
HAL Id: hal-00344484
https://hal.science/hal-00344484

Submitted on 4 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network Topology Analysis and Internet Modelling with
Nem

Damien Magoni

To cite this version:
Damien Magoni. Network Topology Analysis and Internet Modelling with Nem. International Journal
of Computers and Applications, 2005, 27 (4), pp.252-259. �10.2316/Journal.202.2005.4.202-1540�. �hal-
00344484�

https://hal.science/hal-00344484
https://hal.archives-ouvertes.fr


1

Network Topology Analysis and

Internet Modelling with nem
Damien Magoni

Université Louis Pasteur – LSIIT

Boulevard Sébastien Brant

67400 Illkirch, France
magoni@dpt-info.u-strasbg.fr

Abstract— The design of network protocols is greatly

accelerated by the use of simulators particularly when

studying a protocol’s behavior in a large internetwork

topology. However, the accuracy of the simulation results

is heavily affected by the input network topology. As

taking a real map as an input is not always feasible,

artificially created topologies are often used. There exist

many network topology generators available but recent

discoveries on the Internet topology have made most

of them obsolete when it comes to modelling a typical

part of the Internet. This paper presents a free open

source software designed for network topology analysis

and modelling called network manipulator (nem). It is

capable of creating realistic Internet-like topologies and

it can check proof them on the fly by a thorough topology

analysis. The paper especially focuses on the architecture

and the capabilities of the software.

I. INTRODUCTION

The use of simulation for protocol design has in-

creased the need for accurate network topologies. These

topologies used as input for simulations must be realistic

with respect to the OSI level of the protocol being

evaluated. In a simulation, a layer 2 protocol for example

should be evaluated on a topology similar to its real

topology (e.g. a bus, a ring, etc.) 1. Thus, as many of

the layer 3 protocols are created in order to be deployed

in the Internet (e.g. protocols for routing, multicasting,

mobility, etc.), their simulation should be performed

upon Internet-like topologies.

Early network topology generators were rather basic

and not accurate in internetwork topology modelling [1],

[2]. However, since the discovery of the power laws

in the collected maps of the Internet, many topology

generators have been created to fulfill this task. They

1This is an extended version of an article presented at the 10th

IEEE/ACM International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems in 2002.

use different method to reach their goals and the graphs

that they can generate should still be checked against

the highest number of criteria to ensure their accuracy

in modelling the topological properties found in the

Internet maps. We introduce a free open source software

that not only generates Internet-like graphs (by several

methods) but also analyzes their topological properties

for an immediate control of their realism. The paper

contains five sections. We briefly review other similar

tools in section 2. The capabilities of our software are

detailed in section 3. The architecture of nem is presented

in section 4. Section 5 describes some important parts

of the nem implementation. Finally, section 6 contains

results showing the accuracy of the nem graphs vs the

collected Internet maps and a performance comparison

of nem vs other power law topology generators.

II. PREVIOUS WORK

Among the topology generators, one of the earliest

and most famous model was designed by Waxman in

1988 [1]. This kind of model is usually called flat

topology model. The nodes are randomly placed on

an Euclidean plane irrespective of any hierarchy order

among them. This model was later replaced by hierar-

chical topology models such as the Tiers [3] and the

Transit-Stub [2] models. These models try to enforce

a multi-level hierarchy that can be found in the Internet

(e.g. host-router-AS). The discovery of power laws in the

Internet [4]–[6] has brought the creation of a new kind

of topology model. We call it the power law topology

model because, as the name suggests, this model tries to

reproduce power law distributions in order to generate

Internet-like graphs. nem, like all the tested generators

presented in section 6, belongs to this topology model

category and it can produce router level graphs like all

the other generators or AS level graphs like the Inet2

generator [7]. A recent study by Radoslavov et al. [8]

