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Abstract

A dual domain decomposition method dedicated to nonlinear problems is pre-
sented. The decomposition is introduced in the nonlinear formulation and the non-
linear problem is first condensed on the interface then solved by a Newton-type
method. Considering the specificities of the introduced operators, the algorithm
can be interpreted as a local/global strategy with global Newton-type iterations
and nonlinear relocalizations per subdomain. Such a strategy is particularly inter-
esting in cases where the nonlinearity is localized. First results are presented on
structural problems with damage.

1 Introduction

Nonlinear analysis is a keypoint in the simulation of structures. Nowadays, lots of
computational strategies exist to solve nonlinear problems such as contact, plasticity,
damage or hyperelasticity problems. One of the most popular and general family of
methods is the so-called “Newton-Krylov-Schur” (NKS) family. These methods rely
on three points. First, the nonlinearity is handled at the global scale via the use of a
Newton-type algorithm which leads to a sequence of linear systems. Second, domain
decomposition methods (see for instance [1, 2] for a review) are used to condense these
linear systems. Third, a Krylov iterative solver is chosen to solve condensed interface
problems, allowing a high rate of parallelism (due to the additive structure of the in-
terface problem). Among these methods, some are particularly popular as the Finite
Element Tearing and Interconnecting method (FETI method) [3] which is classified as
a dual method, the Balanced Domain Decomposition method (BDD method) [4, 5] con-
sidered as a primal method. These strategies allow to solve efficiently a lot of physical
problems (due to the robustness of Newton-type methods) with high number of degrees
of freedom (due to the efficiency of the domain decomposition methods) [6, 7, 8, 9].
Nonetheless, these methods may loose their efficiency when they encounter pathologi-
cal phenomena such as local nonlinearities. In the field of continuum mechanics, such
problems can be local buckling, localized damage, fracture, contact, plasticity, etc. Be-
cause the convergence of Newton-type algorithms is linked to the strongest nonlinearity
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in the domain, local nonlinear phenomena may penalize the convergence of the global
algorithm [10, 11]. In [11], the convergence of the NKS strategy is dramatically slowed
down by local buckling, and a strategy which introduces nonlinear relocalization steps,
inspired from the principles of the LaTIn method [12, 13], is designed and assessed. In
this paper we adopt a different point of view.

Stating that standard NKS solvers do not exploit the domain decomposition in the
nonlinear context, we propose to introduce the domain decomposition directly in the
nonlinear formulation of the problem instead of only using it to solve linearized problems.
First, the global nonlinear problem is decomposed into local (per subdomain) problems
under a global constraint imposed via a Lagrange multiplier. Second, a condensation step
allows to formulate the nonlinear problem in terms of the unknown Lagrange multiplier.
Third a Newton-type algorithm is chosen to solve this nonlinear interface problem. It
comes out that an iteration of our algorithm requires to solve a global linear interface
problem and a set of independent nonlinear local problems (which are solved by another
Newton-type solver) with prescribed Neumann interface conditions.

As exposed in this paper, the will to handle nonlinearity at its own local scale leads
to a modification of the classical domain decomposition methods by the addition of a
set of local nonlinear iterations (or relocalizations) which are parallel and not expensive.
These nonlinear iterations allow to decrease the number of global resolutions and to
reach significant CPU speed up. Note that even if the strategy is prompted by the
problematic of localized non linearity, it is also efficient in the case of diffuse one.

After a short presentation of the reference problem (section 2), we introduce the
nonlinear interface formulation of the initial problem (section 3). The solution to this
nonlinear interface problem is presented in section 4. Section 5 provides first assessments
of the method. Section 6 concludes the paper and gives few prospects.

2 Model Problem

Let us consider the mechanical equilibrium under small perturbations hypothesis of
the structure Ω submitted to the body force f , while on the part ∂uΩ (with mes(∂uΩ) 6=
0) of ∂Ω the displacement ud is prescribed, on the complementary of ∂uΩ, named ∂fΩ,
the domain is submitted to the traction force g. Though the method we propose can be
used on saddle point problems which embrace most anelastic problems [14], for easier
explanation’s sake we assume that the equilibrium problem can be written as a mini-
mization problem.

E(u) = min
v ∈U

E(v) with E(v) =
∫

Ω
e(∇sv) dΩ−

∫
Ω

f.v dΩ−
∫

∂fΩ
g.v dΓ

where e is an energy density, function of the symmetric gradient ∇sv = 1
2 (∇u +∇Tu).

