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Introduction

A Lissajous knot is a knot which admits a one-to-one parametrization of the form x = cos(at); y = cos(bt + ϕ); z = cos(ct + ψ) where 0 ≤ t ≤ 2π and where a, b, c are pairwise coprime integers. These knots, first defined in [START_REF] Bogle | Lissajous knots[END_REF], have been studied by many authors: V. F. R. Jones, J. Przytycki, C. Lamm, J. Hoste and L. Zirbel. Most known properties of Lissajous knots are deduced from their symmetries, which are easy to see (see [START_REF] Jones | Lissajous knots and billiard knots[END_REF][START_REF] Lamm | There are infinitely many Lissajous knots[END_REF][START_REF] Hoste | Lissajous knots and knots with Lissajous projections[END_REF][START_REF] Przytycki | Symmetric knots and billiard knots, Chapter 20 of the book Ideal Knots[END_REF]).

On the other hand Vassiliev considered polynomial knots, i.e. non singular polynomial embeddings R → R 3 (see [START_REF] Vassiliev | Cohomology of knot spaces, Theory of Singularities and its Applications[END_REF][START_REF] Shastri | Polynomial representation of knots[END_REF][START_REF] Ranjan | On polynomial representation of torus knots[END_REF][START_REF] Koseleff | On polynomial torus knots[END_REF][START_REF] Koseleff | A polynomial parametrization of torus knots[END_REF]).

In this paper we study a polynomial analogue of Lissajous knots. It is natural to use the classical Chebyshev polynomials T n (t) instead of cosine functions to define our Chebyshev knots. The Chebyshev polynomials are defined by T 0 = 1, T 1 = t, T n+1 = 2tT n -T n-1 , n ∈ Z. They satisfy the trigonometric identity cos(n θ) = T n (cos θ).

Definition 1 A knot in R 3 ⊂ S 3 is a Chebyshev knot if it admits a one to one parametrization of the form x = T a (t); y = T b (t); z = T c (t + ϕ)

where t ∈ R, a, b, c are integers and ϕ is a real constant.

Figure 1: The mirror image of the 7 7 knot is Chebyshev.

We begin with the study of plane Chebyshev curves which are projections of Chebyshev knots on the (x, y)-plane. We conclude this paragraph with a theorem of Hoste and Zirbel [START_REF] Hoste | Lissajous knots and knots with Lissajous projections[END_REF] describing these curves in terms of particular braid projections.

Then, we study some families of Chebyshev knots with ϕ = 0, called harmonic knots. We prove that for a, b coprime positive integers and c = abab, the harmonic knot H(a, b, c) has an alternating projection on the (x, y)-plane. We deduce that there are infinitely many harmonic knot types. This is similar to a theorem of C. Lamm concerning Lissajous knots (see [START_REF] Lamm | There are infinitely many Lissajous knots[END_REF]). We also prove that the torus knots T(2, 2n + 1) are harmonic knots. On the other hand, we observe that the symmetries of harmonic knots are quite different from those of Lissajous knots. There are infinitely many amphicheiral harmonic knots and infinitely many strongly reversible harmonic knots. The trefoil and the figure-eight knot are harmonic knots but are not Lissajous. Some knots are both Lissajous and harmonic knots, e.g. 5 2 and 7 5 .

We conclude the paper with our principal result: every knot is a Chebyshev knot. This is done by showing first that every knot has a plane projection which is a Chebyshev curve. Then we use some classical results of braid theory and a density argument based on Kronecker's theorem.

At the end we give Chebyshev diagrams of the first 2-bridge harmonic knots.

Geometry of plane Chebyshev curves

Chebyshev curves were defined in [START_REF] Fischer | Plane Algebraic Curves[END_REF] to replace the older denomination of "doubly parametrized Lissajous curves". Their double points are easier to study than those of Lissajous curves. It will be convenient to consider also the case of implicit Chebyshev curves. 

