
HAL Id: hal-00344639
https://hal.science/hal-00344639

Submitted on 18 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application Layer Addressing, Routing and Naming
Framework for Overlays
Damien Magoni, Pascal Lorenz

To cite this version:
Damien Magoni, Pascal Lorenz. Application Layer Addressing, Routing and Naming Framework for
Overlays. 48th IEEE Global Telecommunications Conference, Nov 2005, Saint Louis, MO, United
States. pp.66-71, �10.1109/GLOCOM.2005.1577774�. �hal-00344639�

https://hal.science/hal-00344639
https://hal.archives-ouvertes.fr


Application Layer Addressing, Routing and Naming
Framework for Overlays

Damien Magoni
Université Louis Pasteur – LSIIT

Boulevard Sébastien Brant, 67400 Illkirch, France
magoni@dpt-info.u-strasbg.fr

Pascal Lorenz
Université de Haute Alsace – GRTC

34 rue du Grillenbreit, 68008 Colmar, France
lorenz@ieee.org

Abstract— A growing number of applications create overlays
on top of the Internet. Several unsolved issues at the network
layer can explain this trend to implement network services such
as multicast, mobility and security at the application layer.
However overlays require some form of internal addressing,
routing and naming. Therefore their topologies are usually kept
simple but this limits their flexibility and scalability. Our aim is
to design an efficient and robust addressing, routing and naming
framework for complex overlays. Our only assumption is that
they are constrained by the Internet topology. Applications using
our framework will be relieved from managing their own overlay
topologies. This paper presents our framework in detail as well
as some performance results concerning its routing efficiency, its
reliability to network dynamics and its naming scalability.

I. INTRODUCTION

Designing an application level addressing, routing and nam-
ing framework for Internet overlays is challenging when no
constraint is put on the topology of its members. However it
can be very useful to provide such a service for creating these
overlays especially the bigger ones. For instance, setting up a
tree topology is difficult and provides very little robustness.
Complex mechanisms must be used to avoid loops and to
recreate the tree in case of branch failures. The advantages
of allowing an overlay to have a free topology only restrained
by the underlying network (i.e., the Internet for our purpose)
are that it is very easy to add or remove nodes to it and
redundant links provide increased robustness. On the other
hand, the overlay requires a proper routing system that we aim
at providing. Furthermore our framework provides a separation
between node addressing and naming. Thus our overlay enable
applications to run seamlessly over private and public address-
ing spaces, to mix node mobility with secured connections,
etc. Our paper contains three sections. In section II we
briefly present prior and related work on overlay networks.
In section III we describe how our addressing, routing and
naming framework is designed. Finally in section IV we
present some performance results of our framework obtained
by simulations and concerning routing efficiency, reliability to
network dynamics and naming scalability.

II. RELATED WORK

An important point that many people agree on is that
naming and addressing should be separated [1], [2], [3]. Many
problems could be elegantly solved if this feature was provided

by the IP protocol. Solutions providing indirect addressing
are proposed by many experimental protocols (e.g., INS [2],
INPL [4] and i3 [5]) and especially by those designed for
host mobility (e.g., TCP-Migrate [6] and Tribe [7]). All
these solutions do create some forms of overlays, although
not always at the application layer, in order to solve issues
such as uniform addressing and mobility. Application layer
overlays providing multicast support have also been designed
and implemented (e.g., Narada [8], NICE [9] and ROMA [10])
in order to be used over networks that do not run multicast
protocols. Overlays can also be designed to provide new
services such as resilient networking (e.g., RON [11]) and
peer-to-to-peer objet lookup (e.g., Chord [12], Pastry [13], etc)
thus opening new opportunities for network applications. On
a more theoretical level, Cowen has proved in [14] that it is
possible to bound the maximum stretch (i.e., path inflation) by
3 with routing tables of size O(n2/3log4/3n) and Krioukov et
al. have shown that compact routing in the Internet yields an
average stretch of 1.1 [15]. However both do not describe how
to implement it as a distributed algorithm. Concerning overlay
topologies, Li et al. have shown in [16] that they do have an
impact on the routing performances thus further motivating
our work. In this paper we present a framework where table
sizes are not a function of the network size but a function of
the node degrees. Although our architecture does not provide
an upper bound on the average stretch, it is typically below
2.3 as shown in section IV. This paper contains many issues
that were not studied in our first work [17]. These new topics
concern distributed addressing, resistance to network dynamics
and naming management.