The space of research of the minimum U is the affine space of the kinematically admissible
displacement fields, let U0 be the associated linear space:

U =
{

u ∈
(
H1 (Ω)

)3 , such as u = ud on ∂uΩ
}
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U0 =
(
H

1

0
(Ω, ∂uΩ)

)3
=

{
u ∈

(
H1 (Ω)

)3 , such as u = 0 on ∂uΩ
}

The minimization problem leads to the variational formulation:
u ∈ U

a(u, δu) = l(δu) ∀ δu ∈ U0

(1)

with
a(u, δu) =

∫
Ω
∇ue(u).δu dΩ and l(δu) =

∫
Ω

f.δu dΩ +
∫

∂fΩ
g.δu dΓ

The nonlinearity of the form a may come from the non-quadratic character of the internal
energy e. In mechanics, the form a typically writes:

a(u, δu) =
∫

Ω
σ(∇su) : ∇sδu dΩ

where σ is the Cauchy stress tensor.

3 Nonlinear formulation

A nonlinear interface formulation of the problem (1) is introduced. After a sub-
structuration stage, a Lagrangian formulation of the decomposed problem is proposed.
The saddle point problem is formulated in terms of interface variables via a condensation
step. The condensation is based on the introduction of a nonlinear Neumann-to-Dirichlet
operator. A particular attention will be paid to the handling of the local rigid body mo-
tions.

3.1 Decomposition of the problem

Let us consider the non-overlapping domain decomposition {Ωi}i=1..m
of Ω. We note

Γij the interface between Ωi and Ωj , and Γi the interface of the subdomain Ωi . x|
i

and
x|

ij
denote the restriction on Γi and Γij of a field x defined on Γ. Let us introduce Ui, the

functional space associated to the subdomain displacement field, and U0
i the associated

linear space.

Ui =
{

u ∈
(
H

1
(Ωi)

)3
, such as u = ud on ∂uΩi

}
U0

i =
(
H

1

0
(Ωi , ∂uΩi)

)3
=

{
u ∈

(
H

1
(Ωi)

)3
, such as u = 0 on ∂uΩi

}
Let us define Ii =

{
j , mes(Γij ) 6= 0

}
the set of the subscripts of the substructures

neighboring subdomain Ωi , and introduce operators to handle the different fields:
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• Trace operator ti that associates to a field defined on the subdomain Ωi its trace
on the subdomain interface Γi (Wi is the convenient trace space [18]):

ti :

{
Ui −→ Wi

ui 7−→ u
i|Γi

• Signed injection operator Ai that associates to a field defined on a subdomain
interface Γi a field defined on the whole interface Γ (trace space W):

Ai :
{
Wi −→ W
vi 7−→ v

v being defined as: v|
ij

=

{
0 if j /∈ Ii

εijvi|j
if j ∈ Ii

with εij = ±1 and εij + εji = 0.
Figure 1 summarize the notations.

Ωi

−→

f

Ωj

Γij

g

ud


Γij = Ω̄i ∩ Ω̄j

Γi =
⋃
j

Γij

Figure 1: Domain decomposition, notations

3.2 Lagrangian formulation

The initial minimization problem is defined with an energy depending on the global
field u. The substructuration and the introduction of associated independent fields ui

leads to local minimization problems under regularity constraint:

min
û ∈ Û

m∑
i=1

Ei(ui) under the constraint
m∑

i=1

Ai ti ui = 0,

where û = (ui)i=1..n , û ∈ Û = Πi Ui , and:

Ei(vi) =
∫

Ωi

e(∇svi) dΩ−
∫

Ωi

f.vi dΩ−
∫

∂fΩi

g.vi dΓ.
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This constraint is taken into account by a standard dualization technique (we introduce
the Lagrange multiplier λ and 〈a, b〉

Γ
the duality pairing between W and its dual W∗).