provides a detailed analysis of topology characterization

of real, generated and canonical topologies. Generated



2

topologies include Tiers [3], Transit-Stub [2] and Wax-

man [1] graphs. Several multicast scenarios are then

played on all these topologies to examine the influence

of the network topology on protocol simulation. Unfor-

tunately no power law topology model generators are

evaluated in this work. We partly fill this gap by looking

at the values of some topology properties measured in

graphs produced by recent power law topology models

such as Model A [9], BRITE [10], Extended Scale Free

(ESF) [11], Inet2 [7], PLOD [12] and nem although

we do not run multicast scenarios on the produced

topologies. This is left for future work. Concerning the

analysis of the topological properties of graphs, few

network generation tools provide an in-depth topology

analysis of the produced graphs and the researcher must

usually use another software than the one which gen-

erated the graphs in order to obtain detailed topological

information. As the aim of the topology models and their

corresponding generators is the production of realistic

network topologies (especially Internet-like) for feeding

network simulators such as ns-2 [13], OPNET [14] and

GloMoSim [15], it is interesting for the researcher to

simultaneously get the generated graph and its topology

analysis. The latter should be immediately comparable to

an Internet map topology analysis in order to check proof

the generated graph realism. nem provides this function-

ality thus making the validation of a generated graph

easier. Internet reference maps include maps created by

Govindan et al. at the Information Sciences Institute by

the Mercator software [5] and by Burch et al. at Lucent

labs [16].

III. CAPABILITIES

In this section we present the capabilities of our

software. nem can do three fundamental tasks:

1) Convert network files from one format to another.

2) Analyze the topology of networks.

3) Generate random networks.

nem has no user interface but works with an ASCII batch

file called a process file. Each line contains one or more

instructions to be executed on a network. The detailed

syntax of a process file is described in the nem manual.

A. Conversion and Interaction with other Software

nem can handle a variety of network file formats

generated by other software. nem is able to load mea-

sured Internet maps such as the ones produced by the

famous inter-domain router route-views (Autonomous

System level maps) or by the mapping software Mercator

(router level maps). These maps can be converted into

the format of the ns-2 or OPNET simulators to serve

as input topologies although they are usually too big.

Our map sampling algorithm enables the generation of

graphs from these maps that keep their fundamental

properties while having a much smaller size (see section

6). The graphs can also be viewed in 3 dimensions by

choosing the HypViewer output format and by using the

HypViewer software.

B. Topology Analysis

Running an analysis on a network produces a file that
has the same prefix than the network filename and has
the extension *.analysis. The analysis concerns only the

topology of the network (seen as a graph). Among the most

important topology properties whose values are calculated by

nem, we have the degree, the tree, the mesh, the distance,

the number of shortest paths and the bicomponent related

properties.

Depending on the characteristics of the graph (directed or

not, connected or not, etc.) some properties are not calculated

(see section 5 for details on the course of an analysis). Also

depending on the kind of graph (random graph, Internet-like

graph, Internet map, etc.) some properties are not significant

(e.g. power law related properties only make sense in Internet-

like graphs and maps). However, many calculated properties

are valid and interesting whatever the kind of topology of the

analyzed network.

Furthermore, the Dijkstra’s outer loop can be parallelized

in order to analyze huge networks. In the analysis of a graph,

this algorithm is particularly time consuming. The all-pairs

Dijkstra algorithm calculates the shortest path from any one

node to another. It is the Dijkstra algorithm [17] implemented

with a binary heap which runs in O(nlog
2
n) and which is run

for every node in the graph. Thus the whole algorithm runs in

O(n2log
2
n). In nem, the outer loop of the algorithm can be

cut into slices to enable parallelization. At the end of the slice

analysis, a partial analysis dump file of the slice is produced.

The latter use of the merge operator on all the partial analysis

dump files produces a file which contains the final analysis of

the properties depending on the Dijkstra’s algorithm (distance

properties).

C. Graph Generation

The generation of a network topology is done through the

use of a specification file. It is an ASCII file containing the

values of the parameters needed to create a network. This

file must have the extension *.specif. Common parameters

include the number of nodes, the number of edges, and the

name of the network output file. The user has the choice

between several generation methods given in table I. Only

the map sampling method has been created by us and we

describe it below. The other methods available in the nem

generation module have been defined in research papers.

