
HAL Id: hal-00344551
https://hal.science/hal-00344551

Submitted on 10 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree Pattern Rewriting Systems
Blaise Genest, Anca Muscholl, Olivier Serre, Marc Zeitoun

To cite this version:
Blaise Genest, Anca Muscholl, Olivier Serre, Marc Zeitoun. Tree Pattern Rewriting Systems. Auto-
mated Technology for Verification and Analysis, 2008, Séoul, South Korea. pp.332-346, �10.1007/978-
3-540-88387-6_29�. �hal-00344551�

https://hal.science/hal-00344551
https://hal.archives-ouvertes.fr

Tree Pattern Rewriting Systems

B. Genest3, A. Muscholl1, O. Serre2, and M. Zeitoun1

1LaBRI, Bordeaux & CNRS; 2LIAFA, Paris 7 & CNRS; 3IRISA, Rennes 1 & CNRS

Abstract. Classical verification often uses abstraction when dealing
with data. On the other hand, dynamic XML-based applications have
become pervasive, for instance with the ever growing importance of web
services. We define here Tree Pattern Rewriting Systems (TPRS) as an
abstract model of dynamic XML-based documents. TPRS systems gener-
ate infinite transition systems, where states are unranked and unordered
trees (hence possibly modeling XML documents). The guarded transition
rules are described by means of tree patterns. Our main result is that
given a TPRS system (T,R), a tree pattern P and some integer k such
that any reachable document from T has depth at most k, it is decidable

(albeit of non elementary complexity) whether some tree satisfying P is
reachable from T .

1 Introduction

Classical verification techniques often use abstraction when dealing with data.
On the other hand, dynamic data-intensive applications have become pervasive,
for instance with the ever growing importance of web services. The format of
the data exchanged by web services is based on XML, which is nowadays the
standard for semistructured data. XML documents can be seen as unranked
trees, i.e. trees in which every node can have an arbitrary (but finite) number
of children, not depending on its labels. Very often, the order of siblings in the
document is of no importance. In this case, trees are in addition unordered.
There is a rich body of results concerning the analysis of fixed XML documents
(with or without data), see e.g [12,10] for surveys on this topic.

The analysis of the dynamics of XML documents accessed and updated in
a multi-peer environment has been considered only very recently [2,3]. Dynam-
ically evolving XML documents are of course crucial, for instance when doing
static analysis of XML-based web services. A general framework, Active XML
(AXML for short), has been defined in [2] to the purpose of unifying data (XML)
and control (services), by allowing data to be given implicitly in form of service
calls.

In this paper we propose an abstract model for dynamically evolving docu-
ments, based on guarded rewriting rules on unranked, unordered tree. We show
that basic properties, such as reachability of tree patterns and termination, are
decidable for a natural subclass of our rewriting systems.

A standard technique to analyze unranked trees is to encode them as binary
trees [12]. However, this encoding does not preserve the depth of the tree, neither

locality, nor path properties. For these reasons, we define our TPRS directly on
unranked trees. The rewriting rules are based on tree patterns, occurring in two
distinct contexts. First, tree patterns are used for describing how the structure
of the tree changes through the rules (e.g. some subtrees might be deleted, new
nodes can be added). Second, rules are guarded, and the guard condition is tested
via a Tree Pattern Query (TPQ). The role of the TPQ is actually twofold: it is
used in the pre-condition of the rule, and the results can enhance the information
of the new tree. We call such a system Tree Pattern Rewriting System, TPRS
for short. For an easier comparison with other works, we include an example of
a Mail-Order System in our presentation, close to the one used in [3].

The main tool we use to show decidability of various properties of TPRS are
well-structured systems [1,8]. Such systems cover several interesting classes of
infinite-state systems, such as Petri nets and lossy channel systems. Our TPRS
are of course not well-structured, in general. We impose two restrictions in order
to obtain well-structure. First, guards must be used positively: equivalently, a
rule cannot be disabled because of the existence of some tree pattern. Second, we
need a uniform bound on the depth of the trees obtained by rewriting. Indeed, we
show that if the depth is not uniformly bounded, then TPRS can encode Turing
machines. We show that TPRS that satisfy both conditions yield well-structured
transition systems, and we show how to apply forward and backward analysis of
well-structured systems for obtaining the decidability of pattern reachability as
well as of the termination. On the negative side, we show that exact reachability
and the finite state property are undecidable for such TPRS. In the decidable
cases, we also show that the complexity is at least non elementary.

Related work. We review here other approaches where it is possible to decide
interesting properties of transition systems based on unranked trees.

The systems considered in positive AXML [2] are monotone: a document
is modified by adding subtrees at nodes labeled by service calls. In particular,
positive AXML documents can only grow. In the mail order example, it would
mean that with positive AXML, one cannot delete a product from the cart.
Moreover, there is no deterministic description of the semantics of a service: a
service call can create any tree granted that it satisfies some DTD. Such a system
is always confluent, and one can decide whether, after some finite number of
steps, the system will stabilize.

Guard AXML [3] is very similar to our model, service calls being based on
tree pattern queries and the systems is non monotonous. However, the focus of
[3] is to cope with a sequence of service calls which always terminates, while
we focus on modeling the whole life of the system, hence without enforcing
termination. This allows [3] to deal with potentially unbounded data (trees are
labeled by symbols from an infinite alphabet and use data constraints) and
unrestricted guards with negated patterns. In this paper, to keep decidability of
e.g. pattern reachability in the non terminating non monotonous case, we need
to define the basic steps of our model carefully, by using tree transformations in
addition to tree pattern queries, instead of using general updating queries as in

2

[3]. Moreover, we disallow negated pattern or non upward closed guards. So the
decidable fragment of Guard AXML is incomparable with our framework.

At last, term rewriting modulo associativty and commutativity has been
prolific [9]. However, they usually treat slightly different questions: for instance,
while they also use well quasi order (as Kruskal’s), they focus on giving restric-
tions to ensure termination, while we impose restrictions only to ensure decid-
ability of the termination. Reachability has been considered for non terminating
systems, but only for ground rewriting [11] (rules can only be applied at the
deepest levels of the tree). Reachability is decidable for such systems [11]. The
rewriting used by [11] is much more restrictive than in our framework. In the
mail order example one could add and delete products inside an order but not
refer to an order directly as it could contain an unbounded number of products
(hence deleting the whole order in one step is not possible).

2 Tree Pattern Rewriting

The tree rewriting model presented in this section is inspired by the Active XML
(AXML) system developped at INRIA [4]. Active XML extends the framework
of XML to describe semi-structured data by a dynamic component, describing
data implicitly via service (function) calls. The evaluation of such calls is based
on queries, resulting in extra data that can be added to the document tree. The
abstract model is that of XML, i.e., unranked, unordered, labeled trees, together
with a specification of the semantics for each service.

