lemma 3.8. Let 1 ≤ p ≤ ∞.

1. For a function f depending only on the distance to the origin, f ∈ H1
p(X) ⇐⇒

f ∈W 1
p (R

n) with same norm up to a constant.

2. Assume p 6= n. For a function f : X → R and fa = f − fr, we have

fa ∈ H̃1
p(X) ⇐⇒ fa ∈ H1

p(X) with comparable norms.

Proof. The first item is trivial. The constant is the ratio of the surface measure
of Ω inside the unit sphere divided by the surface measure of the unit sphere.

As for the second item, it follows from the previous proposition directly if
p < n and by observing that fa(0) = 0 if p > n.

Let us recall the following definition:

Definition. Let f be a measurable function on a measure space (X,µ). The
decreasing rearrangement of f is the function f∗ defined for every t ≥ 0 by

f∗(t) = inf {λ : µ({x : |f(x)| > λ}) ≤ t} .

The maximal decreasing rearrangement of f is the function f∗∗ defined for every
t > 0 by

f∗∗(t) =
1

t

∫ t

0
f∗(s)ds.

Remark. It is known that (Mf)∗ ∼ f∗∗ with M the Hardy-Littlewood maximal
operator, ‖f∗∗‖p ∼ ‖f‖p for all p > 1 (see [22], Chapter V, Lemma 3.21, p.191
and Theorem 3.21, p.201) and µ({x : |f(x)| > f∗(t)}) ≤ t for all t > 0. We
refer to [4], [5] for other properties of f∗ and f∗∗.

We can now complete the proof of Theorem 3.2.

Proof. Let us examine the case where neither p0, p1 is n. By the reiteration
theorem, this reduces further to p0 = 1, p1 = ∞. Set Fp = (H1

1 (X),H1
∞(X))θ,p

with θ = 1− 1/p.
Let f ∈ Fp. Since f 7→ fr is contracting on H1

q (X) for all 1 ≤ q ≤ ∞ and
using Lemma 3.8, one has that

K(fr, t,W
1
1 (R

n),W 1
∞(Rn)) ≤ CK(f, t,H1

1 (X),H1
∞(X)).

K is the K-functional of interpolation defined as in [4], [5]. Hence fr ∈W 1
p (R

n)
by classical interpolation for the W 1

p (R
n). Thus fr ∈ H1

p (X) by Lemma 3.8.
We also have by Lemma 3.8 again,

K(fa, t, H̃
1
1 (X), H̃1

∞(X)) ≤ CK(f, t,H1
1(X),H1

∞(X)).

Theorem 3.5 shows then that fa ∈ H̃1
p (X). We conclude that f ∈ H1

p (X) if

p 6= n and f ∈ Ĥ1
n(X) if p = n.

Reciprocally, let f ∈ H1
p (X) if p 6= n and f ∈ Ĥ1

n(X) if p = n. By Lemma

3.8, whatever p is, we have that fr ∈ W 1
p (R

n) and fa ∈ H̃1
p (X). By Theorem

3.5, fa ∈ (H̃1
1 (X), H̃1

∞(X))θ,p with θ = 1− 1/p. Hence fa ∈ Fp. For the radial
part, for each t > 0, one can find a decomposition fr = gt+ht almost minimizing
for K(fr, t,W

1
1 (R

n),W 1
∞(Rn)) and one can assume both gt and ht are radial.

Thus Lemma 3.8 implies that gt ∈ H1
1 (X) and ht ∈ H1

∞(X), hence fr ∈ Fp.
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It remains to study the case where p0 or p1 is equal to n. Let us consider
the case p1 = n as the other one is similar. It is also enough to look at the
result when p0 = 1. As we know all interpolation spaces between H1

1 (X) and
H1

∞(X), by the reiteration theorem, if 1 < p < n and 1
p = 1− θ + θ

n we have

(H1
1 (X), Ĥ1

n(X))θ,p = H1
p(X). Hence, we have

H1
p (X) = (H1

1 (X), Ĥ1
n(X))θ,p ⊂ (H1

1 (X),H1
n(X))θ,p ⊂ H1

p(X).

The last inclusion is the easy part of the interpolation: we recall that

K(f, t,H1
1 (X),H1

n(X)) ≥ K(f, t, L1, Ln) +K(|∇f |, t, L1, Ln)

and that

K(f, t, L1, Ln) ∼

∫ tα

0
f∗(u) du + t

(∫ ∞

tα
f∗(u)n du

) 1

n

,

where 1
α = 1− 1

n . Integrating, using the definition of the maximal rearrangement
function and its properties in the Remark above, we deduce that

‖f‖p
(H1

1
(X),H1

n(X))θ,p
=

∫ ∞

0

(
t−θK(f, t,H1

1 (X),H1
n(X))

)p dt
t

≥ C‖f‖p
H1

p(X)

and therefore (H1
1 (X),H1

n(X))θ,p ⊂ H1
p (X).

