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Abstract

The purpose of this note is to discuss how various Sobolev spaces defined on
multiple cones behave with respect to density of smooth functions, interpolation
and extension /restriction to/from R™. The analysis interestingly combines use
of Poincaré inequalities and of some Hardy type inequalities.
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1 Introduction

The theory of Sobolev spaces on domains of the Euclidean spaces is well devel-
oped and numerous works and books are available. For multi-connected open
sets, there is apparently nothing to say. However, depending on the topology of
the boundary, the closure of the space of test functions (ie compactly supported
in R™) might be a subtle thing. We propose here to investigate the Sobolev
spaces on multiple cones with common vertex as unique common point of their
boundaries. Surprisingly, we did not find a treatment in the literature.

Our motivation comes from Badr’s PhD thesis where interpolation results
for Sobolev spaces on complete metric-measure spaces are proved upon the
doubling property and families of Poincaré inequalities. A question remained



unsettled, namely whether the result is sharp, that is whether the conclusion
is best possible given the hypotheses. Multiple (closed) cones are sets where
doubling (for Lebesgue measure) holds and LP-Poincaré inequalities hold for
some but not all p, more precisely for p greater than dimension. Cones are
therefore simple but important examples for this matter. The study of Sobolev
spaces on such sets provides us with the positive answer to our question and, in
addition, we complete the interpolation result in this specific situation. As we
shall see, these Sobolev spaces can be identified with the closure of test functions
in the classical Sobolev space on open multiple cones.

For simplicity, we work on € the Euclidean (double) cone defined by z% +
ot x%_l < 22, n > 2, but all the material extends right away to multiple
cones with common vertex point (see Section 7), and the cones need not be
of revolution type. The various first order Sobolev spaces on (2 we consider
are: WPI(Q), Wpl(Q) the closure of smooth compactly supported functions in R"
in W, () and also H}(X) the Sobolev space arising from geometric measure
theory on X = Q.

The question we ask is: how do they behave with respect to density of
smooth functions, interpolation and extension/restriction to/from R™?

Our results (Sections 2,3,4 and 5) exhibit the specific role of the vertex
point. This role translates into a critical exponent (equal to dimension) and the
LP Sobolev spaces have different behaviors with respect to the various actions
listed above. For example, the usual spaces Wpl(Q) interpolate for all p in [1, cc].

The space WI}(Q) coincides with W, () if 1 < p < n but is a strict subspace

for n < p. Hence the way the /WV/Z}(Q) interpolate for all p is unclear and we
provide an answer, identifying the critical interpolation space at p = n as a
strict subspace of W,}(2). The open set € has the extension property for I/Vp1
if p < n. It cannot be the case when p > n. On the contrary, it is the case
if one replaces Wpl(Q) by Wpl(Q) At p = n, the extension property is, as we
show, not enjoyed by Wﬁ(ﬂ), but by the smaller interpolation space. As for the
space H; (X) it is easy to show it agrees with WI}(Q) and it turns out that it
will be easier to work with the former. Finally, we make a connection with the
Hajlasz-Sobolev space. In particular, this will show that the Hajlasz-Sobolev
space M1 (X) is a strict subspace of H}(X), which can be surprising.

Of course, some of our results are known and we give references along the way
when we have been able to locate them, but some results, like the interpolation
results, are new. We also point out that we give two proofs of the interpolation
result. Although the one presented in section 5 using restriction/extension looks
more natural to users of Sobolev spaces on subsets of the Euclidean space, we
prefer the one done in Sections 3 and 4, because it is more in the spirit of
analysis on metric spaces and contains ideas that we believe could be used in
this context elsewhere. In particular, a special feature is that it allows to pass
below the Poincaré exponent threshold by using Hardy type inequalities.



2 Density

Let 1 < p < oo and O an open set of R™. Define WI}(O) as the space of
functionsf] f € LP(0O) such that

[fllwi0) = IlfllLeo) + IV fllLe(0) < o0

The gradient is defined in the distributional sense in O. For p < oo, denote
by W, (O) the closure of the space of C§°(R™) (the subscript 0 means compact
support) functions restricted to O in Wpl(O). Among classical texts, we quote
000 O G

If n < p < oo, recall that the Morrey-Sobolev embedding implies that if
fe WI}(Q) then f is Holder continuous on each connected component €24 of
2, the half-cones defined by =z € Q and sign(xz,) = £1. Hence f has limits
in 0 from Q; and Q_. These limits, which we call f(0") and f(0~), may be
different.

This lemma is classical and we include a proof for convenience.

Lemma 2.1. Let 1 <p<ooand f € WI}(Q) Assumel <p<mnorn<p< o
and f(0F) = f(07) = 0. Then there exists a sequence of C§°(R™) functions (o)
with support away from 0 such that ||f — gokHWpl(Q) tends to 0.

Proof. First, it is enough to consider f € Wpl(Q+), with f(0) = 0 if p > n.
Second, we may also assume f bounded by using truncations 1<y and N —
oo. Next, we claim that we can approximate f by a function in g € Wpl(QJr)
supported away from a ball centered at 0. Assuming this claim, it suffices
to convolve this approximation with a smooth mollifying function which has
compact support inside €24 to conclude.

It remains to prove the above claim. Take x € C§°(R") a positive, radial
function, bounded by 1, supported in the unit ball with y = 1 in the half-unit
ball. For € > 0, define x.(z) = x(%) and take fc(z) = f(z)(1 — xe(z)). Every
fe =0 on the ball of radius €/2. We distinguish between 3 cases:

Case 1 < p < n: By dominated convergence f. converges to f in LP(4).
For the gradient, as f is bounded and || Vx||, < Ce™P~1, we conclude that V f.
converges to Vf in LP(Qy).