Trees as considered in this paper are labeled by tags from a finite set T . We
will distinguish a subset Tvar ⊆ T of so-called tag variables. In addition, we use
the special symbol $ to mark nodes where service calls insert new data. Trees
are in the following unranked and unordered, with nodes labeled by T ∪ T$,
where T$ = T × {$}. We will not distinguish function/service nodes, since we
consider here an abstract model for AXML documents, that is based on tree
rewriting. We also do not consider multiple peers actually: their joint behavior
can be described as the evolution of a unique document tree.

A tree (V, parent, root, λ) consists of a set of nodes V with a distinguished
node called root, a mapping parent : V \ {root} → V associating a node with its
parent, and a mapping λ : V → T ∪ T$ labeling each node by a tag. Moreover,
for each node v ∈ V , there is some k ≥ 0 such that parentk(v) = root. Such a tree
is called a document if its labeling satisfies λ(V) ⊆ T \ Tvar , that is, if neither
tag variables nor the $ sign are used as node labels. A forest is a finite multiset
of trees.

Consider as an example the tree in Fig. 1. Informally, this tree represents
a simplified version of the Play.com database, containing several products and
information about customers. The subtrees of nodes v5 and v6 are not repre-
sented in the figure. The document has two customers, one of which is currently
shopping on the website with one product in her cart. This customer has 3 out-
standing orders, one of which was posted 2 days ago (the counter days is encoded
in unary in the tree).

3

Play.com

One represents a tree in a term-like way. For example, to denote the empty
catalog with no customer, we write v1[Play.com](v2[MailOrder], v3[Catalog]), or
if node names are irrelevant, [Play.com]([MailOrder], [Catalog]). Since trees are
unordered, a tree can have several such representations.

The atomic operations in our model are from a set R of guarded tree rewriting
rules, as described below. On an abstract level we view a service s as described
for instance by a regular expression R(s) over the set of rewriting rules R. For
example, the following expression describes an order service on play.com:

(add-product + delete-product)∗checkout

The tree resulting in the invocation of service s corresponds to the application
of some sequence of rewriting rules in R(s). The atomic rewriting rules will use
queries based on tree patterns (descendant relation can be used together with
the son relation), as described next,] standing for the union of disjoint sets .

Definition 1 (Tree-Pattern). A tree pattern (TP for short) is a tuple P =
(V, parent, ancestor, root, λ), where (V, parent] ancestor, root, λ) is a tree.

A tree pattern represents a set of trees that have a similar shape. As for trees,
a TP can be described in a term-like way, ancestor-edges being represented by the
symbol – (such edges are represented by a double line in the figures). For instance,
the tree pattern LQBill shown in Fig. 2 can be written as w1(–w2(w3(w4))), with
λ(w1) = Play.com, λ(w2) = Ordered, λ(w3) = X , λ(w4) = Y , (here X and Y are
tag variables: X, Y ∈ Tvar). This pattern represents trees with root “Play.com”,
having a node “Ordered”, having itself a grandchild.

Definition 2 (Matching). A tree T = (V, parent, λ, root) matches a TP P =
(V ′, parent′, ancestor′, λ′, root′) if there exist two mappings f : V ′ → V and t :
Tvar → T \ Tvar such that:

– f(root′) = root,

v1[Play.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] v10[Ordered] v11[Posted] v12[Name] v13[Price]

v15[LOTR] v16[skins]

v22[£25]

v19[skins] v20[£10]

v23[£10]

v17[day] v18[day]

v8[Cart]

v14[skins]

v21[£10]

Fig. 1. A tree document representing a catalog of products and customers his-
tory.

4

play.com

– For all v ∈ V ′, λ(f(v)) = λ′(v) if λ′(v) /∈ Tvar, and else λ(f(v)) = t(λ′(v)),
– For all v ∈ V ′ the following holds

• If parent′(v) is defined, then f(parent′(v)) = parent(f(v));
• If ancestor′(v) is defined, then f(ancestor′(v)) is an ancestor of f(v) in T .

Mappings (f, t) as above are called a matching between T and P . Further-
more, if f is injective, then (f, t) is called an injective matching.

v1[play.com]

v2[MailOrder]

v3[Customer] v4[Customer]

v5[Ordered]

v6[LOTR]

v7[£25]

w1[play.com]

w2[Ordered]

w3[X]

w4[Y]

f

f

f

f

node node

T’ LQBill

Fig. 2. A tree T ′ matching the TP LQBill.

Fig. 2 shows an example of an injective matching between a tree and the
TP LQBill. The only possible matching is f(w1) = v1, f(w2) = v5, f(w3) =
v6, f(w4) = v7 and t(X) =LOTR, t(Y) = £25. With a matching f : V ′ → V
we associate the mapping node : V \ f(V ′) → f(V ′) with node(v) being the
lowest ancestor of v in f(V ′). For instance, for the mapping f matching T to P ,
node(v2) = node(v3) = node(v4) = v1.

Similarly to [2] we use in our model tree-pattern queries (TPQ for short, also
called positive queries in [2]). Such queries have the form Q ; P , with Q a TP
and P a tree, and the variables used in Q are also used in P . The TP Q selects
tags in the tree. The result of a query = Q ; P on T is the forest query(T) of all
instantiations of P by matchings between T and Q. That is, for each matching
(f, t) between T and Q we obtain an instance of P in which each Tvar-label X
has been replaced by the tag t(X). For instance, let RQBill be the tree Product
(Name(X),Price(Y)). Then the result of the TPQ (LQBill ; RQBill) on the tree
in Fig. 1 is the forest depicted in Fig. 3.

We now define a generic kind of (guarded) rewriting rules, as a model for
active documents. Our rules are based on tree patterns, that occur in two distinct
contexts. First, tree patterns are used for describing how the structure of the
document tree changes through the rule - some subtrees might be deleted, new
nodes can be added. Second, rules are guarded, and the guard condition is tested
via a TPQ. The role of the query is actually twofold: it is used in the pre-condition
of the rule, and the result can enhance the information of the new tree.

5

r1[Product]

r2[Name] r3[Price]

r4[LOTR] r5[£25]

r6[Product]

r7[Name] r8[Price]

r9[skins] r10[£10]

Fig. 3. Forest produced as the result of the TPQ LQBill ; RQBill on docu-
ment T .

Definition 3 (TP rules). A TP rule is a tuple (left, query, guard, right), such
that:

– left is a TP (Vl, parentl, ancestorl, λl, rootl) over T ,
– right is a TP (Vr , parentr, ancestorr, λr, rootr) over T ∪ T$,
– query is a TPQ,
– guard is a set of forests.

We require the following additional properties:

1. all tag variables used in right appear also in left and
2. ancestorr(x) = y iff x, y ∈ Vl ∩ Vr and ancestorl(x) = y.

w1(Play.com)

w5(Customer)

w2(Ordered)

w1(Play.com)

w5(Customer)

w6(Processed)

w7(Bill,$)

left right

Fig. 4. Tree patterns left and right of a rule.

