
MPICH/MADIII : a Cluster of Clusters Enabled MPI Implementa tion

Olivier Aumage∗ Guillaume Mercier†

Abstract

This paper presents an MPI implementation that allows
an easy and efficient use of the interconnection of several
clusters, of potentially heterogeneous nature (as far as the
network is concerned). We describe the underlying commu-
nication subsystem used. The mechanisms within MPI that
inform the user of the underlying topological structure are
detailed. The performance figures obtained with this MPI
implementation are discussed and advocate for the use of
such a solution on this particular type of architecture.

1 Introduction

The recent worldwide trend of the high-performance
distributed computing community towards providing Grid-
enabled tools resulted in a great deal of hard technical issues
being tackled over the last few years, despite the large ge-
ographical scale and the possibility of multiple administra-
tive domains of the Grid computing running environments
that make it hard to perform any progress.

One way to circumvent those difficulties is to look at a
Grid testbed as a hierarchical structure. With that frame of
mind, we can recursively define a grid as either a local clus-
ter (the terminal leaf) or an aggregate of smaller grids (the
branches of the hierarchy).From a purely technical point of
view, interconnecting two grids A and B (as previously de-
fined) into a larger grid is hence only a matter of adding one
NIC to one machine (therefore used as a gateway) of a clus-
ter of the grid A and then linking it to a switch of a cluster
of grid B. In this paper, we will only focus on the first step
of building such a hierarchy, that is, the case where A and
B are local clusters and the objective is to build a grid out
of A and B.

Considering that situation, one can see that if clusters A
and B feature different high-performance networks such as
Myrinet for A and Gigabit-Ethernet for B, communicating

∗Vrije Universiteit, Faculty of Sciences, Division of Mathematics and
Computer Science, De Boelelaan 1081A, 1081HV AMSTERDAM, The
Netherlands

†LaBRI, Université Bordeaux 1, Bordeaux, France. Contact:
{guillaume.mercier@labri.fr}

from A node to a B node will require multi-network data
transfers. However, existing Grid-enabled MPI implemen-
tations do not feature multi-network point-to-point commu-
nication capabilities and would be forced to sub-optimally
fall back to the use of TCP.

We showed in a previous work ([3]) that it is possible
to efficiently control multiple networks within a single MPI
session, that is, instead of relying on various MPI imple-
mentations to try and cooperate in an inter-operable man-
ner, our proposal makes use of a single MPI instancegener-
ically and efficiently (i.e. in conformance to what users
usually expect from an MPI implementation) controlling
any available underlying network. The success of this ap-
proach has since lead us to enhance our work towards im-
plementing carefully selected extensions of the MPI stan-
dard, in order to allow our multi-network MPI implementa-
tion to actually provide applications with multi-cluster con-
figuration support. The design of our multi-cluster MPI
also takes advantage of the cluster management capabili-
ties of theMadeleine IIIcommunication library (Madeleine
for short in the remaining of this paper) for session spawn-
ing and multi-network automatic forwarding in conjunction
with the advanced polling features of theMarcel user-level
thread library for providing high-performance inter-cluster
networking on multi-cluster based architectures. Our work
can thus be seen as the high performance foundation block
for building the first level of complex grid hierarchies, that
is, the complementary tool of inter-operable solutions such
as MPICH-G2([1]), which uses local MPIs at the cluster
level. The remaining of this paper is organized as follows:
Section 2 exposes an overview of the underlying tools we
used and presents the overall design of our proposal. We
then go through more details over the actual management
of multi-cluster session within MPI in Section 3. Sec-
tion 4 evaluates our MPI implementation and provides cor-
responding benchmark results. Section 5 concludes this pa-
per.

2 System Architecture

In this section, after a short introduction about the MPI
implementation called MPICH, we detail the software ele-
ments (namelyMadeleineandMarcel) used for implement-

ing a specific piece of software, called anetwork deviceac-
cording to the MPICH terminology. We also put the em-
phasis on someMadeleineandMarcel useful abilities from
which we took advantage of.