This concludes the proof.

Remark. The inclusion Ĥ1
n(X) ⊂ H1

n(X) is dense. This is due to the fact that as
H1

n(X) =W 1
n(Ω), the space of restrictions to X of smooth functions on R

n with
compact support in R

n \ {0}, a subspace of Ĥ1
n(X), is dense in H1

n(X). Note
that the last part of the argument shows that (H1

p0(X),H1
p1(X))θ,p = H1

p(X) for
the appropriate p whenever p0 or p1 is equal to n. In particular, when p0 = n
this furnishes an endpoint to Badr’s result for the case of E = X.

Remark. As X is symmetric with respect to S : x 7→ −x, we can define Ĥ1
n(X)

differently by doing an analysis with even and odd parts. Define the even
and odd parts fe and fo of a function f : X → R as fe = 1

2(f + f ◦ S) and

fo = 1
2 (f − f ◦ S). We have that Ĥ1

n(X) = {f ∈ H1
n(X) ; fo/r ∈ Ln(X)}. Let

f ∈ H1
n(X). Write fo = (fr)o + (fa)o and easily (fr)o = 0. Hence

fa ∈ H̃1
n(X) =⇒ (fa)o ∈ H̃1

n(X) =⇒ fo ∈ H̃1
n(X).

Next, write fa = (fe)a + (fo)a. We claim that (fe)a/r ∈ Ln(X). Hence,

fo ∈ H̃1
n(X) =⇒ (fo)a ∈ H̃1

n(X) =⇒ fa ∈ H̃1
n(X).

To see the claim, we observe that the evenness of fe implies that (fe)r(x) is
also equal to the mean of fe on Ω+ ∩ S|x|. Thus (fe)a is an even function with
mean value 0 on each Ω± ∩ S|x|. Applying the classical (with gradient instead
of upper gradient) Poincaré inequalities (Pn) for spherical caps (that is geodesic
balls) with respect to surface measure on S|x|, we obtain

∫

Ω±∩S|x|

|(fe)a|
ndσ(θ) ≤ C(n,Ω±)|x|

n

∫

Ω±∩S|x|

|∇θ(fe)a|
ndσ(θ)

10



where ∇θ is the tangential gradient on S|x|. Notice that |∇θ(fe)a| ≤ |∇(fe)a|
on Ω ∩ S|x|. So adding the two inequalities, multiplying by r−n = |x|−n and
integrating with respect to dr we obtain

∫

Ω

|(fe)a|
n

rn
dx ≤ C(n,Ω)

∫

Ω
|∇(fe)a|

ndx.

Hence (fe)a/r ∈ Ln(X) as claimed.

Remark. We have used Poincaré inequalities (Pn) for spherical caps on spheres.
Equipped with geodesic distance and surface measure, they are spaces of homo-
geneous type. Actually, (Pp) hold for all p ≥ 1 and all geodesic balls (including
the sphere itself):

∫

B
|f(θ)−mBf |

pdσ(θ) ≤ c(p, n) diam(B)p
∫

B
|∇θf(θ)|

pdσ(θ).

We have not been able to locate this result explicitly in the literature, neither
can we say who proved it first. But it is not a new fact. It can be obtained
from [15] seeing them as submanifold in R

n. One can also apply results in
[19, Theorem B.10]. One can also relate this to isoperimetry and Sobolev in-
equalities (see, e.g., [6, Chapter IV]), especially if, unlike us, one is after best
constants. A pedestrian approach to prove Poincaré inequalities for spherical
caps (or more general Lipschitz subdomains of the sphere) is to pullback in-
tegrals

∫
B |f(θ) − a|pdσ(θ), a constant, via a stereographic projection and use

Poincaré inequalities on balls (or bounded Lipschitz domains) of Rn. This easily
works if B is contained in a hemisphere by choosing an opposite pole. If this is
not the case, cut B in two equal parts along an equator and use the argument
above for each part, using again Poincaré inequalities for bounded Lipschitz
domains of Rn.

4 Proof of Theorem 3.5

For the proof of Theorem 3.5, we need a Calderón-Zygmund decomposition as
in [3]. We incorporate here a further control to take care of the vertex point.

Let 1 < p < ∞ and f ∈ H̃1
p(X). Identifying f to its restriction to Ω, write

f = f |Ω+
+ f |Ω− = f+ + f−. We establish the following Calderón-Zygmund

decomposition for f+ and the same decomposition holds for f−.