= (-1, 1) 2 , R = {(x, y) ∈ Q, T b (x) = T a (y) = 1}, and R ′ = {(x, y) ∈ Q, T b (x) = T a (y) = -1}.
Proof. The singular points of C are obtained for T ′ b (x) = 0, T ′ a (y) = 0, T b (x) = T a (y). From T a (cos θ) = cos aθ, we deduce that T a has degree a and T ′ a (cos θ) = a sin aθ sin θ . T ′ a has a -1 simple roots in (0, 1):

y k = cos k π a , k = 1, . . . , a -1.
At these points, we have

T a (y k ) = (-1) k . T ′ b has b -1 roots in (0, 1): x 1 , . . . , x b-1 .
For each x i there are exactly

1 2 (a -1) values y j satisfying T ′ a (y j ) = 0, T a (y j ) = T b (x i ).
Hence the number of singular points is 1 2 (a -1)(b -1), and they form two rectangular grids. Since the roots of T ′ b (x) = are simple, we see that these points are crossing points.

Remark 1 It follows from their definitions that

|R| = 1 2 b-1 2 (a -1), |R ′ | = 1 2 b 2 (a -1)
where ⌊x⌋ is the greatest integer less than or equal to x.

Proposition 2 Let a and b are nonnegative coprime integers, a being odd. Let the Chebyshev curve C be defined by the equation T b (x)-T a (y) = 0. Then C admits the parametrization x = T a (t), y = T b (t). The pairs (t, s) giving a crossing point are

t = cos k a + h b π, s = cos k a - h b π,
where k, h are positive integers such that

k a + h b < 1. Proof. Since T a • T b = T b • T a = T ab , the rational curve C ′ parametrized by x = T a (t), y = T b (t) is contained in C. These two curves intersect the line {x = x 0 } in one point if |x 0 | > 1, in a points if |x 0 | < 1 and in 1 2 (a + 1) points if x 0 = ±1. Consequently, they are equal. The 1 2 (a -1)(b -1) pairs t = cos k a + h b π, s = cos k a - h b π,
give rise to double points of C ′ = C. Because the number of singular points of C is 1 2 (a -1)(b -1), we see that there is no other singular point.

Remark 2 We observe that the crossing points are obtained for the (a -1)(b -1) elements of

E = {t u = cos u ab π, 0 ≤ u ≤ ab, a | u, b | u}. ( 1 
)
For these values, we get T b (x(t u )) = T a (y(t u )) = (-1) u . Note that t u and t u ′ correspond to the same point when u ≡ -u ′ (mod 2b) and u ≡ u ′ (mod 2a).

Remark 3 In general, the curve C : T b (x) -T a (y) = 0 has d 2 + 1 components where d = gcd(a, b). See Figure 4.

The following proposition will be useful to consider Chebyshev curves as trajectories in a rectangular billiard (see [START_REF] Jones | Lissajous knots and billiard knots[END_REF]).

Proposition 3 Let C be the Chebyshev curve: T b (x) -T a (y) = 0. There exists an homeomorphism from the square

I 2 = [-1, 1] 2 to the rectangle [0, b] × [0, a],
such that the image of C I 2 is the union of all the billiard trajectories with slopes ±1 through the points with coordinates x = b, y = a -2k, 0 ≤ 2k ≤ a.

Proof. Consider the mapping F (x, y) = (X, Y ) with πX = b(πarccos x), πY = a(πarccos y). By trigonometry, it is not hard to check that F has the announced properties. We shall now present a description of Chebyshev curves using braids. Let B n be the group of braids on n strings. For practical purposes we shall draw these braids horizontally, the strings being numbered from the bottom to the top. The standard braid generators are denoted σ 1 , σ 2 , . . . , σ n-1 . The braid σ i exchanges the strings i + 1 and i, the string i + 1 passing over the string i. In this paragraph we shall be interested in plane projections of braids, called plane braids. We shall also consider the composition of such plane braids. Let a = n. Let s i denote the plane braid which is the plane projection of σ i . This plane braid has one crossing point. Following Hoste and Zirbel [START_REF] Hoste | Lissajous knots and knots with Lissajous projections[END_REF], let us define the plane braids s even and s odd as

s even = s 2 s 4 • • • s E , s odd = s 1 s 3 • • • s O ,
where E and O are the largest even and odd integers less than n = a. 