III. FRAMEWORK DESCRIPTION

As we have designed an architecture that puts no constraint
on the topologies of the overlays, we have to define a routing
mechanism in order to route data packets inside the overlay.
Our routing mechanism is partly address-driven (i.e., some
path information is stored in an address), that is why we define
here the addressing first.

A. Addressing

Each overlay node has an address. An address is composed
of one or several fields containing numbers and separated by
dots, one field for each level of the hierarchy. Each field of



Fig. 1. Joining overlay node asking for addresses

an address is also called a label. The level of the address is
equal to the number of fields in the address. The prefix of
an address is equal to the address without the last field. The
last field is called the local field or local label. The number
of levels in the hierarchy is not fixed but totally dynamic. Its
value depends on how the addresses are distributed at a given
time. It is worth noticing that the size of the label should be
defined once at the creation of the overlay. Each node in the
overlay network has at least one address and typically more in
order to cope with the network dynamics as explained later.

The addressing plan contains zones that correspond to the
address fields. The label size thus defines the maximum zone
size. All zones have the same fixed size n (called the zone
size). There is one level 1 (i.e., top level) zone containing n
nodes (defined in the first address field). Then there are at most
n level 2 zones each containing at most n nodes (defined by
the first two address fields). Then there are at most n2 level 3
zones each containing at most n nodes and so on. This means
that all the address space can be theoretically distributed and
if we have k levels and l bits per level, we can address 2k×l

nodes. The aim of this hierarchical addressing is primarily to
enforce the construction of zones of limited size in order to
make routing scalable.

The addressing of the overlay nodes is fully distributed:
it relies only on local knowledge in a node. The only local
knowledge we rely on is the degree of the node and the
addresses and degrees of its neighbors. Any node is supposed
to know this information. Let us assume that the zone size is n.
Each node that has address w.x.y is responsible for allocating
the following addresses to its neighbors:

• the address w.x.(y + 1) (called a ”next” address) where
(y + 1) ≤ n,

• the address w.x.y.1 (called a ”down” address),
• the addresses w.x.y.z (called a ”leaf” address) where z >

n.

The first node of the overlay takes the address 1. The nodes
connect to each others by the use of transport protocols
(e.g., TCP, SPX, etc). As transport protocols are used for
setting point to point connections between pairs of overlay

nodes, different protocols can be used simultaneously, layer
2 protocols can be used and unique transport addresses are
not required among all overlay nodes. In order to connect to
an overlay, new or moving nodes must know the transport
address (usually IP addresses) of at least one overlay node.
This address should be provided by out-of-band methods (e.g.,
E-mail, WWW, SDP, etc) and provided to the application that
is using this overlay. The overlay nodes directly connected by
transport protocols to a given node are defined as its neighbors.
Nodes join the overlay successively by connecting themselves
to already connected ones. When a node wants to join the
overlay, it asks for address proposals to all its neighbors. Each
neighbor proposes an address to the joining node that it has
not already given to one of its other neighbors. The joining
node then chooses one or more addresses with the following
priority:

• the shortest address,
• in case of draw, the shortest ”next” address,
• if no ”next”, the shortest ”down” address,
• if no ”down”, the shortest ”leaf” address.
Figure 1 illustrates a joining node requesting addresses from

its neighbors. As said above, a leaf address is an address whose
local label is above the zone size value (e.g., if the zone size
is 32, the first leaf label is 33). Nodes that have a leaf address
can only route data to their father even if they are connected to
other nodes, they are considered as leaf nodes for the overlay
routing system.

B. Routing

The core principle of our architecture is that every node
only needs to store the addresses of its neighbors in order to
properly route the packets towards their destination. Thus its
routing table only contains the (few) addresses of its neighbors.
However as the path towards the destination is partly contained
in the destination address itself, its length depends on the
efficiency of the address allocation.

Hierarchical routing works in the following way. When a
packet is routed in a node, if the destination address is down
this node hierarchy, the packet is driven to the node of the
current zone that leads further towards the destination zone
(we call it the ingress node). If the destination address is not
down the current node hierarchy, the packet is driven to the
first node of the zone (i.e., the one with a local label of 1) in
order to be sent to the upper level zone (we call it the egress
node). When a packet is routed inside a zone because the
destination is in the zone or to go to the ingress or egress
node, it is routed by a technique that we call the closest
label. This technique only needs to know the addresses of
the neighbors. The closest label routing technique works as
follows. If the destination local label is lower than the current
node local label, then the packet is forwarded to the neighbor
node which has the lowest local label higher or equal to the
destination local label. If the destination local label is higher
than the current node local label, then the packet is forwarded
to the neighbor node which has the highest local label lower
or equal to the destination local label. As the neighbors have



Fig. 2. Path inflation caused by hierarchical routing

a continuous label assignment, this technique ensures that the
packet will reach its destination although not necessarily by a
shortest path.