Case p = n: The function f. does not converge to f in this case and we
have to modify the construction. For 0 < § < 1, we introduce the function
ns(x) = % if |z| < ¢ and ns(z) = 1if |z| > 0. Take fc5 = fns(1—xe) = fens
with 6¥ = ¢ and k& > 0 large. It is easy to show that fes converges to f in
L"(Qy) for e — 0 and any k fixed. For the gradient, using |1 — x| < 1, we have

IV(f = fes) S 1L =n6)V I+ XV FI+ Vs + [ fnsVxel.

We observe that we assumed f bounded. A computation shows that |75V xe||n
is bounded by C/k. So we pick and fix k big enough. Next, [|[Vnsl, goes to 0
as € — 0 and the remaining term ||(1 — 75)V fln + [[xeV f|ln — 0 by dominated
convergence.

"'We consider real functions but everything is valid for complex functions.



Case p > n: By dominated convergence, f. converges to f in LP(€Qy). For
the gradient, we have (1 — x)Vf converges to Vf in LP(;) by dominated
convergence. It remains to prove that ||fVx.|| rr(0,) tends to 0. By Morrey’s
theorem and recalling that f(0) = 0 we have for every x € Q4 |z| <€,

1-n/p 1/p
2 <o (M) (f \Vf\p(y)dy> e
{lyl<2einQy

This implies

/ (@) V(o) Pz < /
Q4 {lz|<e}ny4
x| \P" 1
</ (%) ws/ V1P (0)dy
{lol<epney \ € € Jyl<2nos

<c / IV £1P(y)dy.
{lyl<2e}NQ

We conclude noting that the last integral converges to 0 when ¢ — 0 by the
dominated convergence theorem. O

p

@dw

€

Remark. The density of functions in W,}(Q.) supported away from a ball cen-
tered at 0 was also proved in [[l, Lemma 2.4] for the special case of dimension
n equals 2 (We are thankful to Monique Dauge for indicating this work). Their
proof applies mutatis mutandis for dimensions higher.

Corollary 2.2. Let 1 < p < o0. Ifp < n, WI}(Q) = WI}(Q) and if n < p,
%%Eg; = {f € WHQ); f(07) = f(07)}, and hence is of codimension 1 in
» (82).

Proof. For 1 < p < n, the equality follows immediately from Lemma R.1]. As-
sume now p > n. Trivially WI}(Q) C{feWy(Q);f(0%) = f(07)}. Conversely
let f € WI}(Q), f(0T) = f(07). Then g = f — f(0)x, with x € C§°(R"™) sup-
ported in the unit ball with y = 1 in a neighborhood of 0 verifies g(0") =
9(07) = 0. Lemma yields g € W;(Q) and therefore f = g+ f(0)x. O

3 Real interpolation

As far as W () is concerned, we have if 1 < p < oo that W (Q) = W}(Q4) &
WI}(Q_) using restriction to {21+ and extension by 0 from 24 to Q. That is, if
f € Wi(€), we write

f=1o, f+1q_f. (3.1)

Since Q4 is a Lipschitz domain, it is known that the family of Sobolev
spaces (W;(Qi))lgpgoo forms a scale of interpolation spaces for the real inter-
polation method. Hence the same is true for (W, (Q))1<p<oo-

There is a second chain of spaces appearing in the axiomatic theory of
Sobolev spaces on a metric-measure space ([L0], [L1], [L3]). Let X be the
closure of 2. Then X equipped with Euclidean distance and Lebesgue mea-
sure, which we denote by A, is a complete metric-measure space. The balls



are the restriction to X of Euclidean balls centered in X. For 1 < p < o0,
we denote by HJ(X) the completion for the norm W, (Q) of Lipy(X), the
space of Lipschitz functions in X with compact support. For p = oo, we set
H! (X) = Lip(X) N L>=(X). Identifying a Lipschitz function on  with its
unique extension to X, HL (X) = {f € WL(Q); f(0%) = f(07)}. There are
also other Sobolev spaces of interest, like the Hajlasz spaces MP(X). We shall
come back to this in Section 5.
We recall the definitions of doubling property and Poincaré inequality:

Definition (Doubling property). Let (E,d, ) be a metric-measure space. One
says that E satisfies the doubling property (D) if there exists a constant C' > 0
such that for all x € E, r > 0 we have

w(B(z,2r)) < Cu(B(z,r)). (D)

Definition (Poincaré Inequality). A (complete) metric-measure space (F,d, i)
admits a g-Poincaré inequality for some 1 < ¢ < oo, if there exists a constant
C > 0, such that for every continuous function v and upper gradient g of wu,
and for every ball B of radius r > 0 the following inequality holds:

1 1
<7[ ]u—uB\qdu>q <Cr (][ quu>q . (P,)
B B

There are weaker ways of defining the Poincaré inequalities but it amounts
to this one when the space is complete. See [[L1]] for more on this and definition
of upper gradients. On X, |Vu/ is an upper gradient of w.

Let us recall Badr’s theorem in this context ([f], Theorem 7.11). On a
metric-measure space there is a definition H;(E) for p < oo which, for X = F|
is equivalent to the one given here.