R ε = {|x| < 1 -ǫ, |y| ≤ 1}. Then there is a homeomorphism between the pairs (R ε , C) and (R ε , ρ) where ρ = (s odd s even ) b-1 2 if b is odd and ρ = (s even s odd ) b-2 2 s even if b is even. Proof. Following the proof of Proposition 1, the 1 2 (a -1)(b -1) singular points of C are in R ε when ε is small enough. For each k = 1, . . . , b -1, there are 1 2 (a -1) singular points (x k , y l ) = cos k π b , cos l π a , k + l ≡ 0 (mod 2).
It means that over a neighborhood over x k , the curve C is isotopic to s even if k is odd, and isotopic to s odd if k is even. This proves the result. 2

We can define the plat closure of a plane horizontal braid with 2m strings labelled 0, 1, . . . , 2m-1, to be the plane curve obtained by connecting the right ends 0 to 1, . . . , 2m -2 to 2m -1, and the left ends in the same order.

Corollary 1 Let a be an odd integer, and b an even integer. Let ρ ′ be the plane braid with a + 1 strings obtained by adding a free string numbered a + 1 over ρ = (s even s odd )

b-2

2 s even . Then the Chebyshev curve T b (x) -T a (y) = 0 is isotopic (in S 2 ) to the plat closure of the plane braid ρ ′ .
Proof. Let us illustrate this by looking at the curve T 10 (x) -T 5 (y) = 0, which has 3 components. We see on Figure 4 that it is the plat closure of (s even s odd ) 4 s even .

2 

Harmonic knots

In this paragraph we shall study Chebyshev knots with ϕ = 0. Comstock (1897) found the number of crossing points of the harmonic curve parametrized by x = T a (t), y = T b (t), z = T c (t). In particular, he proved that this curve is non singular if and only if a, b, c are pairwise coprime integers [START_REF] Comstock | The Real Singularities of Harmonic Curves of three Frequencies[END_REF]. Such curves will be named harmonic knots H(a, b, c).

We see that H(a, b, 1) is the unknot because the height function is monotonic. We can also obtain the unknot in a less trivial way. By trigonometry, we see that the bounded part of our knot is on the surface

S = {(x, y, z) ∈ R 3 , |x| ≤ 1, |y| ≤ 1, z = xy ± (1 -x 2 )(1 -y 2 )}.
Since S is the union of two sheets that are homeomorphic to the square [0, 1] 2 glued along their boundaries, we see that it is homeomorphic to a sphere. Consequently the genus of H(a, b, c) is zero, hence it is the unknot. 2

Note that the surface S has the symmetries of a regular tetrahedron. It is contained in the cubic surface {x 2 + y 2 + z 2 = 1 + 2xyz} which has the same symmetries.

Let C be a plane projection of a parametrized knot. Consider a crossing point of C obtained for the parameter pair (t, s). The tangents at this point have opposite slopes (see [START_REF] Koseleff | The first rational Chebyshev knots[END_REF], Lemma 4). It follows easily that the nature of this crossing point depends only of the sign of the expression D = z(t)z(s) x ′ (t)y ′ (t). This is not the usual definition of the sign of oriented crossings, see Figure 6. Proof. The crossing points of the plane projection {x = T a (t), y = T b (t)} are obtained for the parameters t = cos τ, s = cos σ, where

D > 0 D < 0
τ = k a + h b π, σ = k a - h b π.
Using trigonometry we get x ′ (t) = a sin aτ sin τ , y ′ (t) = b sin bτ sin τ , so

x ′ (t)y ′ (t) = (-1) h+k ab sin 2 τ sin( ah b π) sin( bk a π). (2) 
We have also

z(t) -z(s) = T c (t) -T c (s) = -2 sin ch b π sin ck a π . (3) 
and the announced result. 2

Alternate harmonic knots

The following theorem is the analogue of a theorem of Lamm [START_REF] Lamm | There are infinitely many Lissajous knots[END_REF] concerning Lissajous knots. The polynomial x ′ (t)y ′ (t) has (a + b -2) simple roots for t u = cos u ab π, where a or b divides u = 1, . . . , ab -1. For these parameters, the billiard curve corresponding to the (x, y)-plane projection bounces on a wall.

Three cases may occur because at least one of three consecutive t u belongs to E.

1. t h+1 ∈ E and t h ∈ E. Then sign x ′ (t h )y ′ (t h ) = sign x ′ (t h+1 )y ′ (t h+1
) and since the sign of D changes, we conclude that the sign of z(t)z(s) changes between the 2 consecutive parameters t h+1 and t h .