The additional conditions on right ensure that the right-hand side of a TP rule
determines the form of the resulting tree, as it is explained below. For instance,
Bill = (left, (LQBill ; RQBill), guard, right) is a TP rule, with left, right defined
as in Fig. 4. Informally, the rule says that the system will process a Bill of
the current order, and will tag the order as processed. The guard guard will be
usually specified as a finite set of trees. In this case, the guard is fulfilled if the
result of the query covers one of the tree of guard (see the decidable section 4).

We first describe the semantics of a rule using the rule Bill as an example
on the tree in Fig. 1. First, we compute an injective mapping f which maps the
nodes w1, w5, w2 of left with the nodes v1, v4, v10 of T , respectively. We produce
a new tree by rearranging and relabeling the nodes of T in the image of f , that
is v1, v4, v10. Some nodes can be deleted and others created. The resulting tree
is shown in Fig. 5. We keep all nodes of T which are matched by nodes of left

6

v1[Play.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] w6[Processed] v11[Posted] v12[Name] v13[Price]

v15[LOTR] w7[Bill]

v22[£25]

v19[skins] v20[£10]v17[day] v18[day]

v8[Cart]

v14[skins]

v21[£10]
r6(Product)

r7(Name) r8(Price)

r9(skins) r10(£10)

Fig. 5. The tree document T ′ resulting of the application of the rule Bill.

also present in right (v1, v4), as well as their descendants by node−1. That is,
we keep all nodes labeled by vi in Fig. 5. In particular, a node matched in left

which does not appear in right is deleted (as v10, matched to w2), as well as
its node−1 descendants (v16, v23). The TP right makes it possible to create new
nodes, present in right but not in left, as w6, w7. In addition, the TPQ query of
the rule is used to attach a copy of the returned forest to all $-marked nodes
of right. Furthermore, if the TPQ Q ; P uses in Q node name m common to
left, then the results of the TPQ are restricted to those where m matches f(m).
For instance, in the TP rule Bill, the TP LQBill uses names w1, w2 common
to left, hence the result of the TPQ (LQBill ; RQBill) are restricted to the
particular order chosen by the matching f between T and left. The result is thus
the subtree of node r6 in Fig. 3, but not the subtree of node r1, since it would
require f(w2) = v9, while f(w2) = v10. This restriction is desirable, since we
want to process a bill only of the products of this particular order. Here, w7 is
$-marked, and the result forest is defined by nodes r6, · · · r10.

More formally, let query = Q ; P be a TPQ and let (f, t) be an injective
matching between T and left. Moreover, let Vl be the nodes of left and VQ those
of Q. Let S1, . . . , Sk be the trees composing the resulting forest query(T), and let
g1, . . . , gk be the respective associated matchings (that is, gi : VQ → V and Si is
the instantiation of P by gi). Then we define queryf (T) as the forest Si1 , . . . , Sil

of those trees Sj such that gj agrees with f over Vl ∩ VQ. That is, queryf (T) is
the subset of query(T) that is consistent with the matching f . We now turn to
the formal semantics of rules.

Definition 4 (Semantics of rules). Let T = (V, parent, λ, root) be a tree and
R = (left, query = Q ; P, guard, right) be a rule, where left = (Vl, parentl, ancestorl
, λl, rootl) and right = (Vr, parentr, ancestorr, λr, rootr).

We say that R is enabled if there exists an injective matching (f, t) from left

into T , such that queryf (T) ∈ guard. The result of the application of R via (f, t)
is the tree T ′ = (V ′, parent′, λ′, root′) defined as follows:

7

– V ′ = V1] V2] V3] V4 with

1. V1 = f(Vl ∩ Vr), % in the example on Fig. 5, V1 = {v1, v4}
2. V2 = node−1(V1), % in the example on Fig. 5, V2 = {vi | i /∈ {1, 4}}
3. V3 = f(Vr \ Vl), % in the example on Fig. 5, V3 = {w6, w7}
4. V4 consists of distinct copies of the nodes of the forest queryf (T), one for

each node marked by $ in right.
% in the example on Fig. 5, V4 = {ri | i ∈ {6, . . . , 10}}

– Setting f(u) = u for all u ∈ V3, we extend f : Vr ∪ Vl → V1] V3.
– root′ = f(rootr).
– Let u ∈ V1 and let ū = f−1(u) be the associated node in Vl∩Vr. If λr(ū) /∈ Tvar

then λ′(u) = λr(ū), else λ′(u) = t(λr(ū)). For all u 6= root′, if parentr(ū) is
defined, then parent′(u) = f(parentr(ū)) else parent′(u) = parent(u).

– For all u ∈ V2, parent′(u) = parent(u) and λ′(u) = λ(u).
– For all u ∈ V3 \ {rootr}, parent′(u) = f(parentr(u)) and λ′(u) = λr(u).
– To each node u ∈ V ′ marked by $, we add a copy of the forest queryf (T) as

children of u, and we unmark the node.

Note that if x ∈ V2, then its parent is in V1 ∪ V2. The same stands if
ancestorr(x) is defined. Note also that we indeed obtain a tree: for instance,
if u ∈ V1 and parentr(ū) is not defined, then parent(u) is defined. This is because
v = ancestorr(ū) is then defined, so by Def. 3, v = ancestorl(ū) in left, so that
u = f(ū) cannot be the root of T .

We write T
R
→ T ′ if T ′ can be obtained from T by applying the rule R. More

generally, given a set of rules R we write T → T ′ if there is some rule R ∈ R with

T
R
→ T ′, and T

∗
→ T ′ for the reflexive-transitive closure of the previous relation.

Notice that the tree T ′ matches right, through the matching f ′ : Vr → V ′ defined
by f ′(v) = f(v) if v ∈ Vr ∩ Vl, and f ′(v) = v if v ∈ Vr \ Vl.

Remark 1. Positive AXML systems [2] are covered by our model except for one
detail: in [2], positive queries can address not only the document tree, but also
specific subtrees, such as the subtree of a service call, or the subtree of its parent.
However, such queries on subtrees can be expressed easily in our formalism. An
AXML service call corresponds to a rule (left, query, guard, right) with left =
right = r(–(v(w))), where w is labeled by a function tag. In addition, node v
in right is marked by $ (since it collects the result of query as new subtrees). A
positive AXML TP P that is matched against the subtree of w can be rewritten
into a TP root(–P ′), where P ′ is obtained from P by renaming the root node
into w.

Example (Play.com rules). To show how easily rules can be defined, we de-
scribe now the other rules of the Play.com system. When the rule does not use
a query or a guard, we only describe the left and right components.

