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Abstract— This paper focuses on the transfer of large data
in SMP systems. Achieving good performance for intra-node
communication is critical for developing an efficient commu-
nication system, especially in the context of SMP clusters. We
present and evaluate the performance of five transfer mecha-
nisms: copying through shared-memory buffers, using message
queues, the Ptrace system call, kernel module-based copy, and
a high-speed network. We evaluate each mechanism based on
latency, bandwidth, its impact on application cache usage, and
its suitability to support MPI two-sided and one-sided messages.

I. MOTIVATION AND SCOPE

Designing a communication system tailored for a partic-

ular architecture requires understanding the achievable per-

formance levels of the underlying hardware and software.

Such understanding is key to a more efficient design and

better performance for interprocess communication. Interpro-

cess communication usually falls into two main categories:

communication between processes within an SMP node, and

communication between processes on different nodes. Consid-

erable research has been carried out in the latter case where

communication is involved over various high-performance

networks. Communicating over shared memory is a field of

study that regained popularity with the growing market of SMP

clusters.

In this paper, we focus on the shared-memory case and

analyze five methods of transferring data between processes

on an SMP. We compare their performance based on the

usual metrics of latency and throughput. We also consider

other important factors that have been generally overlooked

in the past, namely scalability; the effects of the data transfer

operation on processor caches, specifically application data

located in the cache; and the setup time required to use

the mechanism. We focus on mechanisms available on Intel

Xeon-based SMP nodes; however, we believe that similar

mechanisms can be used on other architectures with similar

results.

The structure of this paper is as follows. In Section II,

we describe the data transfer mechanisms that we considered.

In Section III we present our performance evaluation of the

mechanisms with regard to the different metrics chosen. In
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Section IV we discuss the suitability of the different mecha-

nisms to support large MPI two-sided messages and one-sided

messages. In Section V we conclude this paper and discuss

future work.

II. TRANSFER TECHNIQUES CONSIDERED

In this paper, we analyze mechanisms for transferring data

between processes on an SMP. We consider only mechanisms

appropriate for implementing MPI. Such mechanisms cannot

have restrictions on where the source or destination buffers

can be located in a process’s address space. For example, a

particularly efficient transfer method implemented at the kernel

could manipulate page tables and transfer pages from the page

table of the source process to that of the destination process,

resulting in a true zero-copy transfer. Such a mechanism, while

efficient, would require the source and destination buffers to

have at least the same alignment, if not page alignment, and

would therefore be beyond the scope of this paper.

We analyze five data transfer mechanisms. These are (1)

copying through shared buffers, (2) copying through message

queues, (3) using the Ptrace system call, (4) using a kernel

module to perform the copy, and (5) using a network interface

controller (NIC) to transfer the data. Below we describe these

mechanisms in more detail.

A. Copying through Shared Buffers

The first and most obvious technique is to have the processes

copy through a buffer located in a shared-memory region.

First, the processes allocate a shared-memory region between

them. The mechanism is then straightforward: the sending

process copies the data from the source buffer into the shared

buffer, and the receiving process copies the data from the

shared buffer into its final location in the destination buffer.

Synchronization is needed to ensure that one process doesn’t

read the buffer before the other process has finished writing,

and vice versa. We used a flag associated with the shared

buffer to indicate whether it is full or empty.

This approach, however, has some limitations in the case

of large data. If a single buffer is allocated to contain the

entire data to be transferred, transferring large data would have

a negative impact on available memory. Also, the receiving

process would have to wait until the whole message has been

copied into the shared buffer before it can start to copy the

data out. These drawbacks can be overcome by using a pair
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Fig. 1. Sending and receiving with lock-free shared message queues.

of such smaller buffers and switching between them: while

one process is copying out of Buffer 0, the other process is

copying into Buffer 1; then they switch. This double-buffered

approach can reduce the latency because the receiving process

doesn’t have to wait for the sending process to finish copying

whole message before it can start copying. Moreover, such and

approach can improve the throughput because two processors

are transferring the data in parallel. The performance of this

method depends on the size of the buffers. If the buffers are too

small, the throughput will suffer because the processes have

to synchronize more often and memory copy functions are

not as efficient for moving small data as they are for moving

large data. If the buffers are too large, then one does not get

the benefit of double-buffering when transferring small- and

medium-sized data. The optimal size of the buffers can be

determined empirically.