2. t h+1 ∈ E, t h ∈ E, t h-1 ∈ E. We have x ′ (t)y ′ (t) = 0 at t h and t h-1 . For t h-1 < t < t h-2 , we have sign x ′ (t)y ′ (t) = sign x ′ (t h+1 )y ′ (t h+1 ) , so sign x ′ (t h-2 )y ′ (t h-2 ) = sign x ′ (t h+1 )y ′ (t h+1
) . Hence we see that the sign of z(t)z(s) changes between the 2 consecutive parameters t h+1 and t h-2 .

3.

t h+1 ∈ E, t h ∈ E, t h-1 ∈ E. We have x ′ (t)y ′ (t) = 0 at t h , so sign x ′ (t h-1 )y ′ (t h-1 ) = -sign x ′ (t h+1 )y ′ (t h+1
) . Hence we see that the sign of z(t)z(s) changes between the 2 consecutive parameters t h+1 and t h-1 .

In conclusion, the diagram is alternating. 2

Symmetries and harmonic knots

A knot K in S 3 is strongly (-)amphicheiral if there is an involution of (S 3 , K) which reverses the orientation of both S 3 and K. A knot K in S 3 is strongly reversible (or strongly invertible) if there is an involution of (S 3 , K) which preserves the orientation of S 3 and reverses the orientation of K (see [START_REF] Kawauchi | A Survey of Knot Theory[END_REF], pp. 127-128).

Proposition 6

The harmonic knot H(a, b, c) is either strongly (-)amphicheiral if abc is odd, or strongly reversible if abc is even.

Proof. It is immediate from the parity of Chebyshev polynomials. 2

Corollary 2 There are infinitely many amphicheiral harmonic knots. There are infinitely many strongly reversible harmonic knots.

Proof. Since the harmonic knot H(a, b, c), c = abab is alternate, its crossing number is 1 2 (a -1)(b -1). From this we conclude that there is an infinity of such knots with a, b, c odd, or with abc even.

2

If σ is any permutation of {a, b, c} then the harmonic knot H(σ(a), σ(b), σ(c)) is either H(a, b, c) if σ is an even permutation or its mirror image if σ is an odd permutation. Proof. The expression of sign D (Equations ( 2) and ( 3)) for a given pair of parameters (t, s) corresponding to crossing points in the (x, y)-plane projection is invariant under the transformation c → c + 2ab and c → 2abc. 2

We can therefore suppose that a < b and 0 < c < ab to consider all cases. 

Independently but later, G. and J. Freudenburg ([6]) proved the following improvement of

The simplest alternate harmonic knots

It is remarkable that for a = 3 the curves are drawn in "Conway normal form" for 2-bridge knots [START_REF] Murasugi | Knot Theory and its Applications[END_REF]. Then their Conway notation is H(3, n, 2n -3) = C(1, 1, . . . , 1) when n is not a multiple of 3. Turner [START_REF] Turner | On a class of knots with Fibonacci invariant numbers[END_REF] named these knots Fibonacci knots, because their determinants are Fibonacci numbers. For n = 4 we obtain the trefoil, for n = 5 the figure-eight, for n = 7 the 6 3 knot, and for n = 8 the 7 7 knot.

The Fibonacci knots with an even crossing number are 2-bridge amphicheiral knots. We have recently proved ( [START_REF] Koseleff | On Fibonacci knots[END_REF]) that they are not Lissajous.

For a = 4, we also obtain 2-bridge knots. Following the classical method ( [START_REF] Murasugi | Knot Theory and its Applications[END_REF] p. 183-187), we see that their Conway notation is H(4, n, 3n -4) = C(-1, -2, . . . , -1, -2) = C(-3, -1, -2, . . . , -1, -2), (n odd). For n = 5 we obtain the 6 2 knot, for n = 7 a symmetric picture of the 9 20 knot (compare with Rolfsen's table [START_REF] Rolfsen | Knots and Links[END_REF]).

For a ≥ 5 we may obtain p-bridge knots, with p ≥ 3. For example the harmonic knot H [START_REF] Fischer | Plane Algebraic Curves[END_REF][START_REF] Freudenburg | Curves defined by Chebyshev polynomials[END_REF][START_REF] Pecker | Simple constructions of algebraic curves with nodes[END_REF] is the mirror image of 10 116 knot in Rolfsen's table (amazingly, with exactly the same picture). Its bridge number is known to be 3.