Proposition 4.1 (Calderón-Zygmund lemma). Let α > 0. Then one can find a

collection of balls (Bi+)i of Ω+, functions bi+ and a Lipschitz function g+ such

that the following properties hold:

f+ = g+ +
∑

i

bi+ on Ω+ (4.1)

|g+(x)|+
|g+(x)|

|x|
+ |∇g+(x)| ≤ Cα λ− a.e x ∈ Ω+ (4.2)

supp bi+ ⊂ Bi+,

∫

Bi+

(
|bi+|+

|bi+|

|x|
+ |∇bi+|

)
dx ≤ Cα (4.3)

11



∑

i

λ(Bi+) ≤ Cα−p

∫

Ω+

(
|f+|+

|f+|

|x|
+ |∇f+|

)p

dx (4.4)

∑

i

χBi+
≤ N. (4.5)

The constants C and N only depend on p and on the constants in (D) and (P1)
in Ω+.

A ball of Ω+ is the restriction to Ω+ of an open ball of Rn having center in
Ω+.

Proof. To simplify the exposition, we omit the index + keeping it only for Ω+.
For x ∈ R

n, denote r(x) = |x|. Consider

U =

{
x ∈ Ω+ : MΩ+

(|f |+
|f |

r
+ |∇f |)(x) > α

}

with

MΩ+
f(x) = sup

B: x∈B

1

λ(B)

∫

B
|f |dx

where B ranges over all balls of Ω+. Recall that MΩ+
is of weak type (1, 1)

and bounded on Lp(Ω+, λ), 1 < p ≤ ∞. If U = ∅, then set

g = f , bi = 0 for all i

so that (4.2) is satisfied according to the Lebesgue differentiation theorem. Oth-
erwise the maximal theorem gives us

λ(U) ≤ Cα−p

∫

Ω+

(
|f |+

|f |

r
+ |∇f |

)p

dx <∞ (4.6)

In particular U 6= Ω+ as λ(Ω+) = ∞. Let F be the complement of U in Ω+.
Since U is an open set distinct of Ω+, we use a Whitney decomposition of U ([7]):
one can find pairwise disjoint balls Bi of Ω+ and two constants C2 > C1 > 1,
such that

1. U = ∪iBi with Bi = C1Bi and the balls Bi have the bounded overlap
property;

2. ri = r(Bi) =
1
2d(xi, F ) and xi is the center of Bi;

3. each ball Bi = C2Bi intersects F (C2 = 4C1 works).

Recall that the above balls are balls of Ω+, that is Bi = B(xi, ri/C1) ∩ Ω+,
Bi = B(xi, ri) ∩Ω+, Bi = B(xi, riC2) ∩Ω+ and xi ∈ Ω+ where B(x, r) denotes
an Euclidean open ball in R

n. Condition (4.5) is nothing but the bounded
overlap property of the Bi’s and (4.4) follows from (4.5) and (4.6).

Since λ(Bi) ≤ Cλ(Bi) (the doubling property for Ω+) and Bi ∩ F 6= ∅ for
all i, we have

∫

Bi

(|f |+
|f |

r
+ |∇f |)dx ≤

∫

Bi

(|f |+
|f |

r
+ |∇f |)dx ≤ Cαλ(Bi). (4.7)

Let us derive some useful properties. For x ∈ U , denote Ix = {i : x ∈ Bi}.
By the bounded overlap property of the balls Bi, we have that ♯Ix ≤ N . Fixing
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j ∈ Ix and using the properties of the Bi’s, we easily see that 1
3ri ≤ rj ≤ 3ri

for all i ∈ Ix. In particular, Bi ⊂ 7Bj for all i ∈ Ix. We can deduce from that
|fBj

− fBi
| ≤ Crjα with C independent of i, j ∈ Ix and x ∈ U . Indeed, we use

that Bi and Bj are contained in 7Bj , Poincaré inequality (P1) on balls of Ω+

(here 7Bj), the comparability of ri and rj , and the control of the gradient term
in (4.7).

Let us now define the functions bi and prove (4.3). Let (χi)i be a partition of
unity of U subordinated to the covering (Bi), such that for all i, χi is a Lipschitz

function supported in Bi with ‖ |∇χi| ‖∞ ≤
C

ri
. To this end it is enough to

choose for x ∈ Ω+, χi(x) = ψ
(C1d(xi, x)

ri

)(∑

k

ψ(
C1d(xk, x)

rk
)
)−1

, where ψ is

a smooth function, ψ = 1 on [0, 1], ψ = 0 on [1+C1

2 ,+∞[ and 0 ≤ ψ ≤ 1. We
declare Bi of type 1 if 4ri ≤ d(Bi, 0) and of type 2 otherwise. Here d(Bi, 0) is
the distance from Bi to 0. Indeed, it could well be that one Bi even touches the
origin. We set bi = (f − fBi

)χi if Bi is of type 1 and bi = fχi if f is of type 2.
It is clear that supp bi ⊂ Bi.

We first begin the proof of the estimates on bi by assuming Bi of type 1. We
remark that for all x ∈ Bi we have ri ≤ |x|/4 = r/4 from the type 1. We have

∫

Bi

|bi|dx =

∫

Bi

|(f − fBi
)χi|dx ≤ 2

∫

Bi

|f |dx ≤ Cαλ(Bi).