– The rule New-Customer adds a new customer and its cart.
• left = w1[Play.com](w2[MailOrder])
• right =w1[Play.com](w2[MailOrder](w3[Customer](w4[Cart]))).

8

– The rule Delete-Product deletes a product from a cart.

• left = w1[Play.com](–w7[Cart](w8[X](w9[Y]))

• right = w1[Play.com](–w7[Cart]).

– The rule Add-Product adds a new product to the cart of a customer.

• left = w1[Play.com](–w2[Product](w3[Name](w4[X]),w5(Price)(w6[Y])),

–w7[Cart])

• right = w1[Play.com](–w2[Product](w3[Name](w4[X]),w5(Price)(w6[Y])),

–w7[Cart](w8[X](w9[Y])).

– The rule Checkout can turn the cart into an order.

• left = w1[Play.com](–w2[Cart])

• right = w1[Play.com](–w2[Ordered])

– As long as the bill is not processed, the customer can cancel her order with
the rule Cancel.

• left = w1[Play.com](–w2[Ordered])

• right = w1[Play.com]

– A processed order can be posted, and we count in unary the number of days
since it was sent using day.

• left = w1[Play.com](–w2[Processed])

• right = w1[Play.com](–w2[Posted](w3[day]))

– A posted parcel can be received.

• left = w1[Play.com](–w2[Posted])

• right = w1[Play.com](–w2[Received])

– Every new day, if a posted parcel has not yet been received yet, then the day
counter is incremented.

• left = w1[Play.com](–w2[Posted])

• right = w1[Play.com](–w2[Posted](w3[day]))

– If after 21 days a posted parcel is still not received, the customer can require
a payback. We use the guard to ensure this time limit. Notice that the query
is Q ; P , where Q uses the same w2 as in left, that is the number of days
will be counted only for this particular parcel.

• left = w1[Play.com](–w2[Posted])

• Q= w1[Play.com](–w2[Posted](w3[day])

• P= x4[day]

• guard: a forest containing at least 21 trees with root labeled day (and
possibly more nodes).

• right = w1[Play.com]

Notice that we could model a stock by using tokens for each product in stock
below its name in the catalog, decrementing the token when a product is
added to cart and incrementing the token when it is deleted from cart. Also,
a query could cancel a particular approvisioning from a manufacturer from
some product when the stock is greater than some treshold.

9

3 Static Analysis of TPRS

We assume from now on that an active document is given by a tree pattern
rewriting systems (TPRS) (T,R), consisting of a set R of TP rules and a T -
labeled tree T . That is, we assume that each service corresponds to a rule. Our
results are easily seen to hold in the more general setting where services are
regular expressions over R.

A tree T with node set V is subsumed by a tree T ′ with node set V ′, noted
T � T ′, if there is an injective mapping from V to V ′ that preserves the labeling,
the root, and the parent relation. A forest F is subsumed by a forest F ′, written
F � F ′, if F is mapped injectively into F ′ such that each tree in F is subsumed
by its image in F ′. Similarly, a TP P with node set V is subsumed by a TP P ′

with node set V ′, if there is an injective mapping from V to V ′ that preserves
the labeling, the root, the parent and the ancestor relations.

With a TPRS (T,R) we can associate the (infinite-state) transition system

〈S(T,R),→〉 with S(T,R) = {T ′ | T
∗
→ T ′}. We are interested in checking the

following properties:

– Termination: Are all derivation chains T → T1 → T2 → · · · of (T,R) finite?
– Finite-state property: Is the set S(T,R) of reachable trees finite?
– Reachability: Given (T,R) and a tree T ′, is T ′ reachable in (T,R)?
– Confluence (also called Joinability): For any pair of trees T1, T2 ∈ S(T,R),

does there exist some T ′ such that T1
∗
→ T ′ and T2

∗
→ T ′?

– Pattern reachability (coverability): Given (T,R) and a tree pattern P , does

T
∗
→ T ′ hold for some T ′ matching P ?

– Weak confluence: From any pair of trees T1, T2 ∈ S(T,R), does there exist

T ′
1 � T ′

2 such that T1
∗
→ T ′

1 and T2
∗
→ T ′

2?

For instance, pattern reachability is a key property when we want to talk
about the reachability of some pattern. For example, we might ask whether an
already cancelled order could be still delivered, which would mean a problem in
the system. For this it suffices to tag cancelled orders with a special symbol #,
and check for the pattern w1[Play.com](–w2[delivered](w3[#])). It is the same
kind of properties which are checked in [3]. As expected, any of the non-trivial
questions above is undecidable in the general case, see Theorem 1 below.

We are thus looking for restrictions that lead to the decidability of at least
some of these problems.

In the next section we consider a subclass of TPRS, which is a special instance
of the so-called well-structured systems. We say that (T,R) is positive if all
guards occurring in the rules from R, are upward-closed. This means for every
guard G, and all forests F, F ′ with F � F ′, that F ∈ G implies F ′ ∈ G, too.
In particular, if a rule R in a positive system is enabled for a tree T , then R is
enabled for any tree T ′ that subsumes T . The reason is that for any TPQ query,
we have that for every tree T ′

1 in query(T ′) there is some tree T1 in query(T) such
that T1 is subsumed by T ′

1. Notice that positive TPRS allow deletion of nodes,
so they are more powerful than the positive AXML systems considered in [2].

10

The theorem below shows that upward-closed guards alone do not suffice for
obtaining decidability of termination:

Theorem 1. Any two-counter machine M can be simulated by a positive TPRS
(T,R) in such a way that M terminates iff (T,R) terminates.

Proof. Let M be a two-counter machine with control state set Q and counters
c and d. In the sequel, a configuration of M , i.e. a tuple (q, x, y) ∈ Q×N×N where
x and y respectively denote the value of counter c and d, will be represented by
a tree whose root is labeled by q, which has two children, respectively labeled
by c and d. The tree rooted at the node labeled c (respectively d) is formed of
a single path containing x (respectively y) intermediate nodes labeled by i (as
internal) and ending by a leaf labeled ⊥. We denote the previous tree by T(q,x,y).

Without loss of generality we may assume that any transition of M requires
the value of each counter to be either zero or non-zero (this can be enforced by
inserting a zero test before each transition).

Each possible transition of M is modeled by a rewriting rule. For instance a
transition enabled in state q with c being non-zero and d being zero that goes to
state q′, decrementing the counter c and incrementing the counter d, is simulated
by the rule with left = root(u(w(t)), v(t′)) and right = root′(u(t), v(z(t′))), where
root is labeled by q, root′ is labeled by q′, u is labeled by c, v is labeled by d,
w and z are labeled by i, t is labeled by ∗ and t′ is labeled by ⊥. One defines
similar rules for other possible transitions in M . Note here that our rules have
no query/guard part, hence the system is positive.