2.1 MPICH as a Basis

Our previous work was based on the popular MPI im-
plementation called MPICH [7]. We designed an MPICH
device (ch_mad) that acted as an intermediary layer be-
tween MPICH’s Abstract Device Interface ([12], [11]) and
Madeleine III’s previous version, that is,Madeleine II[2].
This device was used to process inter-node communication,
while two other devices, namelysmp_plugandch_selfwere
used to handle respectively intra-node and intra-process
communication. This device was multi-threaded because it
was an effective and convenient way to handle several net-
works within the same device but it also became mandatory
due to someMadeleinespecificities (blocking communica-
tion operations for instance). No changes to the ADI were
made in order to preserve portability as much as possible
but a study of the ADI structure showed that it was not fully
conceived to support multi-threaded devices.

2.2 Current Design

2.2.1 Overview

Eventually, the design of MPICH/MADIII is based on both
customized ADI and upper MPICH layers. Despite those
modifications, the software’s architecture still follows an
MPICH-like design, as shown in Fig. 1. The core of the

�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�
�✁�

✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂
✂✁✂

✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄

☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎

Marcel TCP

Fast−Ethernet

BIP

Myrinet

SISCI

SCI

CH_Self

Synchronization mechanisms/Channels Table management

Physical/Virtual channels management

Madeleine III
Communication Library

CH_MAD DEVICE

Device

Thread Libray

MPICH/Madeleine III Layers Architecture

Abstract

MPI API

Device
Interface

New/Modified
code area

Interface

Generic ADI Code: Datatypes and Request queues Management

Generic Part: Context/Group Management

Protocol

Short, Eager and Rendez−vous protocols implementation

Figure 1. MPICH/MADIII Architecture

system still relies on thech_maddevice, but this time built
upon theMadeleine IIIcommunication library. Thech_self
device has partly been incorporated intoch_madand no
other MPICH device can be used whilech_madis running,

because of incompatibilities of the message polling mecha-
nisms employed by a multi- threaded device and a regular
“sequential” MPICH device.

2.2.2 TheMadeleine Communication Library

Madeleineis a distributed computing environment provid-
ing a set of libraries and tools dedicated to launch and sup-
port session management and communication for applica-
tions running on top of clusters and multi-cluster configu-
rations. TheMadeleinecommunication interface is mes-
sage passing oriented and provides an incremental message
building/extraction paradigm. Specific services and/or be-
havior from the communication subsystem can be required
on a piecewise basis by the programmer. The program-
ming interface ofMadeleinemakes use of two main notions,
namely theconnectionand thechannel.

Connections The Madeleineconnection object is an ab-
straction of a one-way point-to-point communication link
between two nodes. Messages on a single connection are
FIFO-ordered.

Channels The channel object ofMadeleinerepresents an
abstraction of a network: a set of nodes linked one to the
other by connections: the connections are the edges of the
channel’s graph. The actual network may either be aphys-
ical network (made of plain wires) for regular channels, or
a virtual network built on top of one or more physical net-
works. In that latter case, the corresponding channel is said
to bevirtual. It “owns” one ore more regular channels. A
transparent support is provided to handle data transmissions
over virtual connections spanning multiple networks. Mes-
sages are forwarded using a multi-threaded software mod-
ule. This module strives to avoid unnecessary additional
copies by using the same buffer for receiving and reemitting
a given packet of data when possible. The use of a multi-
threaded approach allows to pipeline reception and retrans-
mission steps.

2.2.3 TheMarcel thread library

The Marcel multi-threading library is a user-level library
characterized by its ability to feature extremely low cost
thread management operations. It relies on anhybrid thread
scheduling mechanism (which manages pools of user-level
threads on top of system lightweight processes) to allow for
an extensive use of SMP nodes.