Theorem 3.1 (Badr). Let 1 < gg < co. Assume (E,d, p) is a complete metric-
measure space with the doubling property and q-Poincaré inequalities with q >
qo. Then for gy < po <p1 < oo and 1/p=(1-6)/po+0/p1,

(Hp, (E), Hy, (E))o.p = Hy(E). (3.2)

The space (X,d, \) has the doubling property and, as shown in [[L]] p.17, it
supports a g-Poincaré inequality if and only if n < ¢. Thus, (H; (X)) n<p<oo is a
scale of interpolation spaces for the real interpolation method. As observed and
proved in [, Chapter 4 (see also Section 9 of [fJ]), with arguments we reproduced
here, H)(X) = W, (Q2) when 1 < p < n, and this allowed her to identify H}(X)
as the interpolation space (H} (X), H} (X))g,, when 1 < py < p < p; < oo and
1/p=(1-0)/po+ 0/p1 with the restriction that either n < p or p; < n.

The missing cases are somehow intriguing and for the sake of curiosity we
provide a complete picture in the following result. More interestingly, we provide
two proofs that covers all cases at once.

Theorem 3.2. If1 <py <p <p; < oo and 1/p=(1—0)/po+0/p1, then

Hy(X), if p#n,

~ 3.3
HY(X), if p=n. (3:3)

(Hpy(X), Hy, (X))o = {



We shall see that H}(X) is a strict subspace of H}(X). This implies in
particular that Badr’s interpolation result is sharp in the class of Sobolev spaces
on metric-measure spaces: in this example, the infimum of Poincaré exponents
is also the smallest exponent pg for which the family (HI% (X))po<p<oo 1s a scale
of interpolation spaces for the real interpolation method. Hence, she could not
get a better conclusion in general. See section 5 for a further discussion on this.

The space ];AI%(X ) will incorporate a sort of Hardy inequality with respect
to the vertex point. To describe it, we need the following definition.
Definition. For a function f: X — R, we define its radial part f, and its anti-
radial part f, as follows: f,.(x) is the mean of f on the sphere of radius |z|
restricted to © with respect to surface measure and f,(x) = f(x) — f-(z).

The number f,(x) depends only on the distance of x to the origin, hence the
terminology radial (even if € is not invariant by rotations). But note that both
fr and f, depend on §2. Note that f — f, is a contraction on H; (X). Denote
by 7: R" — R, r(z) = |z|.

Definition. H:(X) = {f € H:(X); fo/r € L™(X)} with norm

||f||1§%(x) = Hf”H}L(X) + ||fa/7"||Ln(X)-

The following example shows that ﬁrll(X ) is a strict subspace of H!(X).
Assume n = 2 and 8 > 0, and consider the function f on X, supported on
r < 1/2, C* away from 0, which is sign(zz)|Inr|~# for r < 1/4. It is easy to
check that f € Hi(X) for all 8 > 0. Clearly, f = f, and f/r € L*(X) if and
only if > 1/2. Hence for 0 < # < 1/2 we have f ¢ ﬁ%(X)

Before we move on, the relation between HJ(X) and W, (1) is the following.

Lemma 3.3. For 1 <p < oo, H;(X) = WI}(Q) with the same norm.

Proof. 1t is clear that Wpl(Q) C H}(X) c W}(2). Thanks to Corollary P.9,
we have our conclusion if 1 < p < n. Assume next n < p. Then functions in
Lipy(X) satisfy f(07) = f(07). Since f — f(0F) are continuous on W (),
this passes to H}(X). Applying again Corollary P-4, we deduce that H}(X) C
W(Q). O

To prove our theorem, we first introduce the following spaces.
Definition. For 1 < p < oo, set ﬁ;(X) = {f € H)(X); f/r € LP(X)} with
norm

1 g2 ) = 1Ly o0 + 1 /rllee ooy = 1wy + 17 /7 o) -

Lemma 3.4. For1 <p < oo, ﬁ; (X) is a Banach space which can be identified
isometrically to {f € W) (Q); f/r € LP(Q)}.

Proof. There is nothing to prove if 1 < p < n_thanks to Corollary P and
Lemma B.J. Assume next n < p < co. Let f € H; (X), then the restriction of
f to Q belongs to {f € W, (Q); f/r € LP(Q)}. Conversely if f € W}(Q) and
f/r € LP(Q), then f has a unique extension to a Holder continuous function in
both Q. The condition f/r € LP(Q) forces f(0%) = f(07) = 0. Hence this
extension is in H}(X) and thus in H}(X). O
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The next result is the main step.

Theorem 3.5. The family (ﬁ;(X))lgpgoo is a scale of interpolation spaces for
the real interpolation method.

This result is proved in the next section. We continue with
Proposition 3.6. If 1 < p < n, ]?II%(X) = H}(X). If n < p < o0, ﬁ;(X) =
{f € H{(X); f(0) =0} and has codimension 1 in H}(X).

Before we prove this proposition we need the following Hardy type inequality

(we thank Michel Pierre for indicating a simple proof):

Lemma 3.7. Let 1 < p < oo with p # n. Then there exists a constant C' =

C(p,Q?) such that

/ f
Qlr

for every [ € H;(X) with, in addition, f(0) =0 if p > n (with the usual L™
norm if p = 00.)

P
dx < C/ |V fIPdx (3.4)
Q

The example above shows that the lemma is false when p = n.
Proof. Assume first 1 < p < n. Take f € Lipy(X). We have

I

p e’}
dx = / / 7P| f(r, 0) [Pdrdo (9)
QNS JO

-/ [ ! r”"’lf(rﬁ)l”rdffw)
QNS LM—P 0

—/ / L r"_pp]f]p_l signfgdrda(e)
Qins;Jo n—p or

00 p—1
- P / / ! signfgr"_ldrda(e)
n—pJa.ns;Jo |T
Sl
n-—p Q4nS; JO

8,
Q+ Sl 0

After simplification, we get (B.4) on Q. We do the same for the integral on
Q_ and therefore (B.4) holds for every f € Lipy(X). By density, (B-4) holds for
every f € HY(X).