It follows directly from the definition of the rules that a configuration (q′, x′, y′)

is reachable in M from some configuration (q, x, y) iff T(q,x,y)
∗
→ T(q′,x′,y′). 2

Remark 2. The TPRS defined in the previous proof uses rules that can erase
nodes (and their subtrees). Technically we could avoid deletions by adding a
special garbage node to which we attach all nodes of left that do not occur
in right.

Theorem 1 shows that any non trivial property is undecidable for positive
TPRS without further restrictions. However, notice that the above proof needs
trees of unbounded depth. A realistic restriction in the XML setting is to consider
only trees of bounded depth: XML documents are usually large, but shallow. A
TPRS (T,R) is called depth-bounded, if there exists some fixed integer K such

that every tree T ′ with T
∗
→ T ′ has depth at most K. Of course, Theorem

1 implies that it is undecidable to know whether a TPRS is depth-bounded.
However, in many real-life examples this property is easily seen to hold (see
e.g. the Play.com example, which has depth at most 8).

4 Decidability for positive and depth-bounded TPRS

For positive and depth-bounded TPRS we can apply well-known techniques from
the verification of infinite-state systems that are well-structured. Well-structured

11

transition systems were considered independently by [1,8] and they cover many
interesting models, such as Petri nets or lossy channel systems. We recall first
some basics of well-structured systems.

Definition 5. A well-quasi-order (wqo) on a set X is a preorder � such that in
every infinite sequence (xn)n≥0 ⊆ X there exist some indices i < j with xi � xj .

In general, the “subsumed” relation � on the set X of T -labeled trees is not
a wqo.1 However, using Higman’s lemma (see, e.g., [6, Chap. 12]), one can show
that � is a wqo on the set of trees of depth at most K (for any fixed K):

Proposition 1. Fix K ∈ N, and let XK denote the set of unordered T -labeled
trees of depth at most K. The “subsumed” relation � ⊆ XK × XK is a wqo.

Proof. It is easy to see that the relation � is a preorder. We show the second
property by induction on K ≥ 0. Let K > 0 and consider an infinite sequence of
trees T1, T2, . . . of depth at most K. We find a subsequence Ti1 , Ti2 , . . . of trees
with the same root label a. Each such tree Tij

consists of the root a, plus a
multiset Sij

of trees of depth at most K − 1. By induction, (XK−1,�) is a wqo.
Higman’s lemma states that whenever (X,�) is a wqo, we have that (X∗,�) is
a wqo, too. In particular, the set of multi-sets over X together with �, is a wqo.
Thus, we can find some j < k such that Sij

� Sik
, thus Tij

� Tik
. 2

By the previous lemma, a positive and depth-bounded TPRS (T,R) yields
a well-structured transition system 〈S(T,R),→〉 as defined in [8] (see also2 [1]).
This follows from the transition relation → being upward compatible: whenever

T
R
→ T ′ and T � T1, there exists T ′

1 with T1
R
→ T ′

1 and T ′ � T ′
1.

For the next theorem we need first some notation. Given a set X and a
preorder �, we denote by ↑X the upward closure {T ′ | T � T ′ for some T ∈ X}
of X . By min(X) we denote the set of minimal elements3 of X . Finally, by
Pred(X) we denote the set of predecessors of elements of X . Note that whenever
the transition relation → is upward compatible and X upward-closed, the set
Pred(X) is upward-closed, too.

Since the subsumed relation � is a wqo, the � relation on forests is a wqo
as well. Thus, each guard G in a positive, depth-bounded TPRS (T,R) can be
described by the (finite) set of forests min(G). The size |G| of G is the maximal
size of a forest in min(G).

Theorem 2. Termination and pattern reachability are both decidable for posi-
tive and depth-bounded TPRS.

1 Indeed consider the sequence of trees (Tn)n≥0 where for each n ≥ 0, Tn is the tree
formed by a single branch of length n + 1 whose internal nodes are labeled by a and
the unique leaf is labeled by b.

2 As shown in the proof of Thm. 2, 〈S(T,R),→〉 is also well-structured as defined in
[1], which requires in addition that the set of predecessors of upward-closed sets is
effectively computable.

3 For a wqo (X,�) and Y ⊆ X, the set min(Y)/∼ is finite, where ∼ = � ∩ �−1. For
the subsumed relation �, note that ∼ is the identity.

12

Proof. First, termination is decidable for well-structured systems such that 1)
� is decidable, 2) → is computable and 3) upward compatible, see [8, Thm. 4.6].

For pattern reachability, it is easy to see that the set of trees of depth bounded
by some K which matches a TP P is upward-closed, and that the set of its min-
imal elements is effectively computable. We can thus use [1], which shows decid-
ability of the reachability of ↑T under the assumption that the set min(Pred(↑T))
is computable. This allows to use the obvious backward exploration algorithm.
From now on we fix the tree T and the bound K of the system (T0,R). Let us
also fix a rule R = (left, query, guard, right).

It suffices to consider the finite set SR(T) of all trees T ′ of size at most

|T | + |left| + K|query||guard| with T ′ R
−→ T . Then, defining M as the set of

minimal elements of
⋃

R∈R SR(T), we get by definition M ⊆ min(Pred(↑T)).
Let us now show that M = min(Pred(↑T)). Let T1 ∈ min(Pred(↑T)). Thus,

there exist some rule R and some injective matching (f, t) with T1
R

−→ T via
(f, t). Let also F ∈ min(guard) be a forest with F � F ′, where F ′ is the result
of query on T1 (compatible with the matching f).

The nodes of T1 can be partitioned into 4 sets V1, V2, V
′
3 , V ′

2 (below Vl are
the nodes of left and Vr those of right):

1. V1 = f(Vl ∩ Vr),
2. V2 = node−1(V1),
3. V ′

3 = f(Vl \ Vr),
4. V ′

2 = node
−1(V ′

3).

Notice that V1 and V2 are common with T (see Def. 4), hence |T1| ≤ |T |+ |V ′
3 |+

|V ′
2 |. Now, |V ′

3 | ≤ |left|. We now explain that V ′
2 has at most |query||guard| leaves,

hence |V ′
2 | ≤ K|query||guard| which shows that T1 ∈ SR(T). Otherwise one can

delete a leaf from V ′
2 and get a tree T ′

1 � T1 with T ′
1

R
−→ T (via (f, t)), and

still F � F ′′, where F ′′ denotes the result of query on T ′
1. This contradicts the

minimality of T1. 2

On the negative side, depth-bounded well-structured systems can simulate
reset Petri nets (i.e., nets with an additional transition that empties a place),
hence we can deduce the following from known results:

Theorem 3. Exact reachability, confluence, weak confluence and the finite-state
property are undecidable for positive and depth-bounded TPRS.

Proof. We encode a reset Petri net with n places (pi)i≤n by a well-structured
system with K = 2. Namely, we consider trees with root labeled r and with n
children labeled pi. Each node pi has as many children as pi has tokens and the
leaves are all labeled by t.