In order to avoid the cost of setting up the shared-memory

region each time large data has to be transferred, such shared

buffers can be preallocated between each pair of processes.

This approach requires O(P 2) sets of buffers, for P proces-

sors. This may be acceptable for a small SMP node, but it does

not scale for large SMPs. For large SMPs a method for creating

and destroying shared buffers dynamically can be used.

In the rest of this paper we refer to this mechanism as the

shared buffer mechanism.

B. Copying through Message Queues

The scalability issues raised in the previous section can

be avoided by organizing the shared buffers in a more so-

phisticated fashion. The design we propose is the following.

Each process has a pair of queues located in a shared-memory

region accessible by all processes. The elements of these

queues, called cells, are fixed-size buffers. The number of

cells in the queues is also fixed and independent of the

total number of communicating processes. One of the queues,

called the free queue, contains unused cells; the other queue,

called the receive queue, contains cells, enqueued by other

processes, that hold the data being transferred. Figure 1 depicts

a simple send-receive sequence involving three processes,

where Processes 0 and 2 send messages to Process 1.

A send transaction, as illustrated in Figure 1, involves three

steps:

1s) The sending process dequeues a cell from its free queue.

2s) The process copies a cell’s worth of data from the source

buffer into the cell.

3s) The process then enqueues the cell on the receive queue

of the receiving process.

A receive transaction also involves three steps:

1r) The receiving process dequeues a cell from its receive

queue.

2r) The process copies the data from the cell into the

destination buffer.

3r) The process then enqueues the cell on the free queue of

the sending process.

The queues are lock-free queues implemented using atomic

operations such as Compare-and-Swap and Swap, as described

in [1]. What makes this method scalable is that only one pair

of queues is needed per process, regardless of how many

processes it may communicate with. Hence, the queues can

be preallocated at initialization time on any size system.

Furthermore, the fact that only one memory location has to be

polled regardless of the number of processes makes checking

for new messages also scalable. In order to receive a message

from any process, a process simply has to check whether its

receive queue is not-empty. This lock-free queue system avoids

the use of costly locking mechanisms using semaphores or

mutexes. If the data to be transferred is larger than the size of

a cell, it is divided into chunks, where each one is transferred

in a separate cell. This procedure results in additional overhead

because multiple queue operations will be performed to send

a long message. The cost, however, is offset by the pipelining

effect that comes from dividing up the data.

In the rest of this paper we refer to this mechanism as the

message queue mechanism.

C. Copying with the Ptrace System Call

The shared buffers and message queue methods require the

data to be copied twice: once from the source buffer into

the shared buffer or cell, and once from the shared buffer

or queue to the destination buffer. In order to eliminate one

of those copies, a process would need to be able to directly

access the other process’s address space. One approach is

to use the ptrace mechanism, which is designed to support

debuggers. The operations supported by the ptrace system

call depend on the architecture and operating system, but

typically a mechanism is provided to allow the controlling

process to attach to another process and access the memory of

that process. On Linux 2.6, after attaching to another process,

the controlling process opens the memory file in the /proc

filesystem, of the other process and uses the read() system

call to copy data out of the process’s memory. Write access

through the /proc filesystem, however, is not supported in

Linux 2.6. The steps to transfer data between processes using

ptrace are listed below.



1) The destination process takes control of the source

process by issuing a call to ptrace with the PTRACE

ATTACH parameter.

2) The destination process then opens the

/proc/pid/mem file corresponding to the source

process and reads the data using the read system call.

3) The destination process then releases the source process

with another call to ptrace, with the PTRACE DETACH

parameter.

This technique has the advantages that it eliminates a copy

and does not require any action from the remote process,

making it a one-sided copy operation. However, this technique

uses a system call that increases the latency of the transfer.