Polling with Marcel Besides from the core multi-
threading features, theMarcel thread library provides a
specific interface for efficiently and reactively supporting
polling operations in multi-threaded contexts. It basically

2

allows to aggregate network events and more generally I/O
events monitoring requests and to perform fast event moni-
toring operations on context switches boundaries ([4]). This
solution allows to schedule the corresponding requesting
thread immediately upon event reception, without having
it to wait for its next scheduling slot, therefore both ensur-
ing a good level of reactivity and a bounded event-delivery
time. TheMadeleinecommunication library is specifically
designed to make full use of this polling support when com-
piled in combination with theMarcel multi-threading li-
brary. The immediate benefits are two-fold. First, we get
a much better trade-off between preservation of the applica-
tion computing CPU time and I/O event reactivenesswith-
out the painful polling delay fine tuning process. And sec-
ond, we are completely relieved of those unreliableyield
calls which — as real life experience inevitably shows —
never seems to want to schedule that application computing
thread desperately waiting for the CPU.

2.3 Transfer Modes

We now explain the functioning of our device: the vari-
ous protocols implementation as well as message structure
are described. Thech_maddevice implements three trans-
fer modes with one or severalMadeleinemessages where
each message is composed of a sequence of one or two
Madeleinepacking operations. The description of the dif-
ferent transfer modes follows:

• theshortmode: for messages up to 16 bytes, a buffer
located in the message header is filled with the data.
This operation is performed by sending a single mes-
sage composed of a singleMadeleinepacking opera-
tion.

• theeagermode: for messages which size is larger than
16 bytes but smaller than a network-specific threshold,
the data are sent by a single message composed of a se-
quence of two packing operations: one for the header
and one for the user data buffer. When using this trans-
fer mode, atmostone intermediary copy on the receiv-
ing side is performed.

• the rendez-vousmode: for messages which size ex-
ceeds the selected network-specific threshold, a re-
quest message, just composed of a header, is sent.
When the receiving side is ready to get the data, it
sends at its turn an acknowledgement to the sending
side. Receiving such a message triggers the emission
of the user data, with a sequence of twoMadeleine
packing operations (header and data itself). When us-
ing this mode,no intermediary copy is performed.

The most appropriate transfer mode is selected dynamically
according to the message size to send but also to the net-
work type, which allows a better tuning and performance.

These different modes are also used by the ADI layer to
provide the different MPI communication modes (blocking,
non-blocking, synchronous, etc.).

2.4 Related Work

It is to be noted that another MPI implementation fea-
tures a similar architecture : MPICH-SCore. It is based
on the SCore cluster operating system, which is built above
the PMv2 communication library [15]. The authors claim
in [15] that this communication library is able to use sev-
eral networking technologies at the same time, but no per-
formance evaluation in a heterogeneous context was to be
presented in the article.

3 Multi-Cluster Management with
MPICH/MADIII

This section describes the mechanisms implemented in
our software in order to push the topology knowledge up to
the outermost layers of MPICH. To achieve this goal, we
rely on the following key-points: the use of configuration
files containing both network and channel information for
Madeleineand the introduction of a new set of tools in MPI.

3.1 Multi-Cluster Support with Madeleine

We describe here the facilities offered by theMadeleine
communication library in the multi-cluster management de-
partment. For explanation purpose we suppose that two
three-nodes clusters at are our disposal: thefoocluster with
a SCI interconnection network and thegoo cluster with a
Myrinet interconnection network. The protocols used are
SISCI and BIP ([14]) respectively.

3.1.1 Channels Building

The different channels mechanisms provided byMadeleine
constitute a practical means to virtualize a cluster of clus-
ters configuration. All the relevant pieces of information
are contained in two configuration files written by the user:
a network configuration file and a channels configuration
file. For instance, a network configuration file could be:

networks : ({
name : tcp_net;
hosts : (foo0,foo1,foo2,

goo0,goo1,goo2);
dev : tcp;

},{
name : sci_net;
hosts : (foo0,foo1,foo2);
dev : sisci;

},{

3

name : bip_net;
hosts : (foo2,

goo0,goo1,goo2);
dev : bip;
mandatory_loader : bipload

});

In that particular case, we suppose that the nodefoo2
features both interconnection networks and thus can be a
potential gateway between both clusters. The names of the
networks may freely chosen, but the NIC names (dev) are
fixed.