We applied (4.7) in the last step. For |bi|
r , we use 1/r ≤ 1/4ri on Bi and the

Poincaré inequality (P1) on Bi:

∫

Bi

|bi|

r
dx ≤

∫

Bi

|f − fBi
|

4ri
dx ≤ C

∫

Bi

|∇f |dx ≤ Cαλ(Bi),

using (4.7) again. For ∇bi, since ∇
(
(f − fBi

)χi

)
= χi∇f + (f − fBi

)∇χi, the
Poincaré inequality (P1) on Bi and (4.7) yield

∫

Bi

|∇bi|dx ≤ C

(∫

Bi

|χi∇f |dx+

∫

Bi

|f − fBi
| |∇χi|dx

)

≤ C‖χi‖∞αλ(Bi) + C‖∇χi‖∞ri

∫

Bi

|∇f |dx

≤ Cαλ(Bi).

Therefore (4.3) is proved if Bi is a type 1 ball.

If Bi is a type 2 ball, the control of
∫
Bi

|bi|dx and
∫
Bi

|bi|
r dx is direct from

definition and (4.7). For
∫
Bi

|∇bi|dx, the only term requiring an argument is∫
Bi

|f∇χi|dx. We remark that the type 2 implies |x| ≤ 2ri + d(Bi, 0) ≤ 6ri for
x ∈ Bi. Hence, we have |∇χi(x)| ≤ C/ri ≤ 6C/r on Bi and we can use (4.7)
again. Therefore (4.3) is proved if Bi is a type 2 ball. Remark that we proved

∫

Bi

|bi|dx ≤ Cαriλ(Bi) (4.8)

for all i and also |fBi
| ≤ Cαriλ(Bi) for type 2 balls.
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Set g = f −
∑

i bi so that (4.1) is granted and it remains to establish (4.2).
We begin by some observations. Since the sum is locally finite on U , g is defined
almost everywhere on Ω and g = f on F . Observe that g is a locally integrable
function on Ω. Indeed, let ϕ ∈ L∞ with compact support. Since d(x, F ) ≥ ri
for x ∈ supp bi and

∑
λ(Bi) ≤ Cλ(U) by using doubling and the disjointness

of the balls Bi, we obtain, using (4.8),

∫ ∑

i

|bi| |ϕ| dx ≤
(∫ ∑

i

|bi|

ri
dx
)

sup
x∈Ω+

(
d(x, F )|ϕ(x)|

)

≤ Cαλ(U) sup
x∈Ω+

(
d(x, F )|ϕ(x)|

)
.

Since f ∈ L1
loc(Ω+), we deduce that g ∈ L1

loc(Ω+)
2. We also note that by

Lebesgue differentiation theorem, we have

|f |+
|f |

r
+ |∇f | ≤ α, λ− a.e. on F. (4.9)

We turn to proving the estimate ‖g‖∞ ≤ Cα. Using that
∑

i χi = 1 on U
and 0 on F , we have

g = f11F +
∑

Bi type 1

fBi
χi.

By (4.9), it remains to estimate the series. By (4.7), |fBi
| ≤ Cα and we

conclude using
∑

i χi ≤ 1.
We continue with the estimate ‖g/r‖∞ ≤ Cα. We use the same decompo-

sition for g as above. On F , |g|/r ≤ α. Let x, y ∈ Bi with Bi a type 1 ball.
We have ri ≤ |y|/4 by type 1 definition. We also have |x− y| ≤ 2ri. Hence we
deduce that |y| ≤ 2ri + |x| ≤ |y|/2 + |x|, so that |y| ≤ 2|x| and

|fBi
|

|x|
≤ 2

∫

Bi

|f(y)|

|y|
dy ≤ Cα.

Then let x ∈ U . Considering only the balls Bi containing x, we have:

|g(x)|

|x|
≤

∑

i∈Ix:Bi type 1

|fBi
|

|x|
χi(x) ≤ Cα

∑

i∈Ix

χi(x) = Cα.

It remains to prove ‖∇g‖∞ ≤ Cα. For that, we use the original representa-
tion of g, differentiate in the sense of distributions and calculate

∇g = ∇f −
∑

i

∇bi = ∇f −

(∑

i

χi

)
∇f − h = 11F (∇f)− h

with
h =

∑

Bi type 1

(f − fBi
)∇χi + f

∑

Bi type 2

∇χi.

By (4.9), |11F (∇f)| ≤ α λ-a.e.. We claim that a similar estimate holds for h,
i.e. |h(x)| ≤ Cα for all x ∈ Ω+. For this, note first that h vanishes on F .