P

IN

f
.

p
r"_ldrda(9)>

’ :
r"_ldrda(9)>

Assume next n < p < co. Let f € Lipy(X) such that f(0) = 0. We denote
A= fQ+m{\x\>s} ‘ﬂpdx, where € > 0. By Morrey’s theorem, we have for every

z e Q, |f(x)] < CI|Vfllple|* with @« = 1 —n/p. Repeating the computation



of (B.4) and since f has a compact support, one obtains

/ / 10| £ (1, 0) [Pdrdo(6)
QyNSy Je
1 o0
r" 7P| f(r,0 p] do (6
[%m%[n_p 0P| doto)
—/ / —1 r"_pp]f]p_l sign f gda(@)dr
QyNSy n—p or

€

n—p oo
- [ eorae s 2o [
p—n QNS p—n QyNnSy Je r

< CPIV LI
p % 00
r"_ldrda(9)> </ /
QyNSy Je

5 (e
p—n QyNSy Je
P p p 1
A< CP||Vf] H;ﬂrmx‘l PV (3.5)

A

"Ldrdo(9)

p—1 ‘ fg
sign f o7

! A g
. ol " drdo(6)

This yields

Plugging APTTIH IV llp < SA+ L[|V f]|5 for every 6 > 0, one obtains

p p
[ < P P — b
A= Log) < e+ Ll
Choosing § < %, we deduce that
P
/ / de < C |V fIPdz.
Qin{|x|>e} r Qi

We then let € — 0. We do the same for the integral on Q_ and therefore (B.4)
holds for every f € Lipy(X) such that f(0) = 0. By density, (B-4) holds for
every f € H}(X) such that f(0) = 0.

When p = oo (B4) is a direct consequence of the definition of H1 (X) and
that f(0) = 0 with the mean value theorem. O

Proof of Proposition [3.4. When 1 < p < n, Lemma B.7 shows that H;(X) -
ﬁ;(X ) and the proposition follows. Now, when p > n, Lemma B.] yields
{fe H;(X);f(O) =0} C ﬁ;(X) Conversely if f € fl;(X), by the continuity
of f at 0 and the LP integrability of f/r we easily see that f(0) = 0.

It remains to prove that ﬁ;(X ) is of codimension 1 in H; (X). This follows
by writing f € H}(X) as f = f — f(0)x + f(0)x, where x € C§°(R"), supp x C
B(0,1) and x = 1 in a neighborhood of 0, and using the above characterization
of HY(X). O

Although this is a simple description of I;T; (X), the jump at p = n does not
allow us to use this result to conclude for Theorem B.J. We need to further
analyze the radial and antiradial parts of a function.

Lemma 3.8. Let 1 < p < o0.



1. For a function f depending only on the distance to the origin, f € H;(X) —
fe WI}(R") with same norm up to a constant.

2. Assume p # n. For a function f: X — R and f, = f — fr, we have
fo € HY(X) <= f, € HY(X) with comparable norms.

Proof. The first item is trivial. The constant is the ratio of the surface measure

of € inside the unit sphere divided by the surface measure of the unit sphere.
As for the second item, it follows from the previous proposition directly if

p < n and by observing that f,(0) =0if p > n. O

We can now complete the proof of Theorem B.9.

Proof. Let us examine the case where neither pg, p1 is n. By the reiteration
theorem, this reduces further to py = 1, py = co. Set F, = (H}(X), HL (X))o,
with § =1 —1/p.

Let f € F,. Since f + f, is contracting on H;(X) for all 1 < ¢ < oo and
using Lemma B.§, one has that

K (frt, W (R™), W (R™)) < CK(f,t, H{ (X), Hy (X))

K is the K-functional of interpolation defined as in [, [f]. Hence f, € W}(R™)
by classical interpolation for the W, (R™). Thus f. € H)(X) by Lemma B.g
We also have by Lemma B.§ again,

K (fort, H{ (X), H (X)) < CK(f,1, H{ (X), H (X))

Theorem B.J shows then that f, € ﬁ;(X ). We conclude that f € H; (X) if
p#nandfeﬁ[}z(X) if p=n.

Reciprocally, let f € H;(X) ifp#£mnand f € ﬁ%(X) if p =n. By Lemma
B8, whatever p is, we have that f. € W, (R") and f, € ﬁ; (X). By Theorem
B3 f.€ (ﬁll(X),fIéo(X))g,p with 6 =1 —1/p. Hence f, € F,. For the radial
part, for each t > 0, one can find a decomposition f, = ¢g;+h; almost minimizing
for K(f. t, WL(R"), WL(R")) and one can assume both g; and h; are radial.
Thus Lemma B.§ implies that ¢, € H{(X) and h; € HL (X), hence f, € F,.

It remains to study the case where py or p; is equal to n. Let us consider
the case p; = n as the other one is similar. It is also enough to look at the
result when pg = 1. As we know all interpolation spaces between H{(X) and
HL (X), by the reiteration theorem, if 1 < p < n and % =1-0+ % we have

(H(X), HY(X))pp = HL(X). Hence, we have
Hy(X) = (H{(X), H\(X))g,) C (H(X), Hy(X))g,, C Hy(X).

The last inclusion is the easy part of the interpolation. This concludes the
proof. O

Remark. The inclusion I;T}L(X ) C H}(X) is dense. This is due to the fact that as
H}(X) = W}(Q), the space of restrictions to X of smooth functions on R" with
compact support in R \ {0}, a subspace of H.(X), is dense in H!(X). Note
that the last part of the argument shows that (H,\ (X), H} (X))s, = H}(X) for
the appropriate p whenever pg or p; is equal to n. In particular, when pg = n
this furnishes an endpoint to Badr’s result for the case of £ = X.