Note that the torus knot T(2, 2n + 1) cannot be obtained as an alternate harmonic knot, except for the trefoil knot, as it is proved in [START_REF] Koseleff | On polynomial torus knots[END_REF]. Nevertheless it can be obtained as an harmonic knot. For k = 0, . . . , n -1, let us consider

A k be obtained for m = 3k + 1, m ′ = 2b -m. B k be obtained for m = 2b + 3k + 2, m ′ = m -2b.
C k be obtained for m = 2b + 3k + 3, m ′ = 4bm.

Then we have

x(A k ) = cos( 3k + 1 b π), y(A k ) = 1 2 (-1) k . x(B k ) = cos( 3k + 2 b π), y(B k ) = 1 2 (-1) k+1 . A 0 B 0 C 0 A 1 A n-1 B n-1 C n-1 Figure 11: H(3, 3n + 1, c), n even x(C k ) = cos( 3k + 3 b π), y(C k ) = 1 2 (-1) k .
Hence our 3n points satisfy

x(A k-1 ) > x(B k-1 ) > x(C k-1 ) > x(A k ) > x(B k ) > x(C k ), k = 1, . . . , n -1.
Let us determine the nature of the crossing points. Using the identity T ′ a (cos τ ) = a sin aτ sin τ , we get sign x ′ (t)y ′ (t) = sign sin 3τ sin bτ .

We get

for A k : sign x ′ (t)y ′ (t) = sign sin( 3k + 1 b π) sin( 3k + 1 3 π) = (-1) k . for B k : sign x ′ (t)y ′ (t) = sign sin 2b + 3k + 2 b π sin 2b + 3k + 2 3 π = (-1) k+1 sign sin 3k + 2 b π sin π 3 = (-1) k+1 . for C k : sign x ′ (t)y ′ (t) = sign sin( 2b + 3k + 3 b π) sin( 2b + 3k + 3 3 π) = (-1) k+1 sign sin( 3k + 3 b π) sin 2π 3 = (-1) k+1 .
Now, let us compute the sign of

T c (t) -T c (s) = -2 sin(c τ + σ 2 ) sin(c τ -σ 2 ) = -2 sin c 6b (m + m ′ )π sin c 6b (m -m ′ )π We have, with c = b + 1 = 3n + 2, for A k : z(t) -z(s) = -2 sin c π 3 sin c m -b 3b π = -2(-1) n sin 2π 3 sin c n -k b π = 2(-1) n sin 2π 3 (-1) n-k sin n -k b π so sign z(t) -z(s) = (-1) k . for B k : z(t) -z(s) = -2 sin c b + 3k + 2 3b π sin(c π 3 ) = -2 sin (n + k + 1 + n + k + 1 b )π (-1) n sin 2π 3 = 2(-1) k sin n + k + 1 b π sin 2π 3 . so sign z(t) -z(s) = (-1) k . for C k : z(t) -z(s) = -2 sin c 2π 3 ) sin(c k + 1 b π = -2 sin 4π 3 sin (b + 1) k + 1 b π = -2 sin 4π 3 )(-1) k+1 sin k + 1 b π so sign z(t) -z(s) = (-1) k+1 .
Collecting these results we finally get

sign D(A k ) = 1, sign D(B k ) = -1, sign D(C k ) = 1.
The Conway sequence of signs is then s(C n-1 ), s(B n-1 ), s(A n-1 ), . . . , s(A 0 ) with s(C k ), s(B k ), s(A k ) = (-1) n-1-k . Consequently the Conway normal form of our knot is C(1, 1, 1, -1, -1, -1, . . . , (-1) n-1 , (-1) n-1 , (-1) n-1 ). Its Schubert fraction is 2n + 1 2n ∼ -(2n + 1) and our knot is the torus knot T(2, 2n + 1). 2

Remark: Note that H(3, 3n + 1, 3(3n + 1) -1) is the mirror image of H(3, 3n + 1, 3n + 2). See Proposition 8.

Remark:

In [START_REF] Koseleff | A polynomial parametrization of torus knots[END_REF], we obtained the torus knot T(2, 2n + 1) as an alternate polynomial knot where x(t) = T 3 (t), y(t) = P (t), z(t) = Q(t) are polynomials and deg

P = 3n + 1, deg Q = 3n + 2
, that is to say the same degrees.