2Note that since b ∈ L1 in our case, we can say directly that g ∈ L1

loc
. However, this way of doing

applies to the homogeneous case presented in Section 6.
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Then fix x ∈ U . Observe that
∑

i ∇χi(x) = 0, and by the definition of Ix, the
sum reduces to i ∈ Ix. Pick j ∈ Ix with Bj of type 2 if there is one such ball,
otherwise any j ∈ Ix will do. We have

h(x) =
∑

i∈Ix:Bi type 1

(fBj
− fBi

)∇χi(x) + fBj

∑

i∈Ix:Bi type 2

∇χi(x)

because the difference with the previous equation is

(f(x)− fBj
)
∑

i∈Ix

∇χi(x) = 0.

We have seen that |fBj
− fBi

| ≤ Crjα ≤ 3Criα with C independent of i, j ∈ Ix
and x ∈ U . Since |∇χi(x)| ≤ C/ri and Ix has cardinal bounded by N , we
are done for the the first term in the right hand side. For the second term,
either no i ∈ Ix are such that Bi is of type 2, in which case this term is 0.
In the opposite case, we know that |fBj

| ≤ Cαrj since Bj is of type 2 and we
conclude using |∇χi(x)| ≤ C/ri ≤ 3C/rj for i ∈ Ix and that Ix has cardinal
bounded by N . From these estimates we deduce that |∇g(x)| ≤ Cα λ−a.e..

We are now able to characterize the K-functional of interpolation between
H̃1

1 (X) and H̃1
∞(X).

Theorem 4.2. We have that

K(f, t, H̃1
1 , H̃

1
∞) ∼ t

(
f∗∗(t) +

(
|f |

r

)∗∗

(t) + |∇f |∗∗(t)

)

for every f ∈ H̃1
1 (X) + H̃1

∞(X) and t > 0. The implicit constants are indepen-

dent of f and t.

Proof. The lower bound follows from the fact that K(g, t, L1, L∞) ∼ tg∗∗(t)
for g ∈ L1 + L∞. Now for the upper bound, consider first the case when
f ∈ H̃1

p (X). Identifying f to its restriction to Ω, write f = f+ + f− and take
the above Calderón-Zygmund decomposition for each f+ and f− for α > 0 to
be chosen. We obtain open subsets U± and functions g±, b±. We assume that
U± are nonempty; the easy modifications otherwise are left to the reader.

Here is the point of working with the H̃ spaces instead of the H spaces.
As g+(0

+) = g−(0
−) = 0, if we define g = g+ on Ω+ and g− on Ω−, then g

can be extended to a Lipschitz function on X = Ω with ‖g
r ‖∞ ≤ Cα. Hence

g ∈ H̃1
∞(X) with norm controlled by Cα.

Therefore we can write f ∈ H̃1
p(X) as f = g + b with b ∈ W 1

1 (Ω) = H̃1
1 (X)

and g ∈ H̃1
∞(X). We have ‖g‖H̃1

∞(X) ≤ Cα and ‖b‖H̃1
1
(X) ≤ Cα(λ(U+)+λ(U−)).

Let

α±(t) =

(
MΩ±(|f±|+

|f±|

r
+ |∇f±|)

)∗

(t), α = max(α+(t), α−(t)).

Remark that

α+(t) .

(
|f+|

∗∗ +

(
|f+|

r

)∗∗

+ |∇f+|
∗∗

)
(t)

.

(
|f |∗∗ +

(
|f |

r

)∗∗

+ |∇f |∗∗
)
(t)
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where the implicit constant depends only on the doubling constant of Ω+. We
used the fact that {x ∈ Ω+; |f+(x)| > λ} ⊂ {x ∈ Ω; |f(x)| > λ}, hence f∗+(t) ≤

f∗(t). Similarly, (f+r )∗(t) ≤ (fr )
∗(t) and |∇f+|

∗(t) ≤ |∇f |∗(t).
As U+ is contained in

{
x ∈ Ω+;MΩ+

(|f+|+
|f+|

r
+ |∇f+|)(x) > α+(t)

}

we have λ(U+) ≤ t. Similarly we get λ(U−) ≤ t. This yields

K(f, t, H̃1
1 , H̃

1
∞) ≤ ‖b‖H̃1

1

+ t‖g‖H̃1
∞

≤ Ct

(
f∗∗(t) +

(
|f |

r

)∗∗

(t) + |∇f |∗∗(t)

)
.

For the general case when f ∈ H̃1
1 (X)+H̃1

∞(X), we apply a similar argument
to that of [9] to obtain the upper bound. We omit details.

Proof of Theorem 3.5. Set H̃1
p,1(X) = (H̃1

1 (X), H̃1
∞(X))1−1/p,p. By the reitera-

tion theorem, it suffices to establish H̃1
p,1(X) = H̃1

p (X) with equivalent norms.