However we found convenient to implement them in nem

(i.e. because they were not implemented elsewhere or their

implementations were not available) by carefully following

the algorithms described in the corresponding papers. Some



3

TABLE I

GENERATION METHODS

Generation method name Author(s) Ref.

Extended scale-free model Albert, Barabsi [11]

Map sampling Magoni, Pansiot [18]

Model A Aiello, Chung, Lu [9]

Modified Waxman Waxman [1]

PLOD Palmer, Steffan [12]

parameters are common to all generation methods while others

only make sense and work for a given generation method.

Detailed explanations for the methods, their parameters and

their effects on network generation are provided in their

respective papers whose references are given in table I. It’s

worth noticing that the user can generate a random graph

if needed instead of an Internet-like graph. For doing this

we provide the modified Waxman method. It works like the

regular Waxman [1] algorithm but connectivity is ensured by

repeatedly linking connected components together until there

is only one left. Another possibility is to use our map sampling

algorithm on a topology that is not a specific Internet-like

topology. The resulting graph will not a priori have an Internet-

like layout.

We describe here our own graph generation method. It

makes use of an algorithm that randomly extract a subgraph

of a real Internet map. As we focus on the router level of

the Internet, we use router level Internet maps as input graphs

(but it works in the same way for the AS level). By extracting

nodes in a mostly random fashion, we ensure the creation

of a wide diversity of subgraphs. Fig. 1 shows how the tree

creation algorithm works. Fig. 1 (a) shows a small part of the

map being sampled. In the first step (b), node 1 is selected

randomly among all the nodes of the map. Nodes 2 and 5 are

then added to a candidate list (see below) with candidate link

a and b respectively. In step (c), node 5 is selected randomly

among the nodes of the candidate list. Having candidate link

b, it is connected to the tree (composed only of node 1 for

the moment) by this link. Nodes 4, 6 and 7 are added to

the candidate list with candidate link e, f and g respectively.

Node 2 is already in the candidate list so it is not added to

it. As node 2 is connected to 5 by link d, a random roll

is performed to check if its candidate link changes to d (it

is currently a). The roll fails and the candidate link is not

changed. In step (d), node 2 is selected randomly among the

nodes of the candidate list. Having candidate link a, it is

connected to the tree (composed of nodes 1 and 5 for the

moment) by this link. Node 3 is added to the candidate list

with candidate link c. As node 5 is already selected, link d

is added to the redundancy link list for later use (after the

tree construction). In step (e), node 6 is selected randomly

among the nodes of the candidate list. Having candidate link

f, it is connected to the tree (composed of nodes 1, 2 and 5

for the moment) by this link. Node 8 is added to the candidate

list with candidate link i. Node 7 is already in the candidate

list so it is not added to it. As node 6 is connected to 7 by

Fig. 1. tree creation process

Fig. 2. nem architecture

link h, a random roll is performed to check if its candidate

link changes to h (it is currently g). The roll succeeds and the

candidate link is changed to h. In the last step shown (f), node

7 is selected randomly among the nodes of the candidate list.

Having candidate link h, it is connected to the tree (composed

of nodes 1, 2, 5 and 6) by this link. As node 5 is already

selected, link g is added to the redundancy link list for use

after the tree construction. This algorithm enables us to extract

a tree having a number of nodes equal to the one of our future

graph and to create a supply of redundancy links. The complete

and detailed pseudo code of our map sampling method can

be found in [18]. The amount of time needed to generate

nem graphs with our map sampling method is in the order

of seconds.

IV. ARCHITECTURE

The architecture of nem is shown in fig. 2. It is a schematic

view of the modules constituting nem and how they interact

with each other. This picture does not represent how nem is

implemented.

The manipulator module takes as argument a process file.