Also, the ptrace system call stops the process that is being

attached to. Hence, while a data transfer is being performed,

the source process is frozen and cannot do any useful work.

In the rest of this paper we refer to this mechanism as the

Ptrace mechanism.

D. Copying Using a Kernel Module (Kaput)

Features in recent Linux kernels allow a kernel module to

map the pages of arbitrary user processes into kernel memory.

Thus, a kernel module could directly copy data from one

process’s address space to another. Several implementations

of this method exist. One is LiMIC [2], which is implemented

on Linux 2.4. Another is Kaput [3], which is implemented on

Linux 2.6. We evaluated Kaput because the source code was

available to us, but we expect LiMIC to perform similarly.

In order for a process to access a memory region of another

process using Kaput, that memory region must be registered

with Kaput. By registering the memory region, the Kaput

module stores the information about the process’s pages that it

will need when it maps those pages into kernel space later. The

registration operation returns a token to the user application,

which is used by the remote process to identify the registered

memory region.

Once the memory has been registered, a process that has

the token can perform a put or get between its local memory

and the memory region associated with the token.

Using a kernel module in this way has the same advantages

of the Ptrace mechanism, namely, eliminating a memory copy

and being a one-sided operation. The kernel module method

has the additional advantages of allowing data to be written

as well as read and of not requiring that the remote process

be frozen or otherwise interrupted during the transfer. This

method does, however, still have the overhead of a system call,

which the shared buffer and message queue methods avoid.

In the rest of this paper we refer to this mechanism as the

Kaput mechanism.

E. Copying Using a NIC

The last solution we study is to perform the copy using

a network interface controller (NIC). Most modern user-

level network libraries support remote direct memory access

(RDMA) operations, such as put or get, which allow one

process to transfer data to and from another process’s memory.

By using a NIC to transfer the data, once the operation

has been initiated the host processor is not involved in the

transfer. This method is also one-sided. One large benefit of

using the NIC is that the processor’s cache is not affected.

Normally, when the host processor performs a copy operation,

the copy operation replaces whatever was in the processor’s

cache before the operation. This can severely increase the

cache misses that the application sees. By using the NIC to

transfer the data, rather than the processor, the processor’s

caches remain intact.

Latency and bandwidth performance can be a drawback to

using this method. Because the data is going out over the

I/O bus to the NIC and back again (and, depending on the

specific network, even possibly going out over the network

and back again), the latency of copying data using the NIC

may be considerably higher than the other methods. Similarly,

bandwidth may also suffer because the I/O bus and network

are typically slower than the system bus.

These drawbacks may be overcome, however, by the fact

that there is no host involvement once the operation has been

initiated. The data transfer operation can be scheduled so it can

be overlapped with other useful computation, thereby hiding

the latency of the operation.

In the rest of this paper we refer to this mechanism as the

NIC-copy mechanism.

III. PERFORMANCE COMPARISONS

In this section, we compare the performance of the data

transfer mechanisms described above. We benchmarked sev-

eral factors: latency and throughput, the cost for setting up and

tearing down the system, and the effects on the L2 cache. We

feel that these are key characteristics to be taken into account

when developing a high-performance communication system.

We start by describing our benchmark infrastructure, evaluat-

ing different memory copy mechanisms, and determining the

optimal size of shared buffers and message queue elements.

Then we evaluate each mechanism based on the cited factors.

Our testbed consists of a dual-SMP 2 GHz Xeon node with

4 GB of memory. The Xeon processors have a 512 KB 8-

way associative L2 cache with 64 byte cache lines. The OS

is Linux 2.6.10. For the NIC-copy mechanism, we used a

Myrinet 2000 [4] “PCI64C” NIC connected to a 32-port switch

using the GM [5] message passing system, version 2.0.21.

The NIC is installed in a 64-bit 66 MHz PCI slot. In order

to measure L2 cache misses, we used the PAPI [6] software

library that offers a convenient interface to gather the results.

In this paper, we consider one megabyte as 1024 × 1024 bytes.