Remark. As X is symmetric with respect to S : x — —x, we can define ﬁ%(X )
differently by doing an analysis with even and odd parts. Define the even
and odd parts f. and f, of a function f: X — R as f, = %(f + folS) and
fo=13(f = foS). We have that HL(X) = {f € H){(X); fo/r € L*(X)}. Let
f e HNX). Write f, = (fr)o + (fa)o and easily (f,), = 0. Hence

fa € Hy(X) = (fa)o € Hy(X) = fo € Hy(X).
Next, write fo = (fe)a + (fo)a- We claim that (fe)q/r € L™(X). Hence,
fo € Hy(X) = (fo)a € Hy(X) = fu € Hy(X).

To see the claim, we observe that the evenness of f, implies that (f.),(x) can
be calculated by replacing the mean of f. on €N .S, by the one on Q4 NS,
This spherical cap is connected and satisfies Poincaré inequalities with respect
to surface measure on S|, so that we obtain,

[ ltgards) < co. 0l / Vo (f)al"do(9)
Q4N

Q+0S‘m‘

were Vj is the tangential gradient and notice that |Vg(fe)a| < |V(fe)a| on
Q4 N S|y So multiplying by =" = |x|™" and integrating with respect to dr we
obtain

[ AL < cnn [ 196
Q4

T Qy

This inequality is valid with n replaced by any 1 < p < cc.

4 Proof of Theorem 3.5

For the proof of Theorem B.5, we need a Calderén-Zygmund decomposition as
in [J]. We incorporate here a further control to take care of the vertex point.
Let l<p<ooand f € ﬁ;(X ). Identifying f to its restriction to €2, write
f = fla, + flo_. = f+ + f—. We establish the following Calderén-Zygmund
decomposition for f, and the same decomposition holds for f_.

Proposition 4.1 (Calderén-Zygmund lemma). Let o > 0. Then one can find a
collection of balls (Bit); of Q4, functions biy and a Lipschitz function g4 such
that the following properties hold:

f+:9++zbz’+ on €1 (4.1)

@)+ = v @l < Ca A-acaca, (42)
b;

supp b C Bi+,][ <|bi+| + bi+| + |Vbi+|> dx < Ca (4.3)
Biy 2]

. | f+] P
B <ca [ (1nd+ LV ) o (4.4)
7 +

10



Z XBi, < (4.5)

The constants C' and N only depend on p and on the constants in (D) and (P)
m Q+.

A ball of Q4 is the restriction to €2, of an open ball of R™ having center in
Q.

Proof. To simplify the exposition, we omit the index + keeping it only for 2.
For z € R™, denote r(z) = |z|. Consider

v ={o et Ma, s+

+I9f)@) > o
with
Maq, f(x) = sup / |f|dx

Baen MB)

where B ranges over all balls of €2. Recall that Mg, is of weak type (1,1)
and bounded on LP(Q4,\), 1 < p < oco. If U = (), then set

g=f, b =0 forall i

so that ([[.9) is satisfied according to the Lebesgue differentiation theorem. Oth-
erwise the maximal theorem gives us

MU) < Ca /

Q4

<|f| i IVf|> (4.6)
< +o0.

In particular U # Q4 as A(Q4) = 4o00. Let F be the complement of U in
Q.. Since U is an open set distinct of Q;, we use a Whitney decomposition
of U ([f]): one can find pairwise disjoint balls B; of 4 and two constants
Cy > C7 > 1, such that

1. U = U;B; with B; = C1B; and the balls B; have the bounded overlap
property;

2. r=7r(B;) = %d(:ﬂi,F) and z; is the center of B;;

3. each ball B; = CyB; intersects F (Cy = 4Cy works).

Recall that the above balls are balls of Q, that is B; = B(x;,r;/C1) N €y,
B; = B(z;,7) NQy, B; = B(x;,7:C2) N Q. and z; € Q, where B(x,r) denotes
an Fuclidean open ball in R"™.

Note that 7; < rin B;. For x € U, denote I, = {i : © € B;}. By the bounded
overlap property of the balls B;, we have that ﬁ] < N. Fixing j € I, and using
the properties of the B;’s, we easily see that L gri <r; < 3 for all i € I, In
particular, B; C 7B; for all ¢ € I,,. Condition (@) is nothing but the bounded
overlap property of the B;’s and ([£4) follows from ([LH) and ([.§). The doubling
property of € and the fact that B; N F # () yield

/]

[+ v < [+ 9ipar < ax@) < conmy. @)
B; r B; r

11



Let us now define the functions b;. Let (x;); be a partition of unity of U
subordinated to the covering (B;), such that for all ¢, x; is a Lipschitz function

C
supported in B; with || |[Vxi||lco < —. To this end it is enough to choose
T

xi(z) = zb(M) (Z¢ Cld H;k’ ))> , where 1 is a smooth function,

¥ =1o0n]0,1], 4% =0on [1+201,+oo[ and 0 <1 <1. Weset b; = (f— fB,)xi- It
is clear that suppb; C B;. Let us estimate fBi |b;|dex, fBi ‘ﬁ—i‘d:p and fBi |Vb;|dz.

We have
/ bilda = / I(f = f2)xilda
B; B;

§c</& |f|dx+/Bi|fBi|dx)

gC/ |fldx
B;

We applied Jensen’s inequality in the second estimate, and ([.7) in the last one.