It is a batch file that contains a description of the actions

to be carried out by nem. An action consists of one input

part and one or more output parts. In the input part, nem can

either load a network file (already produced by nem or another



4

Fig. 3. UML activity diagram of the network topology analysis

generator) or generate a network from a set of parameters

given in a specification file. The input converter module is

controlled by the network filename extension (if known by

nem). If the extension is .specif, the generator module is

called, otherwise the loader module is called by the converter

if the network file format is recognized (see table 1 for a list of

the supported input file formats). In the output part, nem can

analyze the graph and/or convert it in another format available

for output.

V. IMPLEMENTATION

nem has been implemented in C++ and contains around

9000 lines of code. The C++ language has been chosen for

the speed of the binary code and the efficiency of the source

code management due to the object oriented nature of this

programming language.

The function calls in the analysis module of nem is depicted

as an UML activity diagram in fig. 3. The degrees’ phase

calculates the degree distribution and the related power law

values. The connectivity phase determines if the graph is

directed or not. This depends on the network input file (most

of them are undirected though). If the graph is undirected,

the Baase algorithm [19] is used to determine if the graph

is connected otherwise the Tarjan algorithm [17] is used

(although it also works for undirected graphs). If the graph

is not connected, the number and the distribution size of the

connected components are calculated and the analysis ends.

Otherwise, if the graph is directed, the Dijkstra algorithm [17]

is run upon it in order to determine the distance property

values such as average path length, diameter, etc. If it is

undirected and not a unique tree, the number of cut points

is determined and the Hopcroft algorithm [17] is performed

in order to obtain information on the biconnected components

of the graph (i.e. number, distribution size, number of vertices

on a cycle, number of vertices on a bridge, etc.).

The map sampling algorithm of the generator module of

nem is described in the previous section and the explanations

concerning its implementation can be found in our previous

work [18].

VI. PERFORMANCE EVALUATION

In this section we present the performances of the graph

generation module of nem. When we speak of nem graphs

in this section, we speak about graphs generated by using

our map sampling method (see table 1). It is important to

explain this because nem can generate graphs by using the

Extended Scale Free (ESF) method for example and in this

case the graphs would be called ESF graphs (even though

nem has produced them). We first look at the accuracy of

the nem graphs in comparison to Internet maps and then

we compare graphs generated by using several power law

generation methods including ours.

A. Accuracy with Respect to Internet Maps

In order to evaluate the accuracy of the nem graphs in

comparison to Internet maps, we have generated 20 graphs

of sizes ranging from 125 nodes to 4000 nodes using the

Mercator Internet map of 1999. The average analysis of the 20

graphs has been produced by nem just after their creation by

the generation module. The figures contain the plots of these

values as well as the minimum and maximum values observed

in the 20 graphs (by looking in the individual analysis files).

Most properties present in the Internet map are accurately

reproduced in the nem graphs. This was the objective of

our sampling method (i.e. the graphs are extracted from the

map). In particular, we have looked at the average path length

distributions of a sample of the extracted graphs and they all

have a Gaussian shape like the one found in the Internet map

(overlooking the small oscillations due to the sampling scale).

This means that we can consider the average values of these

distributions as being interesting distance indicators. Fig. 4

clearly shows that it is possible to extract graphs that have

the same average path length than a 200 times bigger map

(shown by the dotted line). All graphs of size equal or above

1000 nodes up to 4000 nodes have average distances between

8 and 11 which are typical values measured in Internet router

level maps [5], [20]. For graphs of less than 1000 nodes it is

hardly possible to obtain satisfying results.

It is worth noticing that our filtering function presented

in [18] and which avoids extracting very high degree nodes, is

necessary to achieve these results. The basic extraction is not

enough to obtain accurate average path lengths at these size

levels (a few thousand nodes). As we observed similar results

for the node eccentricity distributions of the nem graphs, we

can claim that the distance properties of the graphs extracted

by our map sampling algorithm are satisfactory for graphs of

sizes 1000 up to 4000, but we also found that these graphs

do comply with the power laws found in the Internet map. As

an example, fig. 5 shows the absolute correlation coefficients

(ACC) for the rank and degree power laws [4] of the graphs

extracted by the map sampling algorithm. All extracted graphs

(from size 125 to 4000) comply with these laws for any of the

generated sizes with values above the 0.95 commonly used

threshold [4]. Also we found that all extracted graphs comply



5

Fig. 4. average path length of the graphs

Fig. 5. rank and degree ACC of the graphs

with the tree size and tree rank power laws described in [6]

when the graph size is equal or above 1000 nodes and equal

or below 4000 nodes as shown in fig. 6.