A Madeleinechannel is an object that virtualizes a phys-
ical network. Several channels can even be built over the
same physical network. This type of channels is called in
the Madeleineterminology aphysicalchannel. Physical
channels are used as a basis to buildvirtual channels. A
Madeleineapplication makes no distinction between such
physical and virtual channels. So, if a physical channel is
used to represent a cluster, an interconnection of (poten-
tially different) clusters can easily be represented by a vir-
tual channel. In our example, we might declare the follow-
ing channels:

application : {
name : sample;
flavor : mpi-flav;
networks : {
include : mynetworks.cfg;

channels : ({
name : tcp_channel;
net : tcp_net;
hosts : (foo0,foo1,foo2,

goo0,goo1,goo3);
},{

name : sci_channel;
net : sci_net;
hosts : (foo0,foo1,foo2);

},{
name : sci_channel2;
net : sci_net;
hosts : (foo0,foo1,foo2);

},{
name : bip_channel;
net : bip_net;
hosts : (foo2,

goo0,goo1,goo2);
},{

name : bip_channel2;
net : bip_net;
hosts : (goo0,goo1,goo2);

});
vchannels : {
name : default;
channels :
(sci_channel, bip_channel);
};

};
};

In this file, we declare five physical channels: one over
TCP, in which all nodes are part of, and two channels over
both SCI and BIP. In the latter case, one of the two channels
(bip_channel) contains a supplementary node,foo2.
We then construct a virtual channel based on the two phys-
ical channelssci_channel andbip_channel.

A physical channel used to build a virtual channel can-
not be directly used anymore: the existence of the physical
channel is hidden to the application. That’s the case for both
thesci_channel andbip_channel channel. This is
the reason why we’re declaring two physical channels over
each of the high-performance networks: we want to keep as
much as possible topological information about the differ-
ent clusters.

3.1.2 Forwarding Mechanism

The channels mechanism can be utilized to either create a
cluster of clusters or to create several node partitions within
a cluster. But in order to get a good level of performance,
a forwarding mechanism between networks has to be acti-
vated. This is set automatically byMadeleineby an analy-
sis of the channel configuration file when an application is
launched. For instance, if a node belongs to both a chan-
nel virtualizing a SCI network and a channel virtualizing a
Myrinet network, this node will play the role of a gateway
between both channels.

In our example, since thefoo2 node belongs to both
channels used to build the virtual channel, all communi-
cations from one cluster to the other will be forwarded by
this node (when using the relevant channel). As for intra-
cluster communication, the local high-performance network
will be used. In that case, we give the programmers two
ways to perform inter-cluster communication: communica-
tion through TCP still remains possible, but also communi-
cation through a ”virtual heterogeneous” high-performance
network can be performed.

3.2 Interfacing MPI with Madeleine

We rely on those both mechanisms to integrate topology
information into the upper MPICH layers and the MPI in-
terface. Applications programmed with MPICH are regular
Madeleineapplications: the configuration files are used to
convey the topological information while channels act as
cluster virtualizations.

3.2.1 Channels/Communicators Matching

Since aMadeleinechannel can be understood and seen as a
variant of an MPIcommunicator(in theMadeleineworld),
the natural and intuitive idea is to create associations be-
tween a MPIcommunicatorand a such a channel. As those
communicators will be public objects and available at the

4

MPI user’s level, we thus offer to the programmers the pos-
sibility to access the whole set ofMadeleinechannels (both
physical and/or virtual). As a consequence, the underlying
topology can be fully utilized.

During the initialization phase, we create all the commu-
nicators that can potentially be used by the programmers.
Several different communicators may be bound to the same
channel. As for theMPI_COMM_WORLD communicator, it
is bound to thedefault channel. This channel plays a partic-
ular role and is mandatory for a program to run. The only
requirement of this channel is that it has to encompass all
the nodes of a given configuration; it can be either physical
or virtual.

In our example, both the physical TCP channel and the
virtual channel can be attached toMPI_COMM_WORLD. In
order to choose the channel which will effectively be bound
to this communicator, we name the channel ”default”.