L (û, λ) =
m∑

i=1

Ei(ui) +

〈
m∑

i=1

Ai ti ui , λ

〉
Γ

We then consider the saddle-point problem:

Find (û, λ) ∈ Û ×W∗ so that L(û, λ) = inf
ŵ

sup
µ
L(ŵ, µ)

which leads to the following problem:
Find (û, λ) ∈ Û ×W∗

∀ i , ai (ui , δui) = li (δui)− 〈Ai ti δui , λ〉Γ ∀ δui ∈ U0
i〈

n∑
i=1

Ai ti ui , δλ

〉
Γ

= 0 ∀ δλ ∈ W∗

We assume classical locality property of the duality pairing:

〈a, b〉
Γ

=
∑

16i<j6m

〈a, b〉
Γij

Introducing A∗
i

the adjoint of Ai , with respect to 〈a, b〉
Γ

and denoting λi = A∗
i
λ, the

system writes
Find (û, λ) ∈ Û ×W∗

∀ i , ai (ui , δui) = li (δui)− 〈ti δui , λi〉Γi

∀ δui ∈ U0
i〈

n∑
i=1

Ai ti ui , δλ

〉
Γ

= 0 ∀ δλ ∈ W∗

The first equations are a set of local nonlinear problems with traction force λi (Neumann
condition) on the interface and boundary conditions of the initial problem. A necessary
condition of existence of a solution to such problems writes:

li(ρi)− 〈ti ρi , λi〉Γi

= 0 ∀ρi ∈ Ri = Ker(∇s
) ∩ U0

i
(2)

Under this condition, solutions are defined up to an element of Ri (i.e. infinitesimal
admissible rigid body motion). Finally, the decomposed problem writes:

Find (û, λ) ∈ Û ×W∗

∀ i , 〈ti δρi , λi〉Γi

= li (δρi) ∀ δρi ∈ R0
i

∀ i , ai (ui , δui) = li (δui)− 〈ti δui , λi〉Γi

∀ δui ∈ U0
i〈

n∑
i=1

Ai ti ui , δλ

〉
Γ

= 0 ∀ δλ ∈ W∗
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3.3 Nonlinear condensation

3.3.1 General case

The principle of the condensation is to form an equivalent problem only posed in
term of interface unknowns. The key point of this operation is to separate the equations
arising from the saddle-point problem in two groups: the first group gathers the per-
subdomain equations, the other one gathers the global equations that link subdomains
together. In the case we consider, it writes:
• Local nonlinear problems:

∀ i , ai (ui , δui) = li (δui)− 〈tiδui , λi〉Γi

∀ δui ∈ U0
i (3)

• Interface equations:

〈
m∑

i=1

Ai ti ui , δλ

〉
Γ

= 0 ∀ δλ ∈ W∗

∀ i , 〈ti δρi , λi〉Γi

= li (δρi) ∀ δρi ∈ R0
i

(4)

We assume that if the interface reaction λi verifies the admissibility condition (2), then
the local nonlinear problems (3) have a unique solution ui up to an element of Ri

which we write ri . It is thus possible to associate to λi one local field ui solution to
the nonlinear problem. We introduce a nonlinear operator Fi that links the interface
reaction and the trace of the displacement field:

ti ui = Fi

(
λi ; fi , gi , u

d
i

)
+ ti ri with ui solution of (3) (5)

The computation of Fi

(
λi ; fi , gi , u

d
i

)
involves the solution to nonlinear problems on the

subdomains with prescribed Neumann conditions on the interface and given external
loading. The nonlinear condensed problem then writes:

〈
m∑

i=1

AiFi

(
λi ; fi , gi , u

d
i

)
+ Aiti ri , δλ

〉
Γ

= 0 ∀ δλ ∈ W∗

∀ i , 〈ti δρi , λi〉Γi

= li (δρi) ∀ δρi ∈ R0
i

(6)

3.3.2 Linear case

In the case where ai(., .) is a bilinear form, the local problems are linear with respect to
the interface conditions and to each boundary conditions, the influence of the interface
can be decoupled from the influence of the external loadings, equation (5) writes:

ti ui = Fi λi + bi + ti ri
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where bi is defined by bi = ti ũi with ũi one of the solution to:{
ũi ∈ Ui

ai (ũi , δui) = li (δui) ∀ δui ∈ U0
i

(7)

and operator Fiλi = ti
˜̃ui with ˜̃ui one of the solution to:{
˜̃ui ∈ U0

i

ai

(˜̃ui , δui

)
= −〈ti δui , λi〉Γi

∀ δui ∈ U0
i

(8)

which finally leads to the standard FETI formulation [3].