Each transition is modeled by a rule. For instance, a reset of place pi is
modeled by the rule with left = root(v), right = root(w), where root is labeled
r and both v and w labeled by pi (the rule has an empty query/guard part).
Applying such a rule preserves the root, but the subtree whose root is labeled
by pi is destroyed, and a new child of root is created with the label pi, and this

13

node has no child. A rule which takes 2 tokens from place pi and one from place
pj and creates a token in place pk is modeled as left = root(v(w, x), y(z), s),
right = root(v, y, s(u)), with root, v, y, s labeled respectively by r, pi, pj , pk, and
w, x, z, u are labeled by t.

It directly follows from the construction that the previous TPRS system
is depth-bounded and positive. As both exact reachability and the finite-state
property are undecidable for reset Petri nets [7], it follows that this holds for
positive and depth-bounded TPRS as well.

We now show the undecidability of (weak) confluence for a reset Petri net,
which hence implies the undecidability for positive and depth-bounded TPRS.
For this, we reduce reachability to the confluence of a reset Petri net.

The question is whether a marking Mf can be reached in a reset Petri net
P from the initial marking. We create a new reset Petri net P ′ with the same
places as P , plus two new places q, r. The initial marking of P ′ is the same as
for P , and there is one token in place q and zero in place r.

For two markings M, M ′, we denote by (M, M ′) the transition with M(a)
tokens taken from place a, and M ′(a) tokens added to place a, for all a. For
instance, the transition ({p, 2 · q}, {p, s, t}) checks that there are at least one
token in place p and two in q, it deletes two tokens from place q, and adds one
to both s and t.

For each transition (M, M ′) of P , there is a transition (M + {q}, M ′ + {q})
in P ′. We fix a place p of P . We add the three transitions (Mf + {q}, {r}),
({q}, {r, p}) and ({r, 2 · p}, {r, p}), plus a transition ({r, l}, {r, p}) for all places
l /∈ {p, q, r}.

First, note that in each reachable marking of P ′, there is either a token in
q or in r (but not both), and no marking with a token in q is reachable from a
marking with a token in r. Second, every marking except {r} can reach {r, p}.
Indeed, if the marking has a token in q, then it can first execute the transition
({q}, {r, p}). With a token in r, each place other than r, p can be emptied with
({r, l}, {r, p}) (and p is sure to be non-empty). Then all tokens in p but one can
be deleted with ({r, 2 · p}, {r, p}). Also, notice that {r} is reachable in P ′ iff Mf

is reachable in P . The reason is that from any marking M with M(r) = 1 and
M 6= {r} we cannot reach {r}.

Therefore P ′ is confluent iff {r} is not reachable in P ′ iff Mf is not reachable
in P . As P ′ is weakly confluent iff it is confluent, this concludes the proof. 2

On the positive side, we can show that the finite-state property is decidable
for positive, depth-bounded TPRS, that are strict, i.e., for any rule (left, query, guard, right),
we require Vleft ⊆ Vright. One cannot encode reset Petri nets with such systems
because deletion is no longer possible (actually one can only relabel an existing
node and create new nodes). Strict systems enjoy the additional property that

whenever T
R
→ T ′ and T ≺ T1, there exists T ′

1 with T1
R
→ T ′

1 and T ′ ≺ T ′
1 (notice

that for non strict systems, we can only guarantee that T ′ � T ′
1). The results

from [8] yield the following theorem.

Theorem 4. The finite-state property and reachability are decidable for TPRS
that are positive, depth-bounded, and strict.

14

Note that the finite-state property is not very interesting in itself, but if it
holds, then the other problems become decidable as we are dealing with a finite-
state system. In particular, in order to test for confluence, it suffices to test that
(S(T,R),→) has a unique maximal strongly connected component.

Note that reachability is decidable for positive, depth-bounded and strict
TPRS simply because T → T ′ implies that |T | ≤ |T ′|, and then it suffices to
look for reachability of a tree T1 in the finite state system {T ′ | |T ′| ≤ |T1|}.

The undecidability of confluence and weak confluence for positive, depth-
bounded and strict TPRS follows from Theorem 3 together with a simple tech-
nical modification: insted of deleting nodes (and their subtrees) we attach them
to a special garbage node #. Additional rewriting rules ensure that at any mo-
ment, arbitrary descendants of the garbage node can be created. These rules
ensure confluence, since for any subtrees T1, T2 of # (of bounded depth) we can
rewrite both T1, T2 into some (larger) tree T3.

Below is a table that sums up the results we obtained so far. It presents
(un)decidability results concerning the various classes of positive TPRS we con-
sidered (depth-bounded and strict). The negative results about strict TPRS
come from Theorem 1 (see subsequent remark). Term., FS, Reach., P-reach,
Confl. and W-confl. stand respectively for termination, finite state property,
reachability, pattern reachability, confluence and weak confluence.

Model Term. FS Reach. P-reach. Confl. W-confl.

Strict U U U U U U

Depth-Bounded D U U D U U

Depth-Bounded & Strict D D D D U U

Table 1. Decidability results for positive TPRS.

5 Lower bounds and extensions

Decidability results are obtained with non-constructive proofs coming from Hig-
man’s Lemma. This ensures termination of the algorithms, but without yielding
complexity bounds. It is thus relevant to obtain lower bounds for these results.

Theorem 5. The following problems have at least non-elementary complexity:

– Input: A TP P , a TPRS system (S,R) and an integer k such that the depth
of (S,R) is bounded by k.

– Problem1: Is the pattern P reachable in (S,R)?
– Problem2: Does (S,R) terminate, equiv., does it have an infinite path?

Proof. Let tower(0, n) = n and tower(k + 1, n) = 2tower(k,n). Let M be
an n 7→ tower(k, n)-space bounded deterministic Turing machine and x be an

15

input of M . Denote by log∗ n the smallest integer m such that n ≤ tower(m, 2)
and let K = k + log∗ |x|, so that the computation of M on x uses at most
tower(k, |x|) ≤ tower(K, 2) tape cells. We build a (K +1)-depth bounded TPRS
of size O(|M | + |x|) simulating M on x.

Informally, we encode each configuration of M by a tree. Each cell is encoded
by a subtree of the root, labeled at its own root by the cell content, with the forest
below it encoding the position of the cell. Since such a position is smaller than
tower(K, 2), it can itself be encoded recursively by a forest of depth at most K
(such a recursive encoding of large integers, by words, has already been used
in [14]). For instance, one can encode integers from 0 to 15 = tower(2, 2) − 1
at depth 2. The forest of Fig. 6 encodes 13 (1101 in binary). To recover its
position, each bit of the base 2 representation has under itself a forest of depth 1
encoding its position (recursively with the same encoding scheme). For instance,
the leftmost 1 is at position 00, which is encoded by the forest {[0]([0]), [0]([1])}.