To sum up, anytime a process is performing a communi-
cation operation over theMPI_COMM_WORLD communica-
tor:

• If the receiving process belongs to the same cluster, the
interconnexion network of that cluster will be used.

• If the receiving process belongs to the other cluster, the
message will be sent to the gateway (foo2) with the lo-
cal high-performance network; the message will then
be forwarded to the right destination by the gateway
and the other high-performance network will be em-
ployed. This operation is performed transparently to
the user byMadeleine.

This last point constitutes the major difference compared to
inter-operable based solutions, which usually favor TCP for
inter-cluster communication, or even consider a cluster of
clusters as a huge TCP interconnected cluster, neglecting
the use of the different local high-performance hardwares
([9] for instance).

3.2.2 Description of the Interface

Since each communicator is associated to its dedicated
channel, we can use the set of already existing MPI primi-
tives that allow a user to manipulate communicators in order
to create the needed objects. With such a scheme, the users
do not have to take care of the problem of the underlying
topology and the corresponding communicators. Moreover,
the creation of new primitives is unnecessary and the set of
MPI extensions remains minimal.

Even though the number of extensions is limited, they
are necessary to handle easily topological information di-
rectly at the MPI level. The two important introductions
are:

• MPI_USER_COMM: an array of communicators. The
communicator calledMPI_USER_COMM[i] is at-
tached to the i-th channel seen by the application as
ordered in the relevant configuration file.

• MPI_COMM_NUMBER: an integer corresponding to the
number of available channels. It corresponds to the
size of theMPI_USER_COMM communicator array.

The particularMPI_COMM_WORLD communicator is also
a member of theMPI_USER_COMM array and its index is
MPI_COMM_WORLD_INDEX. The index of a given com-
municators within the array can differ from one node to an-
other. This is due to the fact that the set of available chan-
nels isn’t likely to be the same on each node.

The same kind of extensions do also exist in MPICH-G2
(that is, the Globus-based MPICH) in order to provide sim-
ply for topological information. The mechanisms involved
also take advantage of the MPI communicators and the in-
formation are used to optimize collective operations ([10]).

3.2.3 MPI Programs Portability Issues

It is very important to note that the use of these extensions
isn’t mandatory and that existing regular MPI programs can
also take advantage from an heterogeneous configuration.
The extensions are solely provided to simplify the use of a
given configuration (as previously described, for instance)
directly at the MPI level. As far as network use is con-
cerned, a programmer can choose between several solu-
tions :

• The programmer can declare only one virtual channel
based on two physical channels (one for each type of
high-performance network). In that case, the virtual
channel will play the role of thedefault channelsince
it encompasses the whole set of nodes. The TCP net-
work doesn’t have to be used and no TCP channel has
to be declared. Thus, any MPI program will be able
to run on the heterogeneous configuration : the for-
warding mechanisms are completely transparent to the
MPI layers and handled at theMadeleinelevel. The
extensions don’t have to be employed since only one
network is seen from the MPI layers. This network
can be labeled as both virtual and heterogeneous.

• The programmer can declare several physical channels
(one for each type of network). In that case, only one
channel can be designated as thedefault channel: that
is, the TCP channel. The extensions may be utilized
to access the different channels (and thus the underly-
ing networks). The user is bestowed the responsiblity
of choosing the best network to perform a communi-
cation. It is even possible to implement a forward-
ing mechanism at the MPI level in order to only use

5

high-performance networks and bypass the TCP net-
work. But these forwarding mechanisms will be much
costlier than those ofMadeleine. The advantage of
such a solution is that the underlying topology isn’t
hidden anymore to the MPI layers.

So, the choice depends upon the necessity of accessing or
not the topological information at the MPI level. It is not
compulsory, neither is the use of our extensions. But in
both schemes, we want to guarantee that a high level of per-
formance can be achieved. In practice, the advantages of
both schemes can be combined by declaring several physi-
cal channels over the high-performance networks and a vir-
tual channel over one physical channel of each type. Then,
the default channelwill represent a virtual heterogeneous
network (in particular, theMadeleineforwarding mecha-
nisms can be fully employed) and still, the topology can be
seen at the MPI layers since remaining physical channels
are present.