Figure 2 illustrates the effects of hierarchical routing and
shortest path routing between the nodes 1.1 and 3.1 on path
lengthes. The hierarchical routing forces the message to be
routed via 1 and 3 thus giving a path length of 3 hops while
a shortest path routing requires only 2 hops via 2 to reach the
destination. We define the path length ratio (or path inflation)
as the value of the hierarchical routing path length in hops
divided by the shortest path routing path length in hops.

If a node moves or fails, thus invalidating its address, all
packets routed to a destination address that contains the invalid
address will not be able to be routed anymore. To solve this
issue, each node can be located by several addresses (i.e.,
more than one). The additional addresses can be chosen at the
time of insertion in the overlay or later on when the overlay
connectivity changes and more addresses become available to
the node as a result. All the addresses owned by a given node
must come from different neighbors (checks are made on the
node’s name). All the addresses owned by a given node must
be different, that is they must not have a common prefix.
Otherwise if the disappearing node address is included in the
common prefix, all addresses will not work. This multiple
address allocation increases the amount of routing information
to be stored by a factor equal to the number of addresses
per node but the advantage is that the network dynamics are
handled transparently by the addressing protocol. If a packet
can not be routed because a node has disappeared, it can use
one of the alternate addresses to get through to the destination
as shown in figure 3. Two solutions are possible: either the
packet carries all the destination addresses and thus it can be
rerouted on the fly by using its alternate addresses (but this
uses more bandwidth) or a warning message is sent back to
the source which then will change the destination address by
an alternate one in all future packets.

All addresses are given a time-out value v1 and have to be
refreshed by hello messages sent between neighbors. Invalid
addresses and derived addresses thereof will not be refreshed.
If the owning node does not reappear again (i.e., in the case

Fig. 3. Alternate routing for solving network dynamics

of a permanent move or failure) at the end of a time-out value
v2 (v2 > Kdepth × v1), the node responsible for this address
(i.e., the one that gave it) will be able to allocate it to another
node. In this case all the addresses derived from the invalid
address will also be flushed. If all addresses fail during the
routing, the sending node must wait until the connectivity to
the destination is restored (i.e., connections are re-established
and addresses are re-allocated).

C. Naming

We have seen above that every node in the overlay has one
or several addresses. These addresses depend on the location
of the node in the overlay and they are subject to network
dynamics (i.e., addition, removal or movement of nodes). In
order to be able to communicate seamlessly, every node in
the overlay has a unique name that remains the same over
the lifetime of the node. Applications using our framework
use the names of the nodes to establish communication links
between them. Thus address changes in nodes are transparent
to the applications. The binding between the names and the
addresses are done via name servers. Name servers are regular
overlay nodes that accept to carry on the name solving tasks
because they have more capacities and they move much less
than the other nodes (the node having address 1 is always a
name server). In order to be scalable, the name servers are
organized in a tree hierarchy. The tree depth plus one is equal
to the hierarchy maximum level. Each name server has a hash
table storing the addresses of its next level name servers and
a name table storing the name-to-address mappings as shown
in figure 4. A name is composed of several parts. Each part
corresponds to one level of the name server hierarchy. It is not
a problem if the number of levels is different from the number
of parts.

In the following, we assume that there are no network
dynamics (i.e., failures). When a new node has joined the
overlay, it has selected one or several addresses. It then
chooses a name and sends a message containing its name
and addresses to the node 1 for storing this information in
a name server. On reception, the node 1 performs a hash on
the first part of the new node’s name and sends the message



Fig. 4. Hierarchical organization of name servers

to the corresponding second level name server. On reception,
the second level name server hashes the second part of the
name and sends the message as before, down in the name
servers’ hierarchy. If the name has no more part to hash or
if there is no entry for the hash result or if the hash table
is empty in a name server, then this last server has to store
the name and addresses in its name table if this name does
not already exist (otherwise another name must be chosen by
the new node). When a node wants to obtain the addresses
of a destination node given its name (the name is supposed
to be known by an external mechanism), it sends a request
message to the node 1 containing the name to solve and its
own address(es). The request is forwarded to the proper name
server by hashing the name exactly as during a store operation.
The name server holding the name will send back a message
containing the addresses of the destination name to the request
node by using the sender address in the request.