First, from the Calderón-Zygmund decomposition, we have H̃1
p(X) ⊂ H̃1

1 (X)+

H̃1
∞(X) for 1 < p <∞ where the inclusion is continuous.
From the previous results we have that for f ∈ H̃1

1 (X) + H̃1
∞(X)

‖f‖1−1/p,p ∼

{∫ ∞

0

(
|f |∗∗(t) +

(
|f |

r

)∗∗

+ |∇f |∗∗(t)

)p

dt

}1/p

∼ ‖f∗∗‖p +

∥∥∥∥
(
|f |

r

)∗∗∥∥∥∥
p

++‖ |∇f |∗∗‖p

∼ ‖f‖p +

∥∥∥∥
f

r

∥∥∥∥
p

+ ‖ |∇f | ‖p

∼ ‖f‖H̃1
p
,

where we used that for l > 1, ‖f∗∗‖l ∼ ‖f‖l.

5 Restriction/Extension from/to R
n

We study the restriction operator onto Ω and construct an extension that is p
independent. The subject of restriction and extension has been very studied
for Sobolev spaces on domains (that is, connected open sets). For some definite
answers see [13] and the references therein. But recall that the double cone is
not a domain. For references closer to what we are doing here, see [18] which
considers the Bessel-Sobolev spaces in subsets of Rn and [20] which treats the
Hajlasz-Sobolev spaces in spaces of homogeneous type. Let us first state our
result.

Theorem 5.1. Let 1 ≤ p ≤ ∞.

• The restriction operator is bounded from W 1
p (R

n) into H1
p(X). Further, it

is onto for p 6= n and for p = n, its range is Ĥ1
n(X).
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• There exists a linear extension operator E that is bounded from H1
p(X) to

W 1
p (R

n) if p 6= n and from Ĥ1
n(X) to W 1

n(R
n).

The interesting part of this result is p = n. Observe also that this shows
that H1

n(X) does not have the extension property.
In accordance with the cited references, the second item is closely related

to ontoness in the first. It could well be a direct consequence but we prefer
producing an explicit extension operator.

In [20], the author studies restrictions onto regular sets in a space of homo-
geneous type. Note that the double cone is a regular set in R

n. For such sets,
he proves the following interesting theorem (Theorem 1.3). For all 1 < p ≤ ∞,
the restriction of M1,p(Rn) to Ω equals M1,p(X) and there exists a linear con-
tinuous extension from the latter space to the first one. Here, M1,p is the
Hajlasz-Sobolev space. Given the fact that W 1

p (R
n) = M1,p(Rn) with equiv-

alent norms for 1 < p ≤ ∞ ([12]), this implies that M1,p(X) interpolate for
1 < p ≤ ∞. But combining this with our result gives the following corollary.

Corollary 5.2. For 1 < p ≤ ∞, M1,p(X) = H1
p (X) if p 6= n and M1,n(X) =

Ĥ1
n(X).

The result for p > n is known (see [11]): it follows from the fact that X is
complete and satisfies Poincaré inequality for any p > n. Not much more can
be said in general without these two conditions so this corollary is seemingly
new for p ≤ n. The interesting case is the identification for p = n: M1,n(X) is
a strict subspace of H1

n(X).
This study of restriction/extension properties uses the decomposition into

radial and anti-radial parts defined earlier. It also possible to reprove the inter-
polation property of the H1

p(X) spaces by this method.
We first study the restriction operator, then construct the extension. We

next prove the ontoness and conclude with the application to interpolation.

5.1 Restriction

The restriction operator R is defined by R(f) = f |Ω. Let 1 ≤ p < ∞. It is
obvious that if f ∈ W 1

p (R
n) then R(f) ∈ W 1

p (Ω), and that R : W 1
p (R

n) →
W 1

p (Ω) is bounded. As C∞
0 (Rn) is dense in W 1

p (R
n), the range is contained in

W̃ 1
p (Ω) = H1

p (X).

For p = n, we show that R maps into Ĥ1
n(X). Let f ∈ W 1

n(R
n) and let

g = R(f). Since we already know that g ∈ H1
n(X), it remains to show that

ga/r ∈ Ln(X). Write f = fρ + fα where fρ(x) is here the average of f on the
whole sphere of radius |x|. Identifying fρ with its restriction to Ω, we see that
(fρ)r = fρ and (fρ)a = 0. Thus, if we write g = gr + ga, we conclude that
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ga = (fα|Ω)a, i.e ga(x) = fα(x)−
∫
Ω∩S|x|

fα dσ(θ) for x ∈ Ω. Thus

∫

Ω∩S|x|

|ga|
n dσ(θ) ≤ 2n

∫

Ω∩S|x|

|fα|
n dσ(θ)

≤ 2n
∫

S|x|

|fα|
n dσ(θ)

≤ C|x|n
∫

S|x|

|∇θfα|
ndσ(θ)

where the last inequality is Poincaré inequality (Pn) on the sphere S|x| since fα
has mean value 0 on it, and ∇θ is the tangential gradient (see the last remark
in Section 3). Since r(x) = |x| it follows that

∫

Ω

∣∣∣ga
r

∣∣∣
n
dx =

∫ +∞

0

∫

Ω∩Sr

∣∣∣ga
r

∣∣∣
n
dσ(θ)dr

≤ C

∫ +∞

0

∫

Sr

|∇θfα|
ndσ(θ)dr

= C

∫ +∞

0

∫

Sr

|∇fα|
ndσ(θ)dr

≤ C

∫

Rn

|∇f |ndx <∞.