A. A Common Benchmarking Infrastructure

To ensure fairness and accuracy in our evaluation of the

transfer mechanisms, we developed a common benchmarking

infrastructure that allows us to integrate and test the mecha-

nisms in a modular and easy way. The infrastructure is based

on a flexible interface so we can implement and evaluate the

different transfer mechanisms with one generic test program.

This test program has the interface shown below. A module



was written for each transfer mechanism that implements each

of these functions.

– init(): initializes the transfer method

– finalize(): finalizes the transfer method

– register mem(): informs the transfer mechanism

module about the memory that will be used for the

transfer

– deregister mem(): informs the transfer mechanism

module that the memory will no longer be used for

transfers

– copy local(): performs the local portion of the mem-

ory transfer operation on the local process

– copy remote(): performs the remote portion of the

memory transfer operation on the remote process. For

one-sided transfer mechanisms, such as NIC-transfer, this

is an empty function.

The functions copy local() and copy remote() per-

form the data transfer. For the two-sided transfer methods,

shared buffer and message queue, the remote process calls

copy remote(), which copies the data from the source

buffer into either the shared buffer or queue. The local

process calls copy local(), which copies the data from

the shared buffer or queue into the destination buffer. For

the one-sided transfer methods Ptrace, Kaput and NIC-copy,

the transfer operation is performed only by the local process

in copy local(), while the copy remote() function is

an empty function. A fast shared-memory barrier is used to

synchronize the processes before each iteration to ensure that

one process doesn’t start the next operation before the other

process is finished with the current one. Table I summarizes

how these functions are implemented in the benchmark pro-

gram.

TABLE I

IMPLEMENTATIONS OF copy local() AND copy remote() FOR THE

VARIOUS TRANSFER MECHANISMS

copy local() copy remote()

Shared buffer copy out of shared buf copy into shared buf
Message queue copy out of queue copy into queue
Ptrace attach and read()

Kaput kaput put() or get()

NIC-Copy gm put() or get()

For all of the tests, we took an average of 1,000 iterations.

One common problem with performing memory transfer tests

repeatedly is that the source and destination buffers are loaded

into the cache on the first iteration, and then all subsequent

iterations access the buffers from the cache. This skews the

results by making the performance seem higher than it should

be. To reduce this effect, for each iteration we shift the source

and destination buffers by a cache line and reuse a buffer only

after we have shifted more than eight times the L2 cache size.

B. Determining the Optimal Memory Copy Routine

In the shared buffer and message queue transfer mecha-

nisms, the data is copied into and out of the shared-memory

buffer or queue by using a memory copy operation. The most
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common implementation of this operation is to use the libc

memcpy() function. However, this may not be the most

efficient method. To find a better implementation, we evaluated

libc memcpy() and two other memory copy implementations:

one implemented by using the IA32 string copy assembly

instruction, and one implemented by using MMX nontemporal

move instructions. We used the MMX copy implementation

from the MP Lite [7] source code.

Figure 2 shows the results of our evaluation. For smaller

messages, up to about 2 KB, the implementation using the

assembly string copy instruction (labeled asm copy) performs

better than the other two. Beyond 2 KB, the MMX copy

implementation performs much better than the others. For our

evaluation of the shared buffer and message queue data transfer

mechanisms, we used asm copy to copy data up to 2 KB and

MMX copy for larger data.

C. Determining the Optimal Shared Buffer and Queue Ele-

ment Size

To determine the optimal size of the buffer for the shared

buffer mechanism and the size of queue elements for the

message queue mechanism, we measured the bandwidth of

the mechanisms for transferring 4 MB of data while varying

the buffer and queue element size. Figure 3 shows that, for

the shared buffer mechanism, using an 8 KB buffer gives the

highest throughput. That is, at 8 KB, the pipeline between the

two processors copying in and out is most efficient. For the

message queue mechanism, however, the throughput increases

with the queue element size, even up to 1 MB. This result

is most likely due to the overhead of the queuing operation:

there are fewer queuing operations per transfer operation as

the elements get larger, so larger queue elements give better

performance.