In order to provide load balancing and cope with network
dynamics and attacks, we use a replication approach. We
assume that a redundancy factor k is chosen at the start of
the overlay construction and that the total number of servers
equal s. The k first level nodes having addresses 1 to k will
be serving as first level name servers. They will have a copy
of the hash and name tables of the node having address 1 and
they will perform the same functions thus acting as redundant
servers. Clients (i.e., nodes requesting addresses) can therefore
send store and request messages to nodes 1 to k. Also each
hash entry in any server in the hierarchy will store k name
servers instead of one. The result of a hash will provide up to
k suitable servers if all are operational and one will be picked
randomly for receiving the message. In the lower levels, as for
the first level, the k name servers corresponding to one hash
entry will have to maintain the same hash and name tables as
they act as redundant servers. Thus there is a tradeoff between
providing load balancing and fault tolerance and managing
replication for the s cliques of k identical name servers. We
also envision to use name caches in all nodes of the overlay
in order to increase performances.

There are at least two major differences between our naming
distribution strategy and the famous DNS that maps domain
names to IP addresses. First, domain names are still mainly

aliases of IP addresses and if an IP device goes in a different
IP network, it will obtain a different IP prefix and thus it will
usually not be able to keep its domain name (some dynamic
DNS services keep up to date with changing IP, mobile IP
can help too). Second, our solution does not make use of
iterative calls such as in the DNS. Client messages are sent to
top level name servers that forward them to servers down the
hierarchy and finally the server holding the desired addresses
replies directly to the client. Finally our framework must be
autonomic for each and any overlay in order to be deployed
by hosts without constraints thus we can not use or ask for
modifications in the current DNS service.

IV. EXPERIMENTS

A. Settings

In order to evaluate our addressing, routing and naming
design, we have used one 12k-node IPv4 map made in July
2004 and one 4k-node IPv6 map made in June 2003, both
collected by using our IP topology mapping nec software [18].
These maps are more accurate with regard to their amount
and placement of links than the maps produced by previous
efforts as we show in [19]. We assume on first approximation
that overlays deployed over the Internet can be represented by
subgraphs of these maps.

In our experiments, nodes and links are gradually added
to the overlay from one given map with some nodes and
links of the map being discarded because of the addressing
plan construction and the network dynamics. For the overlay
construction, the first node is a random node having an above
average potential degree (>10). For network dynamics, we
have analyzed periodical percentage of random node removal
ranging from 0 to 50% of the overlay size and allocating 1
to 4 (at most) addresses to each node. For name servers, we
have selected random nodes having an above average potential
degree (>5). Network dynamics are a macroscopic way to
simulate the addition, removal, movement and failure of the
overlay nodes. At the beginning of the simulation all nodes
belong to the overlay. Before the simulation starts, a given
x% of nodes are randomly selected and removed from the
overlay. After every 10 runs, all the removed nodes are re-
inserted in the overlay and again the same % of nodes are
randomly selected and removed from the overlay. Although x
remains the same, the actual nodes that are removed each time
will be different most of the time especially when x is low.
This simulates the addition, removal, movement and failure of
the overlay nodes while keeping the size of the overlay equal
to 100 − x%.

As the process of generating addressing plans, selecting
name servers and selecting source-destination nodes involves
random selection (and thus random rolls), we have used a
sequential scenario of simulation [20] to produce the results
shown in the next section. As the random rolls are the only
source of randomness in our simulation, we can reasonably
assume that the simulation output data obey the central limit
theorem. We have performed a terminating simulation where



Fig. 5. Percentage of success vs
network dynamics

Fig. 6. Path inflation vs network
dynamics

each run (one run is the time horizon) consists in picking two
nodes and determining:

• the flat and hierarchical distances between them
• the success of the hierarchical routing in presence of

network dynamics
• the distance of the destination name resolution including

request and answer

In order to reduce calculation costs, the choice of the
first node and subsequent addressing plan creation and the
placement of the name servers are done every 100 runs, the
network dynamics described above happen every 10 runs and
the sequential checkpoints are carried out every 5 runs. All the
simulation results have been obtained assuming a confidence
level of 0.95 with a relative statistical error threshold of 5%
for all measured metrics. Simulations have been carried out in
our static simulator nem software [21].