To conclude, we showed that the graphs generated by

nem comply with the rank and degree power laws found by

Faloutsos et al. [4] for all evaluated sizes and comply with

the tree power laws found in our prior work [6] for sizes com-

prised between 1000 and 4000 nodes. Concerning the distance

properties (average path length and average eccentricity), we

saw that accurate results can be achieved for evaluated sizes

ranging from 1000 to 4000 nodes. These graph sizes should

be appropriate for most protocol simulations (i.e. neither too

small nor too big).

B. Comparison Between nem and Other Generators

In order to evaluate the accuracy of the nem graphs in

comparison to other power law topology generators, we have

generated graphs of sizes ranging from 500 nodes to 8000

nodes using the ESF, Model A, Inet2, PLOD, BRITE and

nem. Inet2 uses an Autonomous System map of 3025 nodes

collected in 1999 as a seed for its graph generation method and

thus is not able to produce graphs containing less than 3025

nodes. That is why there are only 2 points for Inet2 plots in the

figures. As the process of generating graphs involves random

selection (and thus random rolls), we have used a sequential

scenario of simulation [21] to produce the results shown in

Fig. 6. tree rank and tree size ACC of the graphs

this section. We have used the Mersenne Twister code [22]

for producing the random numbers needed in our simulation.

As the random rolls are the only source of randomness in

our simulation, we can reasonably assume that the simulation

output data obey the central limit theorem. We have performed

a terminating simulation where each run consists in generating

a graph and determining its topological properties (i.e. one run

is the time horizon). We have performed a sequential check-

point each time after having created one graph. Convergence

is reached between 8 to 21 graphs depending on the generation

method and the topological property. All the simulation results

have been obtained assuming a confidence level of 0.95 with

a relative statistical error threshold of 5% for all measured

metrics. We show the plots of the resulting values for the main

topological properties concerning degree, distance, mesh and

trees.

1) Degree Properties: Fig. 7 shows the degree absolute

correlation coefficient (ACC) of the graphs. This indicator

measures the compliance of the graph degree distribution to

the degree power law (Faloutsos et al. [4] power law number

2). Only BRITE does not comply with this power law. BRITE

uses a parameter m that indicates how new nodes connect to

the graph during its construction. We have examined some

degree distribution samples of BRITE graphs with m = 2.

They contain a few degree 1 nodes that cause these graphs to

not comply with power law 2. These few nodes of degree

1 are encountered in all the BRITE graphs with m = 2
whatever their size. We have verified that BRITE, unlike the

other generators, generates graphs having a degree distribution

that starts at m instead of one (when m > 1). A few outliers

of degree less than m cause BRITE graphs to fail compliance

with power law 2.

Fig. 8 shows the degree exponent of the graphs. This indi-

cator measures the slope of the line given by the least squares

fitting of the log-log plot of the node degree distribution. Like

the average concisely describes a Gaussian distribution, the

exponent concisely describes a power law distribution. As

BRITE graphs do not comply with the degree power law,

no exponent can be calculated and thus there is no plot for

BRITE graphs in fig. 8. The values of most graphs are around

the threshold but only ESF and nem graphs reach the target



6

Fig. 7. degree ACC of the graphs

Fig. 8. degree exponent of the graphs

value when the graph size is high enough. PLOD graphs do

not match this indicator.

2) Distance Properties: Fig. 9 shows the average path

length of the graphs. Only nem graphs get close to the average

path length measured in Internet maps. PLOD graphs also

manage to get above the minimum threshold. All other graphs

including ESF graphs clearly do not accurately model the

average path length. It’s worth noticing that this property is

very important because the hop count is one of the only few

values that can be measured and exploited by IP routing and

transport protocols.