3.4 Discretization

The unknowns are approximated on each subdomain by a classical Finite Element
Method. For simplicity reasons discretized fields are written the same way as their
continuous version. We assume that meshes are conforming and that the duality pairing
can be represented by classical Euclidian dot product (see [18, 19] for other choices),
hence the discrete form of A∗

i
is AT

i
. We also denote Gi = Ai ti Ri (Ri is a basis of Ri

and ri is represented by Riαi), Fi the generalized force vector, ei = RT

i
Fi , and Ki(ui)

the internal reaction vector. G, α and e results from the concatenation of Gi , αi and ei .
Then the discretized form of the condensed problem (6) writes:

m∑
i=1

(
Ai Fi

(
λi ;Fi , u

d
i

)
+ Gi αi

)
= 0

∀ i , GT

i
λ = ei

(9)

or in a shorter way, 
F

(
λ;F, ud

)
+ G α = 0

GT λ = e

(10)

with G = (G1 , ..., Gm), αT =
(
αT

1
, ..., αT

m

)
and eT =

(
eT

1
, ..., eT

m

)
.

4 Solution to the nonlinear condensed problem

4.1 A local/global Newton-Raphson algorithm

The nonlinear interface problem is solved by a Newton-type algorithm. Considering
the solution to the nonlinear system (10), an iteration of the Newton-Raphson algorithm
is obtained by a Taylor expansion with respect to (λ, α). It leads to the sequence of
tangent linear problems:

λn+1 = λn + δλn , αn+1 = αn + δαn ,
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(
D

λ
F

(
λn;F, ud

)
G

GT 0

)
.

(
δλn

δαn

)
=

(
0
e

)
−

(
F

(
λn;F, ud

)
+ Gαn

GTλn

)
,

Note that if we choose λ0 satisfying GTλ0 = e, then previous system writes :(
D

λ
F

(
λn;F, ud

)
G

GT 0

)
.

(
δλn

δαn

)
= −

(
F

(
λn;F, ud

)
+ Gαn

0

)
, (11)

and automatically
GTλn = e. (12)

The solution to the tangential problem requires the computation of the tangential
operator D

λ
F

(
λn;F, ud

)
and of the residual rn = −

(
F

(
λn;F, ud

)
+ Gαn

)
.

4.2 Computation of the residual: a nonlinear relocalization step

For a given λn satisfying GTλn = e, the computation of the residual

rn = −(F(λn;F, ud) + Gαn)

requires the solution to local nonlinear problems and assembly operation. The interface
residual writes:

rn = −
m∑

i=1

Ai ti ui (13)

where ui is the solution to the local nonlinear problem:

Ki (ui) = Fi − tT
i

λn
i

for a given λn
i

= AT

i
λn (14)

These local nonlinear problems can be solved by any nonlinear solver. For Newton-type
algorithms, it leads to the following sequence of linear systems:

Dui
Ki(u

n
i
) . δun

i
=

(
Fi − tT

i
AT

i
λn −Ki(u

n
i
)
)

; un+1
i

= un
i

+ δun
i

, (15)

where Dui
Ki(u

n
i
) denotes the tangential operator.

This system is solved using the pseudo-inverse [15] and associated orthogonality condi-
tion:

˜δui

n
=

(
Dui

Ki(u
n
i
)
)+

.
(
Fi − tT

i
AT

i
λn −Ki(u

n
i
)
)

+ Riαi

RT

i
.
(
Fi − tT

i
AT

i
λn −Ki(u

n
i
)
)

= 0
(16)

Due to the definition of Ri we have RT

i
.Ki(u

n
i
) = 0. The previous condition sums up to:

RT

i
tT
i

AT

i
λn = RT

i
Fi ⇔ GT

i
λn = ei (17)

Because G is not varying from one iteration to another, this is exactly the condition (12)
automatically satisfied by the solution to the tangential problem (11).
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4.3 Computation of the tangential operator

In order to simplify the notation, in this subsection the dependence of F with respect
to the external loadings is not mentioned and the iteration number n is omitted. Thus
the condensed operator simply writes F(λ).
For given λ satisfying GTλ = e, the solution to the nonlinear interface problem implies
the inversion of a linear system involving the tangential operator associated to F. The
tangential operator of F, D

λ
F(λ) is defined by:

D
λ
F(λ) . δλ = lim

k→ 0

F(λ + k δλ)− F(λ)
k

=
∑

i

Ai . D
λi

Fi(λi) . δλi

with the following local contributions:

D
λi

Fi(λi) . δλi = lim
k→ 0

1
k

(Fi(λi + k δλi)− Fi(λi))

In order to compute these local contributions, let us introduce λ
∗

i
= λi + k δλi and

consider the following associated problems:

Ki(u
∗
i
) = Fi − tT

i
λ
∗

i
and Ki(ui) = Fi − tT

i
λi

By the definition of Fi we have :

Fi(λ
∗

i
)− Fi(λi) = ti

(
u∗

i
− ui

)
− tiRi

(
α∗

i
− αi

)
Introducing δui defined by k δui = u∗

i
− ui and subtracting the two problems we obtain:

Ki(ui + k δui)−Ki(ui)
k

= −tT
i

δλi

Passing to the limit (k → 0) and introducing δαi defined by k δαi = α∗
i
−αi , we obtain:

ti . δui = D
λ
Fi(λi) . δλi − tiRi . δαi

with δui one of the solution to the problem Dui
Ki(ui) . δui = −tT

i
. λi .