Because of their definitions, the symmetries of the harmonic knots are easy to find. They are either strongly negative amphicheiral if a, b, c are odd, or strongly reversible. So that not every knot is an harmonic knot. We can also remark that harmonic knots are billiard knots in a convex (compact) billiard (in fact a truncated cube) [START_REF] Jones | Lissajous knots and billiard knots[END_REF]. On the other hand, it is not difficult to see that if we change the nature of one crossing point in the diagram of the 10 116 knot, we can obtain the 8 17 knot. The knot 8 17 is famous because it is the first non reversible knot.

In the next paragraph, we shall see that it is possible to choose the nature of the crossing points with a (shifted) Chebyshev polynomial as height function.

Every knot is a Chebyshev knot

Let us denote B n the group of n-braids and S n the symmetric group. The group of pure braids P n is the kernel of the morphism π : B n → S n . If α is a braid, we shall denote ρ(α) its plane projection. In the next theorem, which is analogous to a theorem of Lamm for Lissajous curves (see [START_REF] Boocher | Sampling Lissajous and Fourier knots[END_REF][START_REF] Lamm | Cylinder knots and symmetric unions (Zylinder-knoten und symmetrische Vereinigungen)[END_REF]), we show that Theorem 3 Every knot has a projection which is a Chebyshev plane curve. This is a consequence of the following proposition.

Proposition 9 Let K be a knot, br(K) its bridge number. Let m ≥ br(K) be an integer. Then K has a projection which is a Chebyshev curve x = T a (t), y = T b (t), where a = 2m-1, and b ≡ 2 (mod 2a).

Proof. Let K be a knot. Let D be a regular diagram of K such that the abscissa has only two extremal values reached at m maxima and m minima. It means that K is the plat closure of a horizontal braid t with 2m strings. We can suppose the last string unbraided. Furthermore, reordering if necessary the ordinates of the 2m extrema, we can suppose that

π(t) = (2, 3) • • • (2m-2, 2m-1) = π(σ 2 σ 4 • • • σ 2m-2 ). Let us denote s even = ρ(σ 2 • • • σ 2m-2 ), and s odd = ρ(σ 1 • • • σ 2m-3 ).
As π(t) = π(σ 2 • • • σ 2m-2 ) we see that there exists l ∈ ker(π) = P 2m-1 , the group of pure braids, such that t = l • σ 2 • • • σ 2m-2 . As the braids A i j = x -1 σ 2 i x, where x = σ i+1 • • • σ j , generate P 2m-1 , the braid l is a composition of such elementary braids. It is not difficult to see that there is a braid α i j equivalent to A i j with plane projection ρ(α i j ) = (s even s odd ) a . Consequently, the braid t is equivalent to a braid projecting on (s even s odd ) ka s even . Using the braid description of Chebyshev curves (corollary 1), we conclude that our knot K is equivalent to a knot projecting upon the Chebyshev curve x = T a (t), y = T b (t), a odd, b ≡ 2 (mod 2a).

2

Figure 12: The "plane braid" (s even s odd ) 5 is the projection of the braid α 2,5 ∈ B 5 .

We shall prove our principal result with a density argument based on Kronecker's theorem ( [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF], Theorem 443, p. 382.) Let us recall this theorem.

Theorem 4 (Kronecker) If θ 1 , θ 2 , . . . , θ k , 1 are linearly independent over Q, then the set of points ((n θ 1 ), (n θ 2 ), . . . , (n θ k )) is dense in the unit cube. Here (x) denotes the fractional part of x.

We shall need the following lemma.

Lemma 2 Let c 1 , . . . , c k be real numbers such that -1 < c 1 < c 2 < • • • < c k < 1.
There exists a positive number e < 1c k such that the numbers arccos(c 1 + e), arccos(c 2 + e), . . . , arccos(c k + e), 1 are linearly independent over Q.

Proof. First, we shall prove, by induction on k, that the functions arccos(c i + x), 1 are linearly independent over R. Let λ 0 + k i=1 λ i arccos(c i +x) = 0 be a linear relation between these functions. We get by derivating

k i=1 λ i 1 1 -(c i + x) 2 = 0.
Then, when x → 1c k , we get λ k = 0, and the result follows by induction.