/ Mdm:/ I = FB)xil
T . T
Z S/f\f—ﬁf&rdw

7

<c / IV flde
B;

b.
For % we have

Since V((f — fBi)Xi) = xiVf+ (f — fB,)Vxi, the Poincaré inequality (P;) on
Q, and (f.7) yield

/ |Vbi|dxso< [ v+ | |f—fBi||in|dx>
B; B; B;

< Cal(B;) + Crgn/ |V fldx
i JnB

Therefore ([.3) is proved. By similar arguments, [ %d:p < Cal(By).
Set g = f — Z b;. Since the sum is locally finite on U, g is defined almost

i
everywhere on 2 and ¢ = f on F. Observe that g is a locally integrable
function on €. Indeed, let ¢ € L*> with compact support. Since d(x, F) > r;
for € supp b; and > A(B;) < CA(U) by using doubling and the disjointness

12



of the balls B;, we obtain

[ iiplar < (325 ar) sup (ate. et

e

< CaA(U) sup (d(x,F)]cp(a;)])

e

Since f € L}, we deduce that g € Lllocﬁ. It remains to prove ({.9). In the sense

loc?
of distributions, we have

Vg=Vf—- Z Vb;
= V= Q=) (f ~ fr)Vx
=1p(Vf) - Z(f — fB.)Vxi-

(2

From the definition of F' and the Lebesgue differentiation theorem, we have
that 1p (| f] + @ +|Vf]) < a A—a.e.. We claim that a similar estimate holds
for h =3 .(f — fB,)Vxi, i.e. |h(z)] < Ca for all z € Q. For this, note first
that h vanishes on F. Then fix x € U. Observe that ), Vx;(z) = 0, and by
the definition of I, the sum reduces ¢ € I,. Hence, we have for all j € I,

D (f(x) = f8)Vxil@) = Y (f(@) = f8)VXi(z) = > _(fB, — fB,)VXi().
i 1€l 1€l

We claim that |fp;, — fp,| < Crja with C independent of 4,j € I, and z € U.
Indeed, we use that B; and B; are contained in 7B;, Poincaré inequality (Py),
the comparability of r; and r;, and @) Since I, has cardinal bounded by N,
we are done. From these estimates we deduce that |Vg(z)| < Ca A — a.e..

Let us now estimate ||g||oo. We have g = fllp + ZfBiXi‘ Since | fllF < «,

i
it remains to estimate || >, £, Xilloo- Note that since B; N F # ()
[fB:| < C][_ |fldz < Ca. (4.8)
B;

Since Z xi = 1 on U, inequality (f.§) yields for z € U,

7

lg(x)| = rZ fexi(x)] < Caz xi(z) = Ca.

We conclude that [|g]jcc < Ca X —a.e..
We still need to estimate ||£[|o. On F, |£] < Ca. Take now z € U. For all

1€ I,
75l o ][ 1Oy, < ca
|| Byl

ZNote that since b € L' in our case, we can say directly that g € L},.. However, this way of doing
applies to the homogeneous case presented in Section 6.

13



Then

lg(x)] <> |fBi|Xi(:n) <Ca)_ |xi(z)| < Co.

1 e
U

_ We are now able to characterize the K-functional of interpolation between
H{(X) and H (X).

Theorem 4.2. We have that

x(a i~ (10 + (D) 0+ wro)

for every f € ﬁll (X)+ HL (X) and t > 0. The implicit constants are indepen-
dent of f and t.

Proof. The lower bound follows from the fact that K(g,t, L', L) ~ tg**(t)
for ¢ € L' + L>*. Now for the upper bound, consider first the case when
fe H; (X). Identifying f to its restriction to Q, write f = f+ + f_ and take
the above Calderén-Zygmund decomposition for each fi and f_ for o > 0 to
be chosen. We obtain open subsets UL and functions g+,by. We assume that
Uy are nonempty; the easy modifications otherwise are left to the reader.

Here is the point of working with the H spaces instead of the H spaces.
As g (07) = g_(07) = 0, if we define g = g+ on Q; and g_ on Q_, then g
can be extended to a Lipschitz function on X = Q with [|£|, < Co. Hence
g € H! (X) with norm controlled by Ca.

Therefore we can write f € ﬁ;(X) as f = g+ b with b € WHQ) = H(X)
and g € HL (X). We have HgHﬁ;O(X) < Caand ”b”ﬁll(x) < Ca(AUz)+AU-)).
Let
| fx

r

s (t) = (Mnmfir T

Remark that

FIVAD) (0. o= maxlay (0,0 (0)

ar) 5 (154 () o) o

< (i (Y w9 @

where the implicit constant depends only on the doubling constant of 2. We
used the fact that {z € Qp;|fi ()] > A} C {z € Q;|f(x)] > A}, hence fi(t) <
F5(t). Similarly, (£5)*(t) < (£)*(t) and [V £4[*(t) < |VF]*(2).

As U, is contained in

/]

r

VL) > as(0)]
we have A\(U;) < t. Similarly we get A(U-) < t. This yields

ccr(rw+ (L) 0+ wrw).

{l’ € Qs Ma, (|f+] +
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For the general case when f € H Hx )+ﬁ 1 (X)), we apply a similar argument
to that of [H] to obtain the upper bound. We omit details. O

Proof of Theorem [B.J. Set ﬁ;l(X) = (H! (X),fl;o(X))l_l/pm. By the reitera-
tion theorem, it suffices to establish ﬁ;l(X )= ﬁ; (X) with equivalent norms.