Hence, on each subdomain, the tangential operator of the nonlinear interface operator
is the Schur complement associated to the tangential operator of the nonlinear problem.
The resulting tangential linear problem is then a typical condensed linear problem with
dual formulation (FETI-type operator but modified right-hand-side). Hence all standard
FETI ingredients may be used to solve it (see appendix).

4.4 Nonlinear dual domain decomposition algorithm

Finally, the algorithm is summarized in algorithm 1.
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Algorithm 1: Nonlinear dual domain decomposition algorithm

– Initialization : λ0 , such that GTλ0 = e

for n=0 to m do

– Solution to local nonlinear problems: Ki

(
un

i

)
= Fi − tT

i
. λn

i

(Newton-type iterations)

– Assembly of local residual rn = −
∑

i

Ai . ti . un
i

– Solution to the global interface problem
(

D
λ
F (λn) G
GT 0

)
.

(
δλn

δαn

)
=

(
rn

0

)
(FETI-type iterations - see Appendix)

– Update of the interface unknown λn+1 = λn + δλn

end

Among the different possibility to initialize λ0, one can use a classical FETI coarse
problem

λ0 = G (GTG)−1 e (18)

or any low-precision FETI computation.

5 Numerical assessments

To assess the algorithm, we consider damaging elasticity mechanical problems. The
Cauchy stress tensor writes:

σ(u(t)) = (1− d(u(t))) K : ∇s
(u(t))

where the scalar damage variable d(u(t)) is given by:

d(u(t)) =

√
Ym(u(t))−

√
Y0√

Yc −
√

Y0

.

Ym denotes the maximum of the thermodynamical force Y over the history of the reso-
lution.

Ym(u(t)) = sup
τ≤t

Y (u(τ)) with Y (u(t)) =
1
2
ε(u(t)) : K : ε(u(t))

For a detailed study of this kind of behavior, see [16].
Figure 2 presents the wheel of a turbine (courtesy of Frederic Feyel, ONERA). The struc-
ture is meshed using P2-Lagrange triangle elements (6 nodes). The problem contains
33000 degrees of freedom and is decomposed in m (m = 2, 4, or 6) subdomains. The
structure is clamped on its left side and displacement is prescribed on its right side.
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x

y

z

Figure 2: (a) Damage map, (b) 6-sd decomposition

A Newton-Raphson with update of operators at each iteration is used for both global
and local nonlinear solvers. A FETI linear solver with Dirichlet preconditioner and as-
sociated coarse grid projector is used as linear solver for the solution to global linear
problems. Table 1 summarizes numerical results for the two methods and for equivalent
final precision (relative nonlinear residual 10−7). Column 3 gives the number of global

Decomp. Solver
# global
NL it.