4 Performance Evaluation

This section will describe point-to-point experiments
conducted in order to assert the level of performance achiev-
able by our MPI implementation. Since we focus on the
implementation oh MPICH over theMadeleinecommuni-
cation library, no comparisons with other existing solutions
are presented (such comparisons can be found in [3]). The
figure will be shown for two types of high-performance net-
works: SCI and Myrinet. The protocols used are respec-
tively SISCI and BIP [14].

The hardware used for the experiments are Bi-Pentium
II nodes 450 MHz, with 128 Mbytes memory and 32 bits-
wide PCI bus. As for the network interface cards, Dol-
phin’s D310 and Myricom’s Lanai 9.xx were at our dis-
posal. The test is a ping-pong and we measured both trans-
fer time and throughput. As far as transfer time is con-
cerned, round-trip and one-way measures have been carried
out. Since MPICH/MADIII internally uses threads acting as
net servers for the different channels/network, the one-way
should give us a basic evaluation of the reactivity possible
in an application.

We made comparisons for homogeneous as well as het-
erogeneous cases betweenMadeleineand MPICH/MADIII.
Since we explained that each message larger than 16 bytes
in MPICH/MADIII was built by a succession ofMadeleine
packing operations in which the first data to be packed is a
fixed-size header (actually 56 bytes) we simulated this be-
havior withinMadeleinetest programs in order to evaluate
the cost of this extra packing step. The other source of over-
head comes from the synchronization mechanisms which
are mandatory to protect data structures and allow a correct
thread behavior. 1 Mbyte represents 1024*1024 bytes.

4.1 Homogeneous Network Performance

4.1.1 SCI

Fig. 2 shows the performance obtained above the SCI
network with the SISCI protocol. As expected, the raw
Madeleinetest outperforms the others. One might note that
the latency for both roundtrip and one-way modes is almost
the same in that precise case. In the case ofMadeleinesim-
ulating our internal communication protocol, performance
are the same as rawMadeleinefor small messages, and
for messages larger than 16 bytes, a 15µs gap due to the
extra packing operation can clearly be seen. The trans-
fer time then gets in the same range of performance as
MPICH/MADIII. The difference between MPICH/MADIII
and the protocol simulation is also roughly of 15µs. To con-
clude, the minimal latency achieved with MPICH/MADIII
is 20µs. The bandwidth figures, shown by Fig. 3, can give

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 4 16 64 256 1024 4096

T
ra

ns
fe

r
T

im
e

(u
se

co
nd

s)

Message Size (bytes)

"raw-mad3-oneway"
"raw-mad3-roundtrip"
"mad3-simul-oneway"

"mad3-simul-roundtrip"
"mpich-mad3-oneway"

"mpich-mad3-roundtrip"

Figure 2. Transfer Time Comparison

us another idea of the overhead. Here again, we can see
that roughly 50% of the overhead is due to the extra pack-
ing operation. A more interesting fact is that for message
which size is larger than 16 kilobytes the gap between raw
Madeleineand MPICH/MADIII gets narrower. This proves
that the use of thech_maddevice as well as the synchro-
nization mechanisms doesn’t prevent us from exploiting al-
most the whole bandwidth delivered byMadeleine.

4.1.2 Myrinet

As far as transfer time with Myrinet network is concerned,
the same kind of remarks can be made as in the SCI case.
The extra packing operation cost is about 15µs and rep-
resents roughly 50% of the total overhead, the remaining
being synchronization and extra software layers. For mes-
sages larger than 1 kilobyte the cost of the extra packing
operation become almost UN-noticeable compared to the
other sources of overhead.

6

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 4 16 64 256 1K 4K 16K 64K 256K 1M 2M

B
an

dw
id

th
 (

M
B

yt
e/

s)

Message Size (bytes)

"raw-mad3-roundtrip"
"mad3-simul-roundtrip"

"mpich-mad3-roundtrip"

Figure 3. Bandwidth Comparison

The difference between SCI and Myrinet lies essentially in
the latency for very small messages (< 16 bytes). Other-
wise, the performance pattern follows the same scheme.