For the remaining evaluations, we used 8 KB buffers for the

shared buffer mechanism and 32 KB queue elements for the

message queue mechanism. We chose 32 KB queue elements

rather than larger ones because, given the memory needed to

implement a queue with a reasonable number of elements, it
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would be unrealistic to implement a queue with 1 MB or larger

elements. Also, 32 KB is around the “knee” of the curve, and

so the benefit of using larger queue elements decreases with

larger sizes. The optimal values will vary depending on the

specific hardware and software being used.

D. Latency and Bandwidth

Using the benchmarking infrastructure described above, we

evaluated each of the memory transfer mechanisms. Table II

and Figure 4 show the results of these tests for both latency

and bandwidth, respectively.

TABLE II

ONE-BYTE LATENCIES FOR THE DATA TRANSFER MECHANISMS

Latency (µs)

Shared buffer 1.5
Message queue 3.3
Kaput put 2.1
Kaput get 2.1
NIC-copy put 11.6
NIC-copy get 14.3
Ptrace 20.2

We can see that three mechanisms offer low latencies:

shared buffer, message queue, and Kaput. Shared buffer is the

most efficient, but Kaput also performs well, despite the fact

that system calls are necessary to transfer the data. NIC-copy

performance is an order of magnitude higher than the previous

solutions, but this is a characteristic of the specific hardware

we used. The mechanism featuring the highest latency is

Ptrace. The penalty comes from the system-call overhead and

from the fact that the target process (from which the data is

read) needs to be stopped before the transfer can be performed.

Figure 4 shows the bandwidth comparison. We see that the

NIC-copy mechanism, whether using get or put, has the lowest

throughput. This is because of the low bandwidth of the PCI

bus compared with the system bus. The Ptrace mechanism

performs better than the NIC-copy mechanism for transfers

larger than about 4 KB. Message queues perform better than
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the previous two, up to about 512 KB; then Ptrace performs

slightly better. The best performance is seen by the Kaput

and shared buffer mechanisms. The shared buffer mechanism

performs slightly better than the kernel copy mechanisms for

data larger than about 32 KB.

E. Transfer Setup and Tear-Down Overhead

Each of these mechanisms requires some setup before the

transfer can take place. The results shown above do not include

this overhead. Because this overhead can be significant, it

would be desirable to perform several transfers per setup. For

example, in MPI one-sided operations, the transfer mechanism

can be set up once when the window is created; then, many

one-sided operations can be performed in that window.

Table III shows the setup and tear-down overhead for each

mechanism and indicates whether the setup performed is

specific to a memory location. When the setup is not specific

to a memory region, the setup can be performed once, and

data located anywhere in a process’s address space can be

transferred. If the setup is specific to a memory region, only

data located in that region can be transferred. For example,

when the shared buffer mechanism is set up, it is not specific

to any memory region, while the setup for the NIC-copy and

Kaput mechanisms do depend on the memory region because

they require the specific memory region to be registered before

data can be transferred into or out of it.

TABLE III

TRANSFER SETUP AND TEAR-DOWN OVERHEAD

Setup (µs) Tear-down (µs) Region specific

Shared buffer 10.9 5.1 No
Message queue 10.9 5.1 No
Kaput 2.8 1.4 Yes
NIC-copy 4.5 212.4 Yes
Ptrace 0.0 0.0 No

The overhead for the shared buffer and the message queue

mechanisms are the same. A System V shared-memory seg-

ment is created and attached to. Then the segment is marked
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Fig. 5. Effects of data transfer operations on application data in L2 cache.

as destroyed, so that once the last process detaches from

it, the segment is actually destroyed. Tear-down consists of

simply detaching from the region. For the Kaput mechanism

the setup consists of registering the target buffer, and the tear-

down consists of deregistering the memory. Similarly, for the

NIC-copy mechanism, the memory just needs to be registered

and deregistered. For Ptrace there is no setup or tear-down

overhead.