[1] [1] [0] [1]

[0] [0] [0] [1] [1] [0] [1] [1]

[0] [1] [0] [1] [0] [1] [0] [1]

Fig. 6. A level 2 counter encoding 13.

Formally, a level 0 counter consists of a single node labeled by 0 or 1. We
define inductively a level ` counter as a forest of tower(` − 1, 2) trees, each of
depth `, to encode any integer between 0 and tower(`, 2)−1. The level ` counter
encoding i ≤ tower(`, 2) − 1 will be noted F `

i (for ` = 0: F 0
0 = {0}, F 0

1 = {1}).
Assume inductively that F `−1

i has been defined for 0 ≤ i ≤ tower(` − 1, 2) − 1.
For 0 ≤ j ≤ tower(`, 2) − 1, let a0 · · · ap be the binary representation of j, with
p = tower(`−1, 2)−1. The level ` counter F `

j is the forest {[ai](F
`−1
i) | 0 ≤ i ≤ p}.

Let N = tower(K, 2) − 1. We encode the configuration C of M with tape
content a0 · · · aN , current state q and scanned position m, by the forest FC =
ā0(F

K
0) · · · āN (F K

N) of depth K + 1, with ām = [am, q] and āi = [ai] for i 6= m.
The head position is thus doubly tagged: by the letter, and by the state. Such a
node with a double tag [α, β] is said marked by β, or a β-node.

In order to navigate through the cells, we use for each level ` ≤ K an addi-
tional placeholder node, child of the root, named c` for holding a level ` counter
below it. The idea is that the counter attached below cK will be able to count up
to N , and hence can pinpoint a tape position. The other counters are needed in
the inductive process. During the computation, additional markers will be used
either as pebbles, or to guide the control. Figure 7 shows a typical tree reached
during the computation. The rules of the TPRS are set up so that it performs
successively the following actions:

1. It creates the forest FC0
, and attaches it under the root, leaving cK labeled

by [cK , run] and for ` < K, c` labeled by [c`, end].

16

2. It simulates repeatedly transitions of M , stopping if the final state is reached.

[M]

[b] [b, ∗] [b, q] [a] [c0,true] [c1,cmp-compare-bits] [c2,check-suc3]

[0] [0] [0] [1] [1] [0, ∗1] [1] [1]

[0] [1] [0] [1] [0] [1] [0] [1]

[1] [1] [0, ∗′1]

[0] [1]

Fig. 7. The tree coding the tape b b q b a of the Turing machine M .

We only show how to encode transitions. The generation of the initial configura-
tion, starting from the tree [M]([c0, end], . . . , [cK−1, end], [cK , create-init-config]),
is done using similar routines. We use a finite set of rules without query/guard
part. Although the TPRS will be nondeterministic, appropriate tags shall en-
sure that rules applicable at some step have all the same left member. When the
TPRS discovers that a nondeterministic guess was wrong, it blocks. Therefore,
if M halts on x, then the TPRS always terminate. If M does not halt on x, then
the corresponding run of the TPRS where all guesses are correct does not either.
This ensures termination iff M halts on x.

To simulate a transition, the TPRS first performs the changes in the config-
uration, nondeterministically guessing the new head position. To check whether
the head has been properly placed, it ∗-marks the original head position. The
node cK marked by { run, check-suc1,check-suc2 . . . , check-pred1,check-pred2 . . .

} (for instance, check-suc needs several steps) encodes the current stage of the

simulation. For instance, to simulate a transition p
a/b/→
−−−−→ q, we use the rule:

− left = r[M](x[a, p], y[X], z[cK , run]),
− right = r[M](x[b, ∗], y[X, q], z[cK , check-suc1]),

slightly abusing notation: we use a double tag involving a variable, to abbreviate
a finite set of rules (with the obvious interpretation).

To complete the simulation of the transition, the TPRS checks whether the
position written below the node pinpointed by q is a successor of that below
the node pinpointed by ∗. If yes, it deletes the mark ∗, and labels cK back to
[cK , run]. If not, the head position was incorrectly guessed and the system blocks.

The steps of check-suc, which checks that the nodes marked by ∗ and q occur
successively, are first a copy under cK of the level K counter located below
the ∗-node, then an increment of that copy, and a comparison of the result to
the counter below the q-node. We use auxiliary markers ∗`, ∗

′
` for each level `,

attached to nodes below an ` counter: ∗` in the part of the tree representing the
configuration, and ∗′` under some ci, i > `. We define inductively rules to achieve
the following tasks for each level ` ≤ K:

– copy(`) copies below the ∗′`-marked node the level ` counters found below c`.

17

– increment(`) increments the level ` counter below c`.
– compare(`) compares level ` counters below c` and below the ∗`-marked node.
– test-max(`) tests if the level ` counter below c` has its maximal value.
– zero(`) generates under c` the level ` counter F `

0 .

Each task of level ` will be implemented using a sequence of tasks of level (`−1),
plus some fresh tags to correctly organize the order of these level (` − 1) tasks.

Let us explain how to handle the control. First, each function of level ` only
performs local tasks, or calls to functions of level ` − 1. Therefore, the underly-
ing call stack size is K-bounded. The first tasks to be called are those of level
K (recall that we aimed at checking that the head was correctly placed, thus
having to handle level K counters). The call stack is simulated by markers put
at the ci nodes. When the activated function is at level `, nodes c0, . . . , c`−1

are all marked ready,true or false, while nodes c`, . . . , cK have other marks indi-
cating an “active” state. For instance at the beginning of the simulation, cK is
marked run while for ` < K, c` is marked ready. This way, a left side of the form
r[M](u[c`−1, ready], v[c`, x]) for some tag x 6= ready selects the counter where the
current action is to be performed.

As an example, compare(`) works by running a level `−1 counter from 0 to its
maximal value, using zero(`− 1), increment(`− 1) and test-max(`− 1). For each
value k of this counter, it compares the k-th bits of the level ` counters under
comparison, by nondeterministically marking one bit of each counter, verifying
with compare(` − 1) and compare′(` − 1) that they are at position k, and if so,
comparing them. The call compare(`) is activated when c` is tagged compare. We
use as tags either names of functions to be called (compare, zero, etc.), “return
values” (true, false, ready), or control states (cmp-guess-1st-bit,. . .). Notice that
we use another operator compare′(`) to compare bits marked ∗′` and the counter
under c`. Formally:

– Initialize level `−1 counter to 0, by marking c`−1 by zero, to “call” zero(`−1):
• left = r[M](x[c`−1, ready], y[c`, compare])
• right = r[M](x[c`−1, zero], y[c`, cmp-guess-1st-bit]).