As for the throughput, we can notice (Fig. 5) that the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 4 16 64 256 1024 4096

T
ra

ns
fe

r
T

im
e

(u
se

co
nd

s)

Message Size (bytes)

"raw-mad3-oneway"
"raw-mad3-roundtrip"
"mad3-simul-oneway"

"mad3-simul-roundtrip"
"mpich-mad3-oneway"

"mpich-mad3-roundtrip"

Figure 4. Transfer Time Comparison

overhead is considerably less noticeable than in the SCI
case. For messages smaller than 1 kilobyte, the overhead is
clearly due to the extra packing operation and confirms the
phenomenon already experienced for transfer time. Other-
wise, the synchronization mechanisms as well as the cost
of MPICH software layers impact lightly the global per-
formance. In the Myrinet case also, we manage to exploit
Madeleinecapabilities at almost their maximum.

4.2 Heterogeneous Network Performance

In the case of experiments for heterogeneous networks, it
is interesting to measure both the performance of round-trip
and one-way mode: this will emphasize on the asymmetri-
cal behavior of the forwarding gateway.

 0

 20

 40

 60

 80

 100

 120

1 4 16 64 256 1K 4K 16K 64K 256K 1M 2M

B
an

dw
id

th
 (

M
B

yt
e/

s)

Message Size (bytes)

"raw-mad3-roundtrip"
"mad3-simul-roundtrip"

"mpich-mad3-roundtrip"

Figure 5. Bandwidth Comparison

The latency when sending a message forwarded by a
gateway is more important than the sum of the laten-
cies of each network used:Madeleine-generated overhead
(roughly 30µs) is added. We can observe that a message
sent with Myrinet and forwarded to SCI goes quicker than
in the other direction. The minimal transfer time achiev-
able with MPICH/MADIII is about 70µs. Since this is
the half of the transfer time obtained with a FastEther-
net/TCP network, this result clearly advocate for the use of
an MPICH/MADIII-like solution. The same conclusion can
be drawn when seeing the bandwidth figures. With a maxi-
mum throughput of more than 35 Mbytes/s (more than three
times the maximum of FastEthernet/TCP), this solution is a
good alternative to inter-operable based schemes.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 4 16 64 256 1024 4096

T
ra

ns
fe

r
T

im
e

(u
se

co
nd

s)

Message Size (bytes)

"mad3-roundtrip"
"mad3-sci-to-bip"
"mad3-bip-to-sci"

"mpich-mad3-roundtrip"
"mpich-sci-to-bip"
"mpich-bip-to-sci"

Figure 6. Transfer Time Comparison

5 Conclusion and Further Development

In this paper, we propose a solution to exploit efficiently
an interconnection of clusters, without sacrificing the whole

7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 4 16 64 256 1K 4K 16K 64K 256K 1M

B
an

dw
id

th
 (

M
B

yt
e/

s)

Message Size (bytes)

"mad3-roundtrip"
"mad3-sci-to-bip"
"mad3-bip-to-sci"

"mpich-mad3-roundtrip"
"mpich-sci-to-bip"
"mpich-bip-to-sci"

Figure 7. Bandwidth Comparison

system’s easiness of use. It is based on a custom MPICH
implementation, with dedicated extensions allowing multi-
cluster management. The core of this implementation re-
lies on a specific multi-threaded device built upon a dedi-
cated communication library calledMadeleine. We man-
aged to convey the topological information accessible with
Madeleineup to the outer layers of MPICH by creating
matchings betweenMadeleinechannels and regular MPI
communicators.

The performance evaluation shows that the device man-
age to deliver almost the maximum ofMadeleinecapabil-
ities, as far as bandwidth is concerned. We now intend to
pursue the study of the impact of the forwarding mecha-
nism at the MPICH/MADIII level, in both homogeneous
and heterogeneous cases. The gateways can be potential
bottlenecks for performance. Also, the experiments have
been conducted in mono-processor mode: we will test the
SMP mode of MPICH/MADIII, where a single MPI pro-
cess actually use several processors at the same time. This
functioning scheme might impact on the reactivity of ap-
plications. Since point-to-point experiments can only give
us basic assertions about a system’s performance level, we
intend to conduct benchmarks such as Linpack or the NAS
parallel benchmark.

