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Abstract

This paper presents the implementation of MPICH2 over the Nemesis communica-
tion subsystem and the evaluation of its shared-memory performance. We describe
design issues as well as some of the optimization techniques we employed. We con-
ducted a performance evaluation over shared memory using microbenchmarks. The
evaluation shows that MPICH2 Nemesis has very low communication overhead,
making it suitable for smaller-grained applications.
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1 Introduction

The Message Passing Interface (MPI) standard has been designed to enhance
portability in parallel applications, as well as to bridge the gap between the
performance offered by a parallel architecture and the actual performance
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delivered to the application. The level of achievable performance depends,
however, on the implementation. Two critical areas determine the overall per-
formance level of an MPI implementation. The first area is the low-level com-
munication layer that the upper layers of an MPI implementation can use as
foundations. The second area covers the communication progress and man-
agement. We designed an efficient communication subsystem, called Nemesis,
that features very low overhead and is therefore suitable to serve as a basis
for the MPICH2 software [1], an open source implementation of MPI.

The design and implementation of the Nemesis communication subsystem
have been presented in [2]. In this paper, we describe how we ported MPICH2
over Nemesis and show the performance benefits of MPICH2 Nemesis. We also
explain the improvements that have been made in the MPICH2 communica-
tion progress engine. The resulting MPICH2 software stack yields a very low
latency and high bandwidth and compares favorably with competing software.
The implementation also allows us to better assess both the overhead and the
performance of MPI.

Section 2 gives an overview of the Nemesis communication subsystem. Sec-
tion 3 describes how this communication subsystem has been integrated in
MPICH2 as a new CH3 channel. We detail how we implemented several impor-
tant features of the MPI2 standard. The various optimizations that MPICH2
gained are also explained. Section 4 presents a performance evaluation using
shared-memory communication; in particular, we compare our implementa-
tion with the MPICH2 shm channel and other MPI implementations. Sec-
tion 5 presents related work. Section 6 concludes this paper and discusses
future work.

2 Overview of the Nemesis Communication Subsystem

In this section, we briefly describe the Nemesis communication subsystem.
See [2] for a complete description of the design and implementation.

The Nemesis communication subsystem was designed to be a scalable, high-
performance, shared-memory, multinetwork communication subsystem for
MPICH2. The goals for our design, in order of priority, were scalability, high-
performance intranode communication, high-performance internode communi-
cation, and multinetwork internode communication. The implication of rank-
ing the goals this way is that we strive to minimize the overhead for intranode
communication, even if this comes at some penalty for internode communica-
tion.

To achieve the goals of high scalability and low intranode overhead, we de-
signed Nemesis using lock-free queues in shared memory. Thus, each process
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needs only one receive queue, onto which other processes on the same node
can enqueue messages without the overhead of acquiring a lock. Other designs
would be to use a pair of receive queues per pair of processes or to use a single
queue with a lock. On a large SMP, neither would be scalable, because of the
O(N2) number of queues needed or the contention on the lock, nor would they
be efficient, because of the overhead of polling multiple queues or the overhead
of acquiring and releasing a lock.

For internode communication, when a message is received from the network, a
polling function for that network module enqueues the message onto the pro-
cess’s receive queue. A network module has a send queue onto which messages
to be sent are enqueued. The send queue is analogous to a process’s lock-free
receive queue in that, when a process sends a message, it will enqueue the
message onto the appropriate queue, whether it is a queue for another pro-
cess on the same node or a send queue for a network module. This strategy
simplifies the critical path when sending a message: No special action is taken
when sending a message to a process on a remote node versus a process on the
local node. Multiple networks can be supported by implementing additional
network modules. Our current implementation supports internode communi-
cation over sockets, Myricom’s GM and MX message-passing systems [3], and
Quadrics [4].

After analyzing our initial design, we applied several optimizations. To reduce
latency, we optimized the placement of the receive queue head and tail pointers
and added a shadow head pointer to reduce L2 cache misses. We also gathered
in the same cache line, variables that are often used together, to reduce the
number of L1 cache misses in the critical path. For small SMP nodes, we
used a fastbox mechanism to bypass the queues. A pair of buffers is allocated
between each pair of processes. When sending a message, a process can bypass
the queue by copying the message into the fastbox, if it is free, and setting
a flag indicating a message is waiting. The receiving process then copies the
message out of the fastbox and resets the flag. If the fastbox is full when
a process is sending a message, the regular queue mechanism is used. This
mechanism would not scale well for large SMPs and is used only for SMPs
with a small number of processors. To improve bandwidth, we implemented
architecture-specific memory copy functions. For ia32 and x86 64 architectures
the memory copy function uses nontemporal store operations that bypass the
cache. More details on these optimizations can be found in [2].