# local
NL it.
(max./sd)

# local
update
(av./sd)

CPU
time

Speed up

2
NKS 5 – – 238 s
Dual
NL DD

1 7 7 126 s 47 %

4
NKS 5 – – 145 s
Dual
NL DD

1 9 7.5 80 s 45 %

6
NKS 5 – – 116 s
Dual
NL DD

1 8 6.8 66 s 43 %

Table 1: Performance results on the wheel problem

Newton-Raphson iterations. This number is obviously independent on the number of
subdomains for standard Newton-Krylov-Schur (NKS) approach, but might be varying
for the Dual nonlinear domain decomposition (Dual NL DD) approach. In this case, we
get the optimal reduction of global Newton-Raphson iterations since independently on
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the decomposition our algorithm converges in only 1 global iteration, plus the initializa-
tion step for the computation of λ0, instead of 5 for the standard approach. Of course,
our algorithm requires local nonlinear iterations, which also means local reactualization
of operators. Moreover depending on the decompositions, such nonlinear relocaliza-
tion step might be poorly balanced between subdomains. Indeed, in the case of the
two-subdomain substructuration, the damage is equilibrated between the substructures,
hence the convergence rate is the same on each subdomain. On the other hand, when
the number of subdomain is increasing, some subdomains are less damaging than others.
Local convergence rates are different and consequently the nonlinear relocalization steps
are unbalanced between subdomains (see fig. 3). The lack of balance can be measured
in Table 1 when the average of the number of local iterations per subdomain (column
5) is significantly different from the maximum number of local iterations (column 4).
In term of CPU time, the speedup is almost independent on the substructuration, around
45%. A finer control on the different stopping criteria of the algorithms (local nonlinear
solver and global linear interface solver) and the utilization of a not fully updated local
Newton-Raphson algorithm should improve this result.
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Figure 3: (left) 2 subdomains case, (right) 4 subdomains case, (top) decomposition,
(bottom) convergence of the relocalization problems
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6 Conclusion

In this paper a dual nonlinear domain decomposition method is presented. We show
that using it as a nonlinear solver leads to competitive strategies for the solution to
nonlinear problems (particularly in case where the nonlinearity is localized) as often
encountered in mechanics. The main idea is to use domain decomposition methods to
split a global nonlinear problem into a set of local nonlinear problems. One iteration of
our algorithm consists of the solution to a condensed linear problem (global step) and to
independent local nonlinear resolutions (nonlinear relocalization step). The first interest
of this approach is to bring back the handling of the nonlinearity from a global scale
to a local one. Consequently nonlinear iterations are effected mainly in the subdomains
where nonlinearities are concentrated and much less on the whole domain. As local
nonlinear iterations are fully independent, it is possible to solve them in parallel and if
necessary with adapted nonlinear algorithm.

First results are very encouraging since on a realistic test problem the speedup of
45% is reached. However many questions remain to be studied. Among others, let us
cite the problem related to the potential excitation of non-physical nonlinearities at the
subdomain scale, the redefinition of the concept of load balancing and the extension
to finite transformations (with an appropriate coarse problem to handle the local rigid
body motions).

In order to control the development of the nonlinearities, the use of mixed boundary
conditions to glue subdomains together is under development. This approach is based
on the use of an augmented Lagrangian [17, 18] that leads to a linear interface problem
similar to the 2-Lagrangian-Multiplier approach [20] and to nonlinear relocalization with
mixed (Robin) interface conditions.
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APPENDIX - Solution to the tangential problem
This part concerns the solution to the tangential interface problem (11), which is a
classical issue in DDM. To simplify the notations, let us consider the following linear
problem where F is a linear operator:(

F G
GT 0

)
.

(
λ
α

)
=

(
b
e

)
(19)

This problem is solved using Krylov iterative solvers which are commonly used in classical
domain decomposition methods [1] mainly because they only require operator/vector
products that can be easily effected in parallel, thanks to the additive structure of the
Schur complement. Coupling the dual approach to conjugate gradient leads to the well-
known FETI method [3] which provides two important features:

• the existence of efficient preconditioners based on the scaled assembly of approxi-
mations of local primal Schur complement;

• the use of a projector orthogonal to the admissible infinitesimal rigid body motions
which allows to use pseudo-inversion to solve the local problems and which provides
a coarse problem that ensures the scalability of the method.

Projection is used to satisfy the constraint GTλ = e by decomposing λ in two contribu-
tions: 

λ = λ0 + P.λ∗

GTλ0 = e
GTP = 0

(20)

A possible definition for initialization and projector is:{
λ0 = QG (GTQG)−1 . e

P = I−QG (GTQG)−1 GT
(21)

where Q is a parameter of the method. The remaining system to solve writes:

(PTF P) . λ∗ = PT
(
b− F . λ0

)
(22)

The method is summarized in algorithm 2.
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Algorithm 2: Linear FETI Solver

Initialization:

Initialization: λ
00

arbitrary.
Projection: λ

0
= QG (GTQG)−1 . e + P . λ

00

Residual: r
0

= PT(b− F . λ
0
)

Preconditionner: z
0

= F̃
−1

r
0

Iterations:

for i=1 to m do

Update : λ
i+1

= λ
i
+ α

i
w

i
, α

i
=

(r
i
, z

i
)(

PTFP.wi , wi
)

Update : r
i+1

= r
i − α

i
PTFP . w

i

Preconditioner: z
i+1

= F̃−1 . r
i+1

Orthogonalization: w
i+1

= z
i+1

+
i∑

j=1

β
j

i
w

j
, β

j

i
= −(r

i+1
, z

i+1
)

(ri , zi)

end
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