B. Results

In all our simulations, the results obtained with the IPv6
map were very close to the ones with the IPv4 map when
expressed as percentages (e.g., of the number of nodes in
the overlay, of the average path length, etc). Thus we only
show here the IPv4 map results unless specified otherwise.
We evaluate now the performances of our addressing and
routing framework especially in the presence of network
dynamics. Figure 5 shows the percentage of successful routing
attempts as a function of the network dynamics percentage. As
explained above, a given percentage of nodes are absent, thus
the overlay may not be connected but composed of multiple
connected components. The percentage is calculated as the
number of successful hierarchical routing attempts divided
by the number of successful flat routing attempts. As the
hierarchical path is longer than the flat (i.e., shortest) path,
it may go out of the source-destination component and thus
it will make the routing fail. We can see that with only one
address (i.e., no route alternative), 20% of dynamics makes
the success rate fall under 20%. However the addition of
addresses to the nodes heavily increases the routing success.
With up to 4 addresses per node and 20% of dynamics,
the success reaches 55%. Increasing the maximum number
of addresses per node does not linearly improve the success

Fig. 7. Name resolving path length
ratio vs nb of levels

Fig. 8. Name table size vs hash
table size

because the maximum number of addresses per node is still
bounded by its neighborhood size (and this is small for most
of the nodes because of the underlying Internet topology).
Figure 6 shows the path inflation as a function of the network
dynamics percentage. First we can see that the path inflation is
around 2.3 when all overlay nodes are operational. This path
inflation result not taking dynamics into account is coherent
with those of our first work [17]. This is a good ratio for an
application layer routing protocol as discussed in section II.
The path inflation is decreasing when the dynamics % is
increasing because as the network becomes more fragmented
the connected components become smaller and so do their
inner paths.

We evaluate now the performances of our naming resolution
framework. Figure 7 shows the average path length or distance
d (expressed as a % of the average round trip in hops)
of a name resolution including the answer with respect to
the number of levels in the hierarchy l and the hash table
size h. Recall that h is the maximum number of next level
name servers under one name server (fanout). Although this
is expected that the distance is increasing as the levels increase,
the plots surprisingly show a linear fit (as shown in the figure
for a hash table size of 5). However, the values remain always
below 2.5 times the average round trip between any pair of
nodes. These results show that the name resolution has a
reasonable distance (and thus delay) cost. Indeed, 5 hierarchy
levels can handle a very large amount of names. We can also
see on the plots that the distance does not vary with the hash
table size as all the plots are very close. This is expected as
the hash table size will only have an effect on the distribution
of the name load at each level. Thus we can write d ∝ l
(1) when l is small. Figure 8 shows the name table size n
(expressed as a % of the name space) with respect to the hash
table size h and the number of levels in the hierarchy l. We
can see that n is a function of h to the power of a constant
for l fixed (as shown in the figure for a 3-level hierarchy)
and that it decreases when h increases. This is expected by
the theoretical equations. If we call s the number of name
servers in our system, we have s = hl−1

h−1 (2). Furthermore
if the names of the overlay members m are well distributed
in the s servers, then the names are stored in the leaves of



Fig. 9. Name table size vs nb of
name servers

Fig. 10. Name resolving path length
ratio vs name table size

a balanced h-ary tree and we can approximate n ≈ m
hl−1 (3).

The explanation is that increasing the hash table size increases
the number of servers and thus reduces the burden on each
server. The plots show that the number of levels also have an
important impact on the name table sizes for the same reason.
Figure 9 shows the name table size n (expressed as a % of the
number of names) with respect to the number of name servers
(expressed as a % of the number of overlay members). We can
see that n is inversely proportional to m. This is expected by
the theoretical equations. Equations (2) and (3) give s ∝ mh

n −1

h−1

which gives s ∝ mh
n(h−1) if mh

n � 1. which for m and h fixed
gives n ∝ s−1. The plot shows that we can achieve a good
tradeoff between the % of name servers required and the size
of the name tables to be stored in each of them by choosing
values in the bottom-left area. Figure 10 shows the average
distance d of a name resolution with respect to the name table
size n. Equations (1) and (3) give us d ∝ log n

m

log h . However
we can see that the plots do not properly fit the data (0.88
correlation coefficient only). Our multiple approximations may
be the cause of this phenomenon. Nevertheless, this plot shows
that we can obtain a good tradeoff between the cost of name
resolutions and the cost of storage in each name server by
choosing values in the bottom-left area.