First, from the Calderén-Zygmund decomposition, we have I;T; (X)Cc H H(X)+

H (X) for 1 < p < oo where the inclusion is continuous.
From the previous results we have that for f € H{(X) + HL (X)

\umqmm~{Am(uw@y+0§>w+wvw@0pﬁym

~t e+ ()] i,
p
f
~ls+ | )+ 0w,
p
~ Ifllay

where we used that for I > 1, | f**[|; ~ || f|l; (see [[9], Chapter V, Lemma 3.21,
p.191 and Theorem 3.21, p.201) . O

5 Restriction/Extension from/to R"

We study the restriction operator onto €2 and construct an extension that is p
independent. The subject of restriction and extension has been very studied for
Sobolev spaces on domains. For some definite answers see [[J] and the references
therein. But recall that the double cone is not a domain. For references closer
to what we are doing here, see [[[f] which considers the Bessel-Sobolev spaces in
R™ and [[[7] which treats the Hajlasz-Sobolev spaces in spaces of homogeneous
type. Let us first state our result.

Theorem 5.1. Let 1 < p < oo.

e The restriction operator is bounded from VVp1 (R™) into H; (X). Further, it
is onto for p # n and for p = n, its range is ﬁ}l(X)

o There exists a linear extension operator E that is bounded from HZ} (X) to
W) (R™) if p # n and from HLY(X) to WL(R™).

The interesting part of this result is p = n. Observe also that this shows
that H!(X) does not have the extension property.

In accordance with the cited references, the second item is closely related
to ontoness in the first. It could well be a direct consequence but we prefer
producing an explicit extension operator.

In [I7], the author studies restrictions onto regular sets in a space of homo-
geneous type. Note that the double cone is a regular set in R™. For such sets,
he proves the following interesting theorem (Theorem 1.3). For all 1 < p < oo,
the restriction of M1P(R™) to Q equals M1P(X) and there exists a linear con-
tinuous extension from the latter space to the first one. Here, MP is the
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Hajlasz-Sobolev space. Given the fact that VV;,,1 (R") = MYP(R™) with equiv-
alent norms for 1 < p < oo ([L]]), this implies that MP(X) interpolate for
1 < p < o00. But combining this with our result gives the following corollary.

Corollary 5.2. For 1 < p < oo, M'P(X) = H;(X) if p#n and MY"(X) =
H(X).

The result for p > n is known (see [[[(]): it follows from the fact that X is
complete and satisfies Poincaré inequality for any p > n. Not much more can
be said in general without these two conditions so this corollary is seemingly
new for p < n. The interesting case is the identification for p = n: M>"(X) is
a strict subspace of H}(X).

This study of restriction/extension properties uses the decomposition into
radial and anti-radial parts defined earlier. It also possible to reprove the inter-
polation property of the H;(X ) spaces by this method.

We first study the restriction operator, then construct the extension. We
next prove the ontoness and conclude with the application to interpolation.

5.1 Restriction

The restriction operator R is defined by R(f) = flo. Let 1 < p < co. It is
obvious that if f € W} (R") then R(f) € W,(Q), and that R : W (R") —
W} () is bounded. As C§°(R™) is dense in W, (R"), the range is contained in
W)(Q) = HY(X). R

For p = n, we show that R maps into H!(X). Let f € W(R") and let
g = R(f). Since we already know that ¢ € H!(X), it remains to show that
ga/r € L™(X). Write f = f, + fo where f,(x) is here the average of f on the
whole sphere of radius |z|. Identifying f, with its restriction to €, we see that
(fo)r = fp and (fy)a = 0. Thus, if we write ¢ = g, + gq, we conclude that
Ja = (foz‘Q)aa Le ga(x) = fa(x) _JCQOSW fa dO'(Q) for z € Q2. Thus

L7 do(8) < 27 ol do (6
/mszrgr <><2/ fal" do(6)

QNS

<o /S ful do(6)

||

< Claf" / Vo ful"do(6)

||

where the last inequality is Poincaré inequality (P;) on the sphere and Vy is
the tangential gradient. Since r(x) = |z| it follows that

n +oo
Jlre=f
Q 0 Qﬂs‘x‘

+o0
gc/ w*/ Vo foldo(8)dr
0 Sjal

! " tdrdo ()

Ya
;

Ya
T

<C |V fo|"dx < o0.
Rn
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Therefore R(f) € HL(X).
For p = o0, it is obvious that R is bounded from WL (R") into H. (X) (and
it is onto by Whitney’s extension theorem).

5.2 Extension

Let 1 <p<oc. Let f € HY(X) if p#n (resp. f € HX(X)). Write f = f, + fa
as in Section 3. Lemma B yields f, € W}(R") and f, € H; (X). It remains
to extend fo. We write f, = fila, + falo_ = far + fa—. We treat f,, the
same analysis applying to f,_. Let §+ be an open half-cone slightly larger than
4 with same rotation axis. In spherical coordinates (r,6,¢) with 6 € [0, 7],
the angle to the positive x,-axis, define ¥ (r,0,¢) = (r,2wl /7, $) with w the
half-angle of €. Then v, is a bilipshitz map from R’} onto €2, and from @k,.

onto 4 where @Ur is a slight extension of R’}. We consider now the even
extension ¢y : W, (R) — W)(R™). Let my € C®(R™\ {0}) N L>(R") such

that my (z) = g+(‘—£‘), m4 =1 on R and suppm4 C R?p U {0}. With these
ingredients we define the extension &, (fy+) of fat as

Er(far) = [MaCh (fay o) 07t

It readily follows from the properties of m, that

lmag/rlo < g/l

and
[V maeg)lllp S 1Vl + g/l

for all g € WI}(R"). Using this fact, that bilipschitz maps preserve Sobolev
spaces and density of Lipschitz functions, we obtain that &4 (fot) € W) (R™)
with supp &4 (fat) € Qp and [|€4 (far) w2 rn) < C\|fa+||ﬁ}1,(x)- We conclude

that £(fa) = &(fav) +E-(fam) € W, (R™) is an extension of f, to W) (R™).
Therefore, E defined by

E(f) - fr"‘g(fa)

is an extension of f to W, (R™). We have shown that the map E is H)(X) —
W} (R™)-bounded if p # n and H:(X) - W!(R")-bounded if p = n.