We used that∇θfα = ∇θf since fρ does not depend on θ and then |∇fα| ≤ |∇f |.

Therefore R(f) = g ∈ Ĥ1
n(X).

For p = ∞, it is obvious that R is bounded from W 1
∞(Rn) into H1

∞(X) (and
it is onto by Whitney’s extension theorem).

5.2 Extension

Let 1 ≤ p ≤ ∞. Let f ∈ H1
p (X) if p 6= n (resp. f ∈ Ĥ1

n(X)). Write f = fr + fa

as in Section 3. Lemma 3.8 yields fr ∈W 1
p (R

n) and fa ∈ H̃1
p(X). It remains to

extend fa. We write fa = fa|Ω+
+ fa|Ω− = fa+ + fa−. We treat fa+, the same

analysis applying to fa−. Our strategy is to enlarge Ω+ to a slightly bigger
half-cone Ω̃+, then we map them with a smooth bilipschitz map onto the upper
half-space R

n
+ and a slightly bigger version R̃n

+. We use the reflection principle
for Sobolev spaces to extend from the upper-half space to the full space, localise
on R̃

n
+ with a homogeneous cut-off and finish by mapping back onto Ω̃+. There

are many ways to do that. Here are the details.
Let w < π/2 be the half-angle of Ω+ with respect to the vertical axis and

let Ω̃+ be an open half-cone with half-angle ω + ε < π/2 for some small ε
with same vertex point and rotation axis. Using the spherical angle θ ∈ [0, π)
defined by θ = arccos xn

|x| by writing x = (x′, xn), x
′ ∈ R

n−1, xn ∈ R, the map

ψ+(x) = y with y =
( sin(2ωθ/π)

sin θ x′, cos(2ωθ/π)cos θ xn
)
is a smooth bilipshitz (this is

somewhat tedious to check carefully but it reduces to a planar estimate) map,

leaving the norm invariant (|ψ+(x)| = |x|), from R
n
+ onto Ω+ and from R̃n

+ onto

Ω̃+ where R̃n
+ is a half-cone with half-angle π(w+ε)

2ω > π
2 . We consider now the

even extension ζ+ : W 1
p (R

n
+) → W 1

p (R
n). Let m+ ∈ C∞(Rn \ {0}) ∩ L∞(Rn),
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homogeneous of degree 0, such that m+ = 1 on R
n
+ and suppm+ ⊂ R̃n

+ ∪ {0}.
With these ingredients we define the extension ξ+(fa+) of fa+ as

ξ+(fa+) =
[
m+ζ+(fa+ ◦ ψ+)] ◦ ψ

−1
+ .

It readily follows from the properties of m+ that

∥∥∥m+ g

r

∥∥∥
p
.
∥∥∥g
r

∥∥∥
p

and
‖ |∇(m+g)|‖p . ‖ |∇g|‖p +

∥∥∥g
r

∥∥∥
p

for all g ∈ W 1
p (R

n). Using this fact, that bilipschitz maps preserve Sobolev
spaces and density of Lipschitz functions, we obtain that ξ+(fa+) ∈ W 1

p (R
n)

with supp ξ+(fa+) ⊂ Ω̃+ ∪ {0} and ‖ξ+(fa+)‖W 1
p (R

n) ≤ C‖fa+‖H̃1
p(X)

. We con-

clude that ξ(fa) = ξ+(fa+)+ξ−(fa−) ∈W 1
p (R

n) is an extension of fa toW
1
p (R

n).
Therefore, E defined by

E(f) = fr + ξ(fa)

is an extension of f to W 1
p (R

n). We have shown that the map E is H1
p (X) →

W 1
p (R

n)-bounded if p 6= n and Ĥ1
n(X) →W 1

n(R
n)-bounded if p = n.

5.3 Ontoness and relation to interpolation for H1
p(X)

From the previous subsections, we deduce that R ◦ E operates boundedly on
H1

p(X) for p 6= n and on Ĥ1
n(X) as the identity map. In particular, R acting

on W 1
p (R

n) is onto H1
p (X) for p 6= n and onto Ĥ1

n(X) for p = n. Using the
preservation of interpolation properties for retract diagrams, it follows that

(H1
1 (X),H1

∞(X))1−1/p,p = R(W 1
1 (R

n),W 1
∞(Rn))1−1/p,p) = R(W 1

p (R
n)).

Therefore (H1
1 (X),H1

∞(X))1−1/p,p = H1
p(X) for p 6= n and Ĥ1

n(X) for p = n.