Suppose now that for each e < 1c k there exists a relation

λ 0 + k i=1 λ i arccos(c i + e) = 0, λ i ∈ Q, k i=1 |λ i | = 1.
By cardinality, there are infinitely many e in (0, 1c k ) with the same collection of λ i . This means that the analytic function λ(x) = λ 0 + k i=1 λ i arccos(c i + x) has an infinity of zeroes in the interval (0, 1c k ), which is absurd. 2

Theorem 5 Every knot is a Chebyshev knot.

Proof. Let K be a knot projecting on the Chebyshev curve {x = T a (t), y = T b (t)}. The crossing points of the projection are obtained for the distinct pairs of values

t = cos k a + h b π, s = cos k a - h b π, k a + h b < 1.
Let us denote these values by (t i , s i ), i = 1 . . . n = 1 2 (a -1)(b -1). By our lemma, let e < 1-cos π ab be a positive number such that the 2n+1 numbers 1, τ i = arccos(t i +e), σ i = arccos(s i + e), i = 1, . . . n, are linearly independent over Q. Let us define the function Z(t) = T c (t + e) (depending on the integer c). We have

Z(t i ) -Z(s i ) = cos c τ i -cos c σ i .
Since the numbers 1, τ i , σ i are linearly independent over Q, the numbers c τ i (mod 2π) and c σ i (mod 2π) are dense in [0, 2π] 2n by Kronecker's theorem. So that we can choose arbitrarily the signs of Z(t i ) -Z(s i ), that is, the over/under nature of the crossing points. 2 . Its Schubert fraction (see [START_REF] Murasugi | Knot Theory and its Applications[END_REF]) is then

-1 + 1 -1 + 1 -1 + 1 -1 + 1 1 + 1 1 + 1 1 = 9 -5 ∼ 9 4 .
This knot is the knot 6 1 .

Example 2: the knot 8 17

The famous 8 17 knot is non reversible and strongly (-)amphicheiral (see [START_REF] Kawauchi | A Survey of Knot Theory[END_REF] p. 128). It is a 3-bridge knot. The Chebyshev curve T 6 (x) = T 5 (y) is one of its diagrams. It can be parametrized by x = T 5 (t), y = T 6 (t), z = T 33 (t+148•10 -4 ). Its reverse can be parametrized by x = T 5 (t), y = T 6 (t), z = T 33 (t -148 • 10 -4 ). We see that it is the reversed image of 8 17 by a half-turn about the y axis.

Conclusion

Let us give a list of the first 2-bridge harmonic knots with their Conway-Rolfsen numbering. Because of their simplicity, we also give their Chebyshev diagrams. A bar over a knot name The 10 159 knot is the harmonic knot H [START_REF] Fischer | Plane Algebraic Curves[END_REF][START_REF] Freudenburg | Curves defined by Chebyshev polynomials[END_REF][START_REF] Koseleff | Chebyshev diagrams for rational knots[END_REF]. Its bridge number is equal to 3. Our Chebyshev parametrization provides an easy proof that it is strongly reversible (compare [START_REF] Kawauchi | A Survey of Knot Theory[END_REF], Appendix F, p. 254).

In conclusion, we have found a great number of distinct harmonic knots. Furthermore, their diagrams have a small number of crossing points. We hope that our Chebyshev models will be useful for the study of knots.

In [START_REF] Koseleff | Chebyshev diagrams for rational knots[END_REF], we classify the harmonic knots H(3, b, c) and H(4, b, c). Even for a = 5, the classification of harmonic knots seems to be a difficult and interesting problem.

Proposition 1

 1 Let a, b be nonnegative integers, a being odd. The affine Chebyshev curve C defined by C : T b (x) -T a (y) = 0 has 1 2 (a -1)(b -1) singular points which are crossing points. These points form two rectangular grids contained in the open square Q

2

 2 

Figure 2 :

 2 Figure 2: T 8 (x) = T 3 (y) and its billiard picture

Figure 3 : 7 . 4

 374 Figure 3: s even and s odd for n = 6, 7.

Figure 4 :

 4 Figure 4: The Chebyshev curve T 10 (x) -T 5 (y) = 0 and its billiard picture

Figure 5 :Proposition 5

 55 Figure 5: The knot H(3, 8, 11) is trivial.

Figure 6 :