Fig. 10 shows the average eccentricity of the graphs. All

graphs have difficulty reaching the target value of the indicator.

However PLOD, nem and Model A manage to be around

or above the minimum threshold. The other graphs are quite

below it and thus their nodes are not spread as they could be

in a real Internet map.

3) Mesh Properties: The definition given in [6] says that

a node belonging to a cycle (i.e. a closed path of disjoint

nodes) or lying on a path connecting two cycles is called an

in-mesh node. The mesh is the set of all the in-mesh nodes of

a graph. The mesh is important because this is the area where

can be found all the redundant edges of the graph. Accurately

Fig. 9. average path length of the graphs

Fig. 10. eccentricity of the graphs

modelling the mesh has a crucial impact on multiple shortest

path or alternate path simulations. Fig. 11 shows the mesh

degree exponent of the graphs. PLOD and Model A are out

of the threshold area and thus do not match this indicator.

Fig. 12 shows the mesh average path length of the graphs.

nem graphs are close to the target value especially when the

graph size increases. All other graphs are below the minimum

threshold of this indicator (except for the 8000-node ESF

graphs) and thus do not comply with this indicator.

4) Tree Properties: We have also studied the trees in

the graphs. The trees in an Internet map follow the tree size

power law described in [6]. In the previous section we defined

the mesh. The forest is simply the set of nodes of the graph

that do not belong to the mesh. These nodes are located in

trees and the union of these trees form the forest. The trees

are connected to the mesh by special nodes called roots. We

consider the roots as nodes belonging to the mesh. As trees are

sensitive areas for link failure, it is important to model them

with accuracy. We have not shown the tree rank ACC of the

graphs because all graphs have values above the 0.95 threshold

except BRITE graphs. Actually BRITE graphs do not comply

with tree rank and tree size power laws because nearly 100%

of their nodes are in the mesh. Thus there is not enough trees



7

Fig. 11. mesh degree exponent of the graphs

Fig. 12. mesh average path length of the graphs

in order to compute tree rank and tree size least squares fitting.

Fig. 13 shows the tree size ACC of the graphs (except BRITE

graphs for reasons previously explained). Model A graphs do

not match the threshold of this indicator and PLOD is just

close enough. Other generators have good results.

The careful study of all these indicators have shown us that

only the topological properties of nem graphs do comply with

all of them (or at least reach their thresholds) as shown in

table II. A ’yes’ entry means that the graphs produced by the

generator comply with the indicator, a ’thre’ entry means that

they are close from the indicator’s threshold and a ’no’ entry

means that they do not comply with the indicator.

VII. CONCLUSION

Accurate network topology generation is an important re-

search field for protocol simulation. In this paper we have

presented a software designed for network topology analysis

and modelling. It is particularly suited for Internet-like topol-

ogy modelling. We have detailed its capabilities, architecture

and implementation and we have evaluated its performances.

We have shown that nem is appropriate for analyzing graphs

and maps obtained from various sources and that nem is

accurate when modelling Internet-like graphs. We hope that

Fig. 13. tree size ACC of the graphs

this software will be a helpful tool for the network research

community. nem is open source and available on the Web at

http://www-r2.u-strasbg.fr/nem. For future work,

we are planning to develop a graphical user interface for nem

and to increase the number of topological parameters analyzed

in the graphs (such as the clustering coefficient) We have also

already added several features such as the ability to produce an

overlay map from one router level map and one Autonomous

System level map and the ability to load maps produced by

our network cartographer software.

REFERENCES

[1] B. Waxman, “Routing of multipoint connections,” IEEE Journal

on Selected Areas in Communications, vol. 6, no. 9, pp. 1617–

1622, December 1988.

[2] E. Zegura, K. Calvert, and M. Donahoo, “A quantitative

comparison of graph-based models for internetworks,” IEEE /

ACM Transactions on Networking, vol. 5, no. 6, pp. 770–783,

December 1997.