References

[1] MPICH-G2: a Grid-enabled Implementation of MPI.http://
www3.niu.edu/mpi/.

[2] Olivier Aumage, Luc Bougé, Alexandre Denis, Lionel Eyraud, Jean-
François Méhaut, Guillaume Mercier, Raymond Namyst, and Loïc
Prylli. High performance computing on heterogeneous clusters with
the Madeleine II communication library.Cluster Computing, 5:43–
54, 2002. Special Issue on the Cluster 2000 Conference.

[3] Olivier Aumage, Guillaume Mercier, and Raymond Namyst.
MPICH/Madeleine: a True Multi-Protocol MPI for High-
Performance Networks. InProc. 15th International Parallel and Dis-
tributed Processing Symposium (IPDPS 2001), page 51, San Fran-

cisco, April 2001. IEEE. Extended proceedings in electronicform
only.

[4] Luc Bougé, Vincent Danjean, and Raymond Namyst. ImprovingRe-
activity to I/O Events in Multithreaded Environments Using aUni-
form, Scheduler-Centric API. InEuro-Par, Paderborn (Deutchland),
AUG 2002.

[5] Luc Bougé, Vincent Danjean, and Raymond Namyst. ImprovingRe-
activity to I/O Events in Multithreaded Environments Using aUni-
form, Scheduler-Centric API. InEuro-Par, Paderborn (Deutchland),
AUG 2002.

[6] Jack Dongarra, Steven Huss-Lederman, Steve Otto, Marc Snir, and
David Walker.MPI : The Complete Reference. The MIT Press, 1996.

[7] Nathan Doss, William Gropp, Ewing Lusk, and Anthony Skjellum.
A High-Performance, Portable Implementation of the MPI Message
Passing Interface Standard. Technical report, Argonne National Lab-
oratory, 1996.

[8] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, and G. Thru-
vathukal ans S. Tuecke. Wide-Area Implementation of the Message
Passing Interface. InParallel Computing, volume 24, pages 1735–
1749, 1998.

[9] Edgar Gabriel, Michael Resch, Thomsa Beisel, and Rainer Keller.
Distributed Computing in a Heterogeneous Computing Environment.
In Vassil Alexandrov and Jack Dongarra, editors,Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Lecture
Notes in Computer Sciences. Springer, 1998.

[10] Sébastien Lacour. MPICH-G2 collective operations: perfor-
mance evaluation, optimizations. Internship report, Magistère
d’informatique et modélisation (MIM), ENS Lyon, MCS Division,
Argonne Natl. Labs, USA, September 2001.

[11] Ewing Lusk and William Gropp. MPICH Working Note : the imple-
mentation of the second generation ADI. Technical report, Argonne
National Laboratory.

[12] Ewing Lusk and William Gropp. MPICH Working Note : The
Second-Generation ADI for the MPICH Implementation of MPI.
Technical report, Argonne National Laboratory, 1996.

[13] Raymond Namyst and Jean-François Méhaut. PM2: Parallelmulti-
threaded machine. a computing environment for distributedarchitec-
tures. InParallel Computing (ParCo ’95), pages 279–285. Elsevier
Science Publishers, September 1995.

[14] Loïc Prylli and Bernard Tourancheau. BIP: a new protocol designed
for high performance networking on myrinet. InParallel and Dis-
tributed Processing, IPPS/SPDP’98, volume 1388 ofLecture Notes
in Computer Science, pages 472–485. Springer-Verlag, April 1998.

[15] Toshiyuki Takahashi, Shinji Sumimoto, Atsushi Hori, Hiroshi
Harada, and Yutaka Ishikawa. PM2: High Performance Commu-
nication Middleware for Heterogeneous Network Environments. In
SuperComputing’2000, pages 52–53, 2000.

8