 6 Figure 6: The right twist and the left twist

Theorem 1 (

 1 Alternate harmonic knots) Let a, b be positive coprime integers, and c = abab. The harmonic diagram H(a, b, c) is alternating. Proof. Using Equation (3), we get z(t)z(s) = -2 sin ch b π sin ck a π = -2 sin (a -1)hπ -ah b π sin (b -1)kπ -bk a π = -2(-1) h(a-1)+k(b-1) sin ah b π sin bk a π . Using Equation (2), we get sign D = -(-1) ah+bk . The crossing points are obtained for the (a -1)(b -1) elements of E = {t u = cos u ab π, 0 ≤ u ≤ ab, a | u, b | u}. Note that t u < t u-1 and that at the crossing point corresponding to t u ∈ E one has sign D = -(-1) u .

Proposition 7

 7 Let a, b be coprime integers. H(a, b, c), H(a, b, 2abc) and H(a, b, 2ab + c) are the same knot.

Proposition 8 2 Corollary 3 HCorollary 4 2 Remark 4

 823424 Let a, b, c be relatively prime integers. There exists c ′ such that H(a, b, c ′ ) is the mirror image of H(a, b, c). Proof. Because a and b are relatively prime, one can write c = αa + βb where α and β are integers. Let us consider c ′ = -αa + βb. We have c ′ ≡ c (mod 2a) and c ′ ≡ -c (mod 2b). For any crossing point of the Chebyshev curve C : T b (x) = T a (y) corresponding to diagrams of both H(a, b, c) and H(a, b, c ′ ), we see that sign D changes to opposite when c is replaced by c ′ . (a, b, ab + ab) is the mirror image of the alternate knot H(a, b, abab). Let a, b be relatively prime integers. There are at most ϕ(a)ϕ(b) different harmonic knots H(a, b, c).Proof. The number of c in[1, ab] that are relatively prime to a and b is ϕ(a)ϕ(b) where ϕ is the Euler function. Because of Propositions 7 and 8, for each c there exists c ′ < ab such that H(a, b, c ′ ) is the mirror image of H(a, b, c). We have at most 1 2 ϕ(a)ϕ(b) different knots when we identify the knots and their mirror images. When a + 1 < b, H(a, b, 1) and its mirror image, H(a, b, a + b) and H(a, b, ba) are trivial.

Proposition 8 :

 8 There is a polynomial automorphism Φ of R 3 such that Φ(H(a, b, c)) = H(a, c ′ , b). They deduce another proof that the harmonic knots H(a, b, a + b) are trivial.

Figure 7 :

 7 Figure 7: The trefoil, the figure-eight knot, and the 6 3 knot.

Figure 8 :

 8 Figure 8: The 6 2 and 9 20 knots .

Figure 9 :Theorem 2

 92 Figure 9: The mirror image of the 10 116 knot.

Figure 10 :

 10 Figure 10: The torus knots 5 1 : H(3, 7, 8) and 7 1 : H(3, 10, 11)

Example 1 : the knot 6 1 D for the 1 2 ( 3 - 1 )Figure 13 :

 1123113 Figure 13: The knot 6 1 is a Chebyshev knot

Figure 14 :

 14 Figure 14: The knot 8 17 and its reverse as Chebyshev knots

  In[START_REF] Koseleff | The first rational Chebyshev knots[END_REF], we give a complete list of Chebyshev parametrizations of the 2-bridge knots of 10 crossings or less. Now, let us give the list of harmonic knots H(5, 6, c). We get 4 = 1 2 ϕ(5)ϕ(6) different types up to mirror symmetry.

	9 1		9 17		9 18
	H(3, 13, 14)	H(3, 11, 16)	H(4, 9, 11)
	9 31		10 37		10 45
	H(3, 10, 17)	H(3, 13, 17)	H(3, 11, 19)
	3 1	4 1		5 1	5 2
	H(3, 4, 5) 0	H(3, 5, 7) 5 2	H(3, 7, 8) 10 159	H(4, 5, 7) 10 116
	H(5, 6, 1)	H(5, 6, 7)	H(5, 6, 13)	H(5, 6, 19)
	6 2	6 3		7 1	7 5
	H(4, 5, 11)	H(3, 7, 11)	H(3, 10, 11)	H(4, 7, 9)
	7 7	8 3		8 7	9 20
	H(3, 8, 13)	H(3, 11, 13)	H(4, 7, 13)	H(4, 7, 17)