[3] M. Doar, “A better model for generating test networks,” in

Proceedings of IEEE GLOBECOM’96, November 1996.

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law

relationships of the internet topology,” in Proceedings of ACM

SIGCOMM’99, Cambridge, Massachusetts, USA, August 1999,

pp. 251–262.

[5] R. Govindan and H. Tangmunarunkit, “Heuristics for internet

map discovery,” in Proceedings of IEEE INFOCOM’00, Tel

Aviv, Israël, March 2000.

[6] D. Magoni and J.-J. Pansiot, “Analysis of the autonomous

system network topology,” ACM Computer Communication

Review, vol. 31, no. 3, pp. 26–37, July 2001.

[7] C. Jin, Q. Chen, and S. Jamin, “Inet: Internet topology gen-

erator,” University of Michigan, Tech. Rep. CSE-TR-433-00,

2000.

[8] P. Radoslavov, H. Tangmunarunkit, H. Yu, R. Govindan,

S. Shenker, and D. Estrin, “On characterizing network topolo-

gies and analyzing their impact on protocol design,” University

of Southern California, Tech. Rep., 2000.

[9] W. Aiello, F. Chung, and L. Lu, “A random graph model for

massive graphs,” in Proceedings of ACM STOC’00, 2000, pp.

171–180.

[10] A. Medina, I. Matta, and J. Byers, “On the origin of power laws

in internet topologies,” ACM Computer Communication Review,

vol. 30, no. 2, April 2000.



8

TABLE II

ACCURACY OF GENERATORS

Generator degree degree ave. path eccentr. mesh deg. mesh path tree size

ACC exponent length exponent length ACC

BRITE no n/a no no yes no n/a

ESF yes yes no no yes thre yes

Inet yes thre no no yes no yes

Model A yes thre thre thre no no no

nem yes yes yes thre yes yes yes

PLOD yes no thre yes no no thre

[11] R. Albert and A.-L. Barabási, “Topology of evolving networks:

local events and universality,” Physical Review Letters, no. 85,

p. 5234, 2000.

[12] C. Palmer and G. Steffan, “Generating network topologies that

obey power laws,” in Proceedings of IEEE GLOBECOM’00,

San Francisco, California, USA, November 2000.

[13] V. project, network simulator (ns-2), UCB/LBNL, USC/ISI,

Xerox PARC, http://www.isi.edu/nsnam/vint/.

[14] network simulator (OPNET), OPNET Technologies Inc.,

http://www.opnet.com.

[15] GloMoSim, Parallel Computing Laboratory,

http://pcl.cs.ucla.edu/projects/glomosim/.

[16] H. Burch and B. Cheswick, “Mapping the internet,” IEEE

Computer, vol. 32, no. 4, pp. 97–98, 1999.

[17] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures

and Algorithms. Addison-Wesley, 1983.

[18] D. Magoni and J.-J. Pansiot, “Internet topology modeler based

on map sampling,” in Proceedings of the 7th IEEE Symposium

on Computers and Communications, Giardini Naxos, Sicily,

Italy, July 2002, pp. 1021–1027.

[19] S. Baase, Computer Algorithms, 2nd ed. Addison-Wesley,

1988.

[20] M. Hoerdt and D. Magoni, “Completeness of the internet core

topology collected by a fast mapping software,” in Proceedings

of the 11th International Conference on Software, Telecommu-

nications and Computer Networks, Split, Croatia, October 2003,

pp. 257–261.

[21] A. Law and W. Kelton, Simulation Modelling and Analysis,

3rd ed. McGraw-Hill, 2000.

[22] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number

generator,” ACM Transactions on Modeling and Computer

Simulation, vol. 8, no. 1, pp. 3–30, 1998.

Damien Magoni is an assistant profes-

sor in computer science at the Univer-

sité Louis Pasteur located in Strasbourg,

France. He obtained a PhD in computer

science in 2002. His research interests in-

clude Internet topology, architecture and

protocols.