V. CONCLUSION

In this paper, we have proposed a distributed hierarchical
addressing, routing and naming framework designed for cre-
ating and managing overlays set up on top of the Internet. We
have defined a routing scheme based on efficient addressing
and simulation results obtained upon two realistic Internet
maps have shown that our solution yields a reasonable routing
overhead ranging between 10% to 130% depending on the
network dynamics. We have described how to cope with net-
work dynamics and simulations have shown that our multiple
address allocation scheme multiplies by 2 the routing success
percentage when the network dynamics are equal or above
10%. We have designed a scalable name to address resolution
scheme and simulations have shown that the tradeoff between
resolution costs and name table sizes can be optimized. We are
finishing the implementation of our framework as a host level
network middleware. It is written in C, uses the sockets API

for portability and currently runs over LINUX. Applications
using our middleware will be able to set up self-organizing
efficient and scalable overlays that will provide autonomic
support for addressing and naming management thus freeing
the applications of many network level limitations. Our future
work is targeted at improving our address allocation scheme,
evaluating our name server replication scheme, evaluating
the transport level performance issues, evaluating how the
performances of this new overlay scheme compare with other
existing ones and testing our middleware in real situation.

REFERENCES

[1] F.Teraoka, Y. Yokote, and M. Tokoro, “A network architecture providing
host migration transparency,” in Proceedings of ACM SIGCOMM’91,
1991.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The
design and implementation of an intentional naming system,” in Pro-
ceedings of 17th ACM SOSP, 1999.

[3] D. Magoni, “A scalable and unifying architecture for deploying advanced
protocols in the internet,” in Proceedings of the 10th International
Conference on Telecommunications, Papeete, Tahiti, French Polynesia,
February 2003, pp. 1001–1007.

[4] P. Francis and R. Gummadi, “Ipnl: A nat-extended internet architecture,”
in Proceedings of ACM SIGCOMM’01, 2001.

[5] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” in Proceedings of ACM SIGCOMM’02, 2002.

[6] A. Snoeren and H. Balakrishnan, “An end-to-end approach to host
mobility,” in Proceedings of 6th ACM MobiCom, 2000.

[7] A. Viana, M. D. de amorim, S. Fdida, and J. F. Rezende, “Indirect rout-
ing using distributed location information,” in Proceedings of the IEEE
International Conference on Pervasive Computing and Communications
(PerCom), March 2003, pp. 224–234.

[8] Y. hua Chu, S. Rao, S. Seshan, and H. Zhang, “Enabling conferencing
applications on the internet using an overlay multicast architecture,” in
Proceedings of ACM SIGCOMM’01, August 2001.

[9] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller,
“Construction of an efficient overlay multicast infrastructure for real-
time applications,” in Proceedings of IEEE INFOCOM’03, 2003.

[10] G.-I. Kwon and J. Byers, “Roma: Reliable overlay multicast with loosely
coupled tcp connections,” in Proceedings of IEEE INFOCOM’04, March
2004.

[11] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proceedings of the 18th ACM SOSP, October 2001.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of ACM SIGCOMM 2001, August 2001, pp. 149–160.

[13] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Security for structured peer-to-peer overlay networks,” in Proceedings
of the 5th Symposium on Operating Systems Design and Implementation
(OSDI’02), December 2002.

[14] L. Cowen, “Compact routing with minimum stretch,” in Proceedings of
the 10th ACM-SIAM Symposium on Discrete Algorithms, January 1999.

[15] D. Krioukov, K. Fall, and X. Yang, “Compact routing on internet-like
graphs,” in Proceedings of IEEE INFOCOM’04, March 2004.

[16] Z. Li and P. Mohapatra, “Impact of topology on overlay routing service,”
in Proceedings of IEEE INFOCOM’04, March 2004.

[17] D. Magoni, “Hierarchical addressing and routing mechanisms for dis-
tributed applications over heterogeneous networks,” in Proceedings of
the 3rd International Conference on Computational Science, Melbourne,
Australia, June 2003, pp. 1093–1102.

[18] M. Hoerdt and D. Magoni, network cartographer (nec), Université Louis
Pasteur, https://dpt-info.u-strasbg.fr/˜magoni/nec/.

[19] ——, “Completeness of the internet core topology collected by a fast
mapping software,” in Proceedings of the 11th International Confer-
ence on Software, Telecommunications and Computer Networks, Split,
Croatia, October 2003, pp. 257–261.

[20] A. Law and W. Kelton, Simulation Modelling and Analysis, 3rd ed.
McGraw-Hill, 2000.

[21] D. Magoni, network manipulator (nem), Université Louis Pasteur,
https://dpt-info.u-strasbg.fr/˜magoni/nem/.