We can see that the shared buffer and message queue

mechanisms have high setup and tear-down costs. However,

these can be set up once when the communication library

is initialized, since the setup is not specific to the source or

destination buffers of a message. For large shared-memory

systems, creating a queue or copy buffer between every pair

of processes at initialization time may not be scalable. In this

case they may have to be created dynamically. The setup for

the Kaput and NIC-copy mechanisms is specific to the source

and destination buffers and so must be performed each time a

different source and destination buffer is used. The setup and

tear-down overheads for Kaput depend on the implementation

of the underlying mechanism. While the Kaput overheads are

quite low, an implementation that does not require per buffer

registration and thus having no overhead is conceivable. The

high overhead for the NIC-copy tear-down shown in the table

is a characteristic of the GM memory deregistration operation

and may be smaller with other communication libraries.

F. L2 Cache Disturbance

Utilizing the cache effectively is central for achieving good

performance for the application. We therefore want to examine

what effects the data transfer mechanisms may have on the

application’s data stored in the cache. To do so, we allocated

a buffer to represent the user data, and filled it. Next we

performed a data transfer operation of some data outside of

the user buffer, and checked how many L2 cache misses were

encountered when reading the user buffer. In this test, our

user buffer was 256 KB, half the size of the L2 cache on the

machines we were using. Figure 5 shows the number of cache

misses encountered on the destination and source nodes. Note

that for the one-sided mechanisms, the source process is the

initiator of the put operation, and the destination process is

the initiator of the get operation.

We see in these graphs that for the NIC-copy mechanism,

the impact on the cache is low on both the source and

destination processes, whereas for the other mechanisms the

impact on the cache is high on at least one of the processes.

For the shared buffer mechanism the cache impact for on

the destination process is low, only around 225 cache misses,

whereas at the source process, the impact is very high, over

2,050 cache misses. The is reason that the optimized memory

copy function uses nontemporal move instructions, which

bypass the cache, to write the data to the destination buffer.

No nontemporal move instructions are available which read

from memory. In the shared-memory mechanism, the source

process reads the entire source buffer, thus causing cache

lines to be allocated and the application’s cache lines to be

evicted. On the destination side, the process reads only from

two 8 KB copy buffers and writes to the destination buffer.

Because of the nontemporal move instructions, cache lines are

not allocated when writing to the destination buffers, and so

the application’s cache lines are preserved.

The message queue mechanism sees a high cache impact

on both the source and destination processes because the

destination must read from many queue elements. Each time

data is read from a new queue element, more cache lines are

allocated, and more application cache lines are evicted. The

effects of this could be reduced if the same queue elements

were reused by the source after being freed by the destination,

rather than using a new queue element each time.

For the Kaput mechanism, while there is a large impact on

the cache at the initiating process, there is almost no impact on

the cache at the target process. The reason is that the Kaput

put or get operation is performed only on the processor of

the initiator process, so only the cache on that processor is



affected. The Ptrace mechanism has a high cache impact on

the cache at the initiating process and a moderate impact (just

over 1,060 cache misses) on the cache at the target process.

It is unclear why the cache at the target process is affected.

Table IV summarizes these results.

TABLE IV

SUMMARY OF IMPACT ON APPLICATION CACHE BY THE DATA TRANSFER

MECHANISMS AT THE SOURCE AND DESTINATION PROCESSES

Source Destination

Shared buffer High Low
Message queue High High
Kaput put High Low
Kaput get Low High
NIC-copy put Low Low
NIC-copy get Low Low
Ptrace Medium High

IV. SUITABILITY FOR USE IN MPI IMPLEMENTATIONS

In this section, we discuss the suitability of the mechanisms

for supporting MPI operations [8], [9]. Specifically, we exam-

ine large MPI two-sided messages using a rendezvous protocol

and MPI one-sided messages. Since this paper concentrates on

transferring large data, we do not examine short MPI two-sided

messages. In this analysis we assume that there exists a shared

queue between the processes that is used for small messages.

A. Large MPI Two-Sided Communication

Large MPI messages are typically transferred by using

a rendezvous protocol, where the sender and receiver first

exchange small messages to match the send and receive

requests and then transfer the actual data of the message. This

approach reduces the amount of data that has to be buffered

at the receiver for messages that don’t yet have a matching

receive request.