5.3 Ontoness and relation to interpolation for 4 (X)

From the previous subsections, we deduce that R o F operates boundedly on
H;(X) for p # n and on H!(X) as the identity map. In particular, R acting

on W}(R™) is onto H}(X) for p # n and onto H:(X) for p = n. Using the
preservation of interpolation properties for retract diagrams, it follows that

(Hi(X), Hoo(X))1-1/pp = RWL (R"), WS (R™))1-1/p,) = R(W, (R™)).

Therefore (H{ (X), HL (X))1_1/p,p = Hy(X) for p # n and HY(X) for p = n.
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6 Homogeneous versions

Homogeneous Sobolev spaces are defined up to a constant, removing control on
the LP norms on f. Since the vertex point plays a specific role, it is best here
to fix the floatting constant by imposing control at this vertex point. We adopt
the following definitions. Let LipO(X ) be the space of Lipschitz functions in X
vanishing at 0. For 1 < p < oo, we set

Ey = {f € Lip®(X); [ [Vfl|zr(x) < o0}

Ey={f e Lip®(X); [ IVl oixy + 1 /rlloo(x) < o0}

Then E, and Ep are normed spaces and we call H}(X) and ﬁ},(X ) their com-
pletions. Clearly Ey = HL (X) = Eo = HL (X) = Lip®(X).

It is easy to show that Hll,(X ) is composed of locally p-integrable functions.
For p > n, one has @) from the Morrey embedding and f(0) = 0.

It is clear that H;,(X ) C H})(X ) but for 1 < p < n the inclusion is strictf].
Indeed a Lipschitz function supported away from 0 which agrees with e?#1™* for
|z| > 1 satisfies ||f/r||, = co and belongs to E, if a > 0 is large enough. For
p > n, the inclusion is an equality as we shall see.

Lemma 6.1. For 1 < p < oo, Lip?(X) N Lipy(X) is dense in ﬁ;l:(X)

Proof. If [ € Ep, consider fr = fx(r/k), k € N*, where x : [0,00) — [0,1] is
a smooth function which is 1 on [0, 1] with support in [0, 2]. It is easy to show
that || [V (f — fe)|ll, and ||(f — f&)/r|l, tend to 0 as k tends to oo. O

Remark. From there, one can see that the restrictions to {2 of functions in
C§°(R™) that vanish at 0 form a dense subspace of H(X).

Corollary 6.2. e For1<p<mn, (B4) holds on ﬁ;(X)
o Forn <p < oo, (B4) holds on H)(X) and H,(X) = ﬁ;(X)

Proof. Assume first that 1 < p < n. Then by the previous lemma, one can
assume that f € Lipy(X) for which the argument of (B.4) applies.

Assume now n < p < oo. Let f € Lip®(X). For 0 < ¢ < R < o0,
set A = fQ+n{R>\x\>e} ‘deﬂ;. Then argue as in the proof of (B.4). In the
integration by parts, one picks an extra term which has a negative sign because
n —p < 0. Thus one can cancel it and obtain A < C’H|Vf||’£p(x+) with C
independent of €, R. Taking limits and doing the same thing on {2 shows that

f € E, and we are done. O
The first item also show that the closure in H},(X) of Lip®(X) N Lipy(X) is
HY(X).

Theorem 6.3. The family (H;},(X ))i<p<oo 1S an interpolation family for the
real method. Hence the same is true for (H;,(X))nqgoo.

The proof for the spaces ﬁ;(X ) is a minor adapatation of the one of Theorem
B.J and is left to the reader. The second point follows from the above corollary.
Interpolation for the spaces H;,(X ) for p < n is unclear.

3In contrast with the inhomogeneous case for p < n.
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7 Some remarks and generalizations

Remark. (some explicit extensions) There are many extension operators. The
following example was communicated to us by Michel Pierre. For the (double)
cone of R? consisting of the 2 quadrants defined by zy > 0, then one can take

f(ﬂj,y), 1f$y>0’
Ef(z,y) = q 22 f(2z,—y) + y*f(—z,y)
x2 + 92

, ifzy <O0.

Remark. (central role of the vertex) The analysis in this article does not use
the fact that the cone ) is symmetric under x — —x and also does not use
the specific opening angle. This means that the upper and lower (open) half-
cones can be replaced by two half-cones located independently of one another
provided they share the same vertex and that they are strictly separated by a
hyperplane passing through the vertex and not containing any direction of the
boundaries. Also the (finite) number of disjoint half-cones is not limited to 2
provided each pair satisfies the above requirements.

Remark. (other types of cones) The half-cones can be replaced by R’ x N where
N is a Lipschitz domain on the unit sphere. On such domains, one has Poincaré
inequalities with any exponents and this allows to adapt the arguments.

Remark. (local geometry) Of course, the analysis done with inhomogeneous
norms is stable by (smooth) truncation of the cone away from the vertex point.
For example, if one wants to work on a truncated cone by requiring r < 1, then
one can use local variants as in Badr’s thesis [P]. Details are left to the reader.
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