– Guess and mark by ∗`−1 a bit below ∗`. Check the guess with compare(`−1):
• left = r[M](x[c`−1, ready], y[c`, cmp-guess-1st-bit], –t[T, ∗`](u[U])),
• right = r[M](x[c`−1, compare], y[c`, cmp-guess-2nd-bit], –t[T, ∗`](u[U, ∗`−1])).

– Guess and mark by ∗′`−1 a bit below c`. Check the guess with compare′(`−1):

• left = r[M](x[c`−1, true], y[c`, cmp-guess-2nd-bit](z[Z])),
• right = r[M](x[c`−1, compare′], y[c`, cmp-compare-bits](z[Z, ∗′`−1])).

– If the bits agree: clear the ∗` and ∗′` marks and test if their position was max-
imal. Notice that bit equality is tested by using the same variable twice:
• left = r[M](x[c`−1, true], y[c`, cmp-compare-bits](z[X, ∗′`−1]), –u[X, ∗`−1]),
• right = r[M](x[c`−1, test-max], y[c`, cmp-next-bits](z[X]), –u[X]).

– Return true if done:
• left = r[M](x[c`−1, true], y[c`, cmp-next-bits]),
• right = r[M](x[c`−1, ready], y[c`, true]).

18

– Proceed to the loop if not, incrementing the value of the level ` − 1 counter:
• left = r[M](x[c`−1, false], y[c`, cmp-next-bits]),
• right = r[M](x[c`−1, increment], y[c`, cmp-guess-1st-bit]).

The rules for other tasks follow the same ideas and are not described here. 2

The bounded depth restriction needed for our decidability results can be
relaxed if we forbid the use of the direct parent-child edges in tree patterns.
This leads to the following preorder on unranked, unordered T -labeled trees,
which is a well quasi-order by Kruskal’s theorem (see [6, Chap. 12]). For two
trees T, T ′ with sets of nodes V, V ′ respectively, we write T l T ′, if there is
an injective mapping from V to V ′ that preserves the labeling, the root, and
the ancestor relation. So compared to the relation � used previously, we do not
require that the parent relation is preserved.

Clearly, we need to restrict the TPRS rules in order to obtain well-structured
systems. Namely we require that all TP occurring in query and left use only ances-

tor edges (right can still use parent edges, but the parent relation cannot be tested
for). We call such TPRS undirected. Using similar proofs as in Sect. 4, we get
the same results as in Table 1. For the lower bound we obtain a stronger result,
by encoding reachability for lossy channel systems (LCS). These are finite-state
machines communicating over FIFO channels that can loose arbitrary many mes-
sages. Reachability for LCS has non primitive recursive complexity [13], already
for LCSs made up of two finite-state machines and two channels [5].

Theorem 6. Termination and pattern reachability have at least non primitive
recursive complexity for undirected TPRS.

Proof. We reduce the reachability of some global control state of an LCS to
the pattern reachability of an undirected TPRS. Fix an LCS made up of two
finite-state machines A1, A2 communicating through two lossy FIFO channels
(C1 from A1 to A2 and C2 in the opposite direction).

A configuration of the LCS is given by (q1, q2, w1, w2), where qi is the current
state of Ai and wi ∈ Σ∗ is the content of channel Ci. We encode this configura-
tion by the following tree, where for instance w1 = a · · · c. Channel tails, where
writes occur, are marked by [end].

[LCS]

[q1] [C1] [C2] [q2]

[a]

[c]

w
1

[end]

[b]

[a]

w
2

[end]

Fig. 8. The tree encoding the configuration (q1, q2, a · · · c, b · · ·a) of an LCS.

19

The rules associated with such a system are given below, assuming disjoint
state sets for A1 and A2, that do not contain symbols C1, C2. Notice that we
do not use any query/guard part. One can assume that message losses happen
just before read actions, ahead of the message actually read in that channel.

– A message loss possibly occurs at the head of channel C1, a message a is then
read in C1 by A2, which switches its state from q2 to q′2:
• left = w1[LCS](−w2[q2],−w3[C1](−w4[a])),
• right = w1[LCS](−w2[q

′
2], w4[C1]).

– A1 performs a transition from state q1 to q′1, sending message a into C1:
• left = w1[LCS](−w2[q1],−w3[C1](−w4[end])),
• right = w1[LCS](−w2[q

′
1],−w3[C1](−w4[a](w5[end])))).

Dual rules are defined for A2. It should be clear that there is a bisimulation
between the undirected TPRS system and the LCS, which yields the result. 2

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In LICS’96, pp. 313–321. IEEE Comp. Soc., 1996.

2. S. Abiteboul, O. Benjelloun, and T. Milo. Positive Active XML. In PODS’04, pp.
35–45. ACM, 2004.

3. S. Abiteboul, L. Segoufin, and V. Vianu. Static Analysis of Active XML Services.
In PODS’08. ACM, 2008. To appear.

4. Active XML. http://www.activexml.net/ .
5. P. Chambart and Ph. Schnoebelen. The Ordinal Recursive Complexity of Lossy

Channel Systems. In LICS’08. IEEE Comp. Soc., 2008. To appear.
6. R. Diestel. Graph theory. 2005. http://www.math.uni-hamburg.de/home/diestel .
7. C. Dufourd, A. Finkel and Ph. Schnoebelen. Reset Nets between Decidability and

Undecidability. In ICALP’98, LNCS 1443, pp. 103–115. Springer, 1998.
8. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!

Theor. Comput. Sci., 256(1-2):63–92, 2001.
9. N. Dershowitz and D. Plaisted. Chapter 9 in: Handbook of Automated Reasoning,

vol. 1, A. Robinson and A. Voronkov eds, Elsevier (2001).
10. L. Libkin. Logics for unranked trees: An overview. Log. Meth. Comput. Sci., 2(3),

2006. Available at http:dx.doi.org/10.2168/LMCS-2(3:2)2006 .
11. Ch. Löding and A. Spelten. Transition Graphs of Rewriting Systems over Unranked

Trees. In MFCS’07, LNCS 4708, pp. 67-77. Springer, 2007.
12. F. Neven. Automata, Logic, and XML. In CSL’02, LNCS 2471, pp. 2–26. Springer,

2002.
13. Ph. Schnoebelen. Verifying Lossy Channel Systems has Nonprimitive Recursive

Complexity. Inf. Process. Lett. 83(5):251–261, 2002.
14. I. Walukiewicz. Difficult Configurations—on the Complexity of LTrL. Form. Meth-

ods Syst. Des., 26(1): 27–43. Kluwer, 2005. Short version in ICALP’98, LNCS 1443.

20

http://www.activexml.net/
http://www.math.uni-hamburg.de/home/diestel
http:dx.doi.org/10.2168/LMCS-2(3:2)2006

	Tree Pattern Rewriting Systems
	B. Genest3, A. Muscholl1, O. Serre2, and M. Zeitoun1