Any of the mechanisms could be used to transfer the mes-

sage data in the rendezvous protocol. However, the advantage

to using one of the one-sided mechanisms, Kaput, NIC-copy,

or Ptrace, is that less synchronization is required between

the processes, and there can be more overlap of computation

and communication. If nonblocking MPI send and receive

operations are implemented by using a one-sided transfer

mechanism, then once the send and receive requests have

been matched, one side initiates the transfer, and there is no

need to synchronize with the other process except to notify it

when the transfer has completed. Furthermore, the operation

can be overlapped with computation on the remote side when

using the kernel copy mechanism and on both sides when

using the NIC-copy mechanisms. This approach leads to better

CPU utilization. Among these methods the Kaput mechanism

provides the highest throughput, but it does have a large impact

on the cache at the initiating process. If cache impact is more

of a concern, or if the transfer can be scheduled in such a way

to hide the latency of the operation, the NIC-copy mechanism

would be the best choice.

One factor that needs to be considered for the one-sided

mechanisms is the setup and tear-down times. The setup

for the Kaput and NIC-copy mechanisms is memory region

specific and so requires that the source and destination buffers

be registered before the data can be transferred. This is an

additional 2.8 µs for Kaput and 4.5 µs for NIC-copy added to

the transfer time. Once the transfer has completed, the buffers

can be deregistered. This is only 1.4 µs for Kaput but is

212.4 µs for the NIC-copy mechanism. In order to reduce the

effects of this overhead, deregistration can be deferred until the

amount of registered memory exceeds a threshold, at which

time all of the unused buffers can be deregistered at once. In

addition, a registration cache can be used along with delayed

deregistration. Before registering a page, the process checks

the registration cache to see whether the page has already been

registered.

The shared buffer and message queue mechanisms can

also be used even with nonblocking MPI sends and receives

because each process will eventually have to wait for the oper-

ation to complete. At that time both processes are available to

perform the transfer operation. If there are a small number

of processors on the SMP node, a copy buffer can be set

up at initialization time between each pair of processes. The

shared buffer can then be used any time large data needs to be

transferred. In this case, this mechanism would give the best

throughput and the least cache impact of all of the methods

except for NIC-copy.

B. MPI One-Sided Communication

In contrast to MPI two-sided messages where the sender

specifies the source buffer and the receiver specifies the

destination buffer, in an MPI one-sided operation one pro-

cess specifies both the source and destination buffers. Before

performing one-sided operations, each target process defines

a local window describing the memory region on which one-

sided operations can be performed. One-sided operations are

initiated by a process during its access epoch. Operations

initiated during an epoch are not guaranteed to complete,

either on the initiator or at the target, until after the epoch.

Specifically, the results of a put operation are not necessarily

visible at the target process, and the results of a get operation

are not necessarily visible at the initiating process, until after

the epoch. MPI provides two modes, active and passive, that

define how access epochs are started and completed.

In active mode, both the initiating process and target process

must call specific MPI functions to start and complete an

epoch. Note that the MPI standard does not require that

any one-sided operations complete until after the epoch ends.

Hence, the implementation can delay the transfer of the data

until the target process calls the function to end the epoch. At

that time both sides can be actively involved in the transfer of

the data.

In passive mode, however, only the initiating process needs

to make calls to start and complete an epoch. The target

process is not required to make any MPI function calls in order

to start or end an epoch. Hence, the implementation cannot

depend on the target process to be involved in the transfer.

However, the MPI standard does allow an implementation



TABLE V

SUMMARY OF CHARACTERISTICS OF EACH DATA TRANSFER MECHANISM

MPI two-sided MPI one-sided
Latency Throughput Setup Tear-down Cache impact Can overlap Per msg. Active Passive

(µs) (MBps) (µs) (µs) (source, dest.) computation overhead Mode Mode

Shared buffer 1.5 513.5 10.9 5.1 (High, Low) No No Yes with thread
Message queue 3.3 437.1 10.9 5.1 (High, High) No No Yes with thread
Kaput put 2.1 495.5 2.8 1.4 (High, Low) Yes Yes Yes Yes
Kaput get 2.1 500.3 2.8 1.4 (Low, High) Yes Yes Yes Yes
NIC-copy put 11.6 227.1 4.5 212.4 (Low, Low) Yes Yes Yes Yes
NIC-copy get 14.3 171.7 4.5 212.4 (Low, Low) Yes Yes Yes Yes
Ptrace 20.2 460.0 0.0 0.0 (Medium, High) No No Yes with thread

to require that the memory used for passive more one-sided

operations be allocated using a special allocation function

MPI Alloc Mem().