6 Homogeneous versions

Homogeneous Sobolev spaces are defined up to a constant, removing control on
the Lp norms on f . Since the vertex point plays a specific role, it is best here
to fix the floatting constant by imposing control at this vertex point. We adopt
the following definitions. Let Lip0(X) be the space of Lipschitz functions in X
vanishing at 0. For 1 ≤ p ≤ ∞, we set

Ep = {f ∈ Lip0(X) ; ‖ |∇f |‖Lp(X) <∞},

Ẽp = {f ∈ Lip0(X) ; ‖ |∇f |‖Lp(X) + ‖f/r‖Lp(X) <∞}.

Then Ep and Ẽp are normed spaces and we call H1
p(X) and H̃1

p(X) their com-

pletions. Clearly Ẽ∞ = H̃1
∞(X) = E∞ = H1

∞(X) = Lip0(X).
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It is easy to show that H1
p(X) is composed of locally p-integrable functions.

For p > n, one has (2.1) from the Morrey embedding and f(0) = 0.
It is clear that H̃1

p(X) ⊂ H1
p(X) but for 1 ≤ p ≤ n the inclusion is strict3.

Indeed a Lipschitz function supported away from 0 which agrees with ei|x|
−α

for
|x| ≥ 1 satisfies ‖f/r‖p = ∞ and belongs to Ep if α > 0 is large enough. For
p > n, the inclusion is an equality as we shall see.

Lemma 6.1. For 1 ≤ p <∞, Lip0(X) ∩ Lip0(X) is dense in H̃1
p(X).

Proof. If f ∈ Ẽp, consider fk = fχ(r/k), k ∈ N
∗, where χ : [0,∞) → [0, 1] is

a smooth function which is 1 on [0, 1] with support in [0, 2]. It is easy to show
that ‖ |∇(f − fk)|‖p and ‖(f − fk)/r‖p tend to 0 as k tends to ∞.

Remark. From there, one can see that the restrictions to Ω of functions in
C∞
0 (Rn) that vanish at 0 form a dense subspace of H̃1

p(X).

Corollary 6.2. • For 1 ≤ p < n, (3.4) holds on H̃1
p(X).

• For n < p <∞, (3.4) holds on H1
p(X) and H1

p(X) = H̃1
p(X).

Proof. Assume first that 1 ≤ p < n. Then by the previous lemma, one can
assume that f ∈ Lip0(X) for which the argument of (3.4) applies.

Assume now n < p < ∞. Let f ∈ Lip0(X). For 0 < ǫ < R < ∞,
set A =

∫
Ω+∩{R>|x|>ǫ}

∣∣f
r

∣∣pdx. Then argue as in the proof of (3.4). In the
integration by parts, one picks an extra term which has a negative sign because
n − p < 0. Thus one can cancel it and obtain A ≤ C‖|∇f |‖pLp(X+) with C
independent of ǫ,R. Taking limits and doing the same thing on Ω− shows that
f ∈ Ẽp and we are done.

The first item also show that the closure in H1
p(X) of Lip0(X) ∩ Lip0(X) is

H̃1
p(X).

Theorem 6.3. The family (H̃1
p(X))1≤p≤∞ is an interpolation family for the

real method. Hence the same is true for (H1
p(X))n<p≤∞.

The proof for the spaces H̃1
p(X) is a minor adapatation of the one of Theorem

3.5 and is left to the reader. The second point follows from the above corollary.
Interpolation for the spaces H1

p(X) for p ≤ n is unclear.

7 Some remarks and generalizations

Remark. (some explicit extensions) There are many extension operators. The
following example was communicated to us by Michel Pierre. For the (double)
cone of R2 consisting of the 2 quadrants defined by xy > 0, then one can take

Ef(x, y) =




f(x, y), if xy > 0,

x2f(x,−y) + y2f(−x, y)

x2 + y2
, if xy < 0.

3In contrast with the inhomogeneous case for p < n.
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Remark. (central role of the vertex) The analysis in this article does not use
the fact that the cone Ω is symmetric under x 7→ −x and also does not use
the specific opening angle. This means that the upper and lower (open) half-
cones can be replaced by two half-cones located independently of one another
provided they share the same vertex and that they are strictly separated by a
hyperplane passing through the vertex and not containing any direction of the
boundaries. Also the (finite) number of disjoint half-cones is not limited to 2
provided each pair satisfies the above requirements.

Remark. (other types of cones) The half-cones can be replaced by R
∗
+×N where

N is a Lipschitz domain on the unit sphere. On such domains, one has Poincaré
inequalities with any exponents (adapt the proof sketched in the last remark of
Section 3) and this allows to adapt the arguments.

Remark. (local geometry) Of course, the analysis done with inhomogeneous
norms is stable by (smooth) truncation of the cone away from the vertex point.
For example, if one wants to work on a truncated cone by requiring r < 1, then
one can use local variants as in Badr’s thesis [2]. Details are left to the reader.
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