Because in active mode the implementation can count on

both the initiator and target processes to be involved in the

actual transfer of the data, the situation is essentially the same

as the two-sided rendezvous case, except that the buffers need

be registered only once when the window for the one-sided

operations is opened, and deregistered only when the window

is closed. This approach allows the cost of the registration and

deregistration to be amortized over many one-sided operations.

In passive mode we cannot expect the target node to

participate in the transfer unless a separate thread or interrupt

context is used at the target process. If a separate thread or

interrupt is used, both the initiator and target processes can

participate in the transfer so the situation is similar to the active

mode case. However, using interrupts to initiate data transfers

incurs high latency for an OS context switch, and a separate

thread polling for incoming one-sided messages wastes CPU

time, making these not attractive options for implementing

MPI one-sided operations.

If a thread or interrupt context is not used, only the one-

sided transfer methods Kaput and NIC-copy can be used to

transfer the data. Without a separate thread or interrupt context,

these mechanisms are the only way to perform MPI one-sided

operations, so the mechanisms must be used to transfer small

messages as well as large messages. NIC-copy has high small-

message latency, over 10 µs, making it not ideal for small

message transfers. The Kaput mechanism, which has a small

message latency of around 2 µs, would be preferable in this

case. Note that because Ptrace can transfer data only from the

target to the initiating process, it cannot be used to support

active mode without a separate thread or interrupt context.

An efficient method for implementing passive mode, which

may not be appropriate for all applications, is to make the

memory allocated by MPI Alloc Mem() sharable, by cre-

ating a shared-memory region or mapping a local file. Then

when one-sided operations are to be used, this memory created

at the target process can be attached to or mapped into the

initiator’s address space. The initiator of the one-sided oper-

ations can then directly access the target process’s memory

using loads, stores, or optimized memory copy functions. The

overhead of making the memory sharable is relatively high,

10.9 µs to allocate the memory and 5.1 µs to free it, and

this overhead must be incurred for every window allocated.

Furthermore, some applications may use MPI Alloc Mem()

as a general memory allocation function, not just to allocate

memory to be used for windows. It would be undesirable

to incur this overhead each time memory is allocated. But

if an application were to use MPI Alloc Mem() only for

memory used for windows, and the number of allocations

and deallocations is low compared to the number of one-sided

operations, the overhead can be amortized.

V. DISCUSSION AND FUTURE WORK

In this paper, we have described five mechanisms for

transferring data between processes in an SMP machine and

evaluated them based on bandwidth, latency, setup costs, and

their impact on the application’s cache. Table V summarizes

the results of our evaluation.

We note that not all mechanisms may be available in all

environments. For instance, users typically would not be able

to load a kernel module for the Kaput mechanism, and the

machine may not have a high-performance user-level network.

The Ptrace mechanism should be available on IA32 machines

with a recent version of Linux; however, it’s not clear whether

this feature of the ptrace system call will be supported in

the future. The shared buffer and message queue mechanisms

should be available on any machine, and these mechanisms

give relatively good performance.

The NIC-copy mechanism we analyzed in this paper was

performed with a NIC that is a few years old. Faster NICs

and communication subsystems, such as Myricom’s MX [10],

can provide up to 495 MBps bandwidth and latency down

to 2.6 µs [11]. Such networks would make the NIC-copy

mechanism perform just as well as the shared buffer and Kaput

mechanisms with the added benefits of a one-sided mechanism

and low cache impact.

Future work in this area would be to expand the study to

other workstation architectures, such as X86 64, Sparcs, or

G5s, as well as to large shared-memory machines.
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