3 Integration into MPICH2

The communication portion of MPICH2 is implemented in several layers, as
shown in Figure 1, and provides two ways to port MPICH2 to a communication
subsystem. The ADI3 layer presents the MPI interface to the application layer
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Fig. 1. Software layers of MPICH2

above it, and the ADI3 interface to the device layer below it. MPICH2 can be
ported to a new communication subsystem by implementing an ADI3 device.

The figure shows the device for the Quadrics network. The figure also shows
the CH3 device. The CH3 device presents the CH3 interface to the layer below
it and provides another way for MPICH2 to be ported to a new communication
subsystem: by implementing a channel. This interface has fewer functions than
the ADI3 interface, making it significantly simpler to implement. Because
the interface is simpler, however, it may not be able to take advantage of
certain features provided by the communication subsystem, such as RDMA
or collective operations.

We chose to port MPICH2 over Nemesis by implementing a CH3 channel.
While our intent is to eventually implement an ADI3 device for Nemesis,
implementing a CH3 channel allowed us to rapidly create a prototype and
evaluate the implementation of Nemesis. We did, however, modify the CH3
layer in order to allow certain optimizations of the Nemesis channel. In the
rest of this section we describe the basic design of the Nemesis channel and
key optimizations.

3.1 Basic Design of the Nemesis Channel

To send a message, the CH3 layer calls a send function implemented by the
channel, passing in a pointer to the message header a description of the data
to be sent and a pointer to an MPI request object. The description of the data
consists of an array of pointers and lengths (i.e., an IOV) that can be used to
describe noncontiguous data. The Nemesis channel copies the header and data
into a Nemesis receive queue element, called a cell, and fills in a short Nemesis
header, then enqueues it on the appropriate receive queue or fastbox or sends
it over the network to the appropriate remote node. If the CH3 message is
larger than a cell, multiple cells can be used, since the cells are delivered in
FIFO order.

If enough free cells are not available to send an entire message, the IOV
describing the unsent data is saved in the request, which is then enqueued
onto a pending-send queue. When free cells are available, the messages on the
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pending-send queue are sent out. When all the data described by the IOV
has been sent, the channel makes an up-call to CH3 to see whether there is
more data to be sent. If there is, the IOV is reloaded; otherwise the request is
marked as complete.

To receive a message, the Nemesis channel polls the receive queue and fast-
boxes. In order to reduce the overhead of unnecessarily polling too many fast-
boxes, the Nemesis channel polls only active fastboxes, which are the fastboxes
of processes for which this process has posted a receive. Because fastboxes in-
troduce a second path for messages between two processes, sequence numbers
are used to maintain the order of messages.

When a cell is found, either in the receive queue or the fastbox, and there are
no pending receives for that source process, the channel makes an up-call to
CH3 with a pointer to the message header. If there is data to receive, CH3
will return an IOV along with a pointer to a request. The channel then copies
the data from the cell to the user buffer described by the IOV. If the IOV
describes more data than is contained in the cell, the IOV for the unreceived
data is saved in the request, and the request is saved as a pending-receive
corresponding to the process that sent the message. When the next cell from
that process is received, the channel gets the saved request, and the new data
is copied from the cell to the user buffer described by the IOV in the request.
When all of the data described by the IOV has been received, the channel
makes an up-call to CH3 to either reload the IOV, if there is more data to
receive, or to mark the request as complete.

Because cells are allocated in shared memory, they are a limited resource.
Hence, it is important to process a cell and copy out its data as soon as pos-
sible, so that it can be freed. This means that an unexpected message should
be copied out of its cells and into a temporary buffer, as opposed to leaving
the data in the cells until the receive has been posted. Unexpected messages
are handled by the CH3 layer in just this way. If an unexpected message is re-
ceived, CH3 creates a new request and passes back an IOV pointing to a newly
allocated temporary buffer. So, the channel takes the same action whether the
received message is unexpected or not. The message is copied out of the tem-
porary buffer into the user buffer once a receive matching the message has
been posted.

3.2 Large Message Transfer Using Rendezvous

While the shared-memory queue is very efficient for transferring small- to
medium-sized messages, transferring large amounts of data through the queue
may not be the most efficient method. High-performance networks have RDMA
capabilities where data can be transferred directly from the user’s source buffer
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on one node to the user’s destination buffer on another node, avoiding the data
copies associated with using the queue. Some shared-memory machines, such
as the SGI Altix, have similar mechanisms for processes on the same node.
Even without such special mechanisms, using a queue still may not be the
most efficient method of transferring large amounts of data between processes
on the same node [5].

To support various mechanisms for transferring large messages, we defined the
Large Message Transfer (LMT) interface and added it to CH3. Avoiding the
queue can not only improve the bandwidth of the transfer but also reduce the
impact on the application’s data in the cache [5].

CH3 uses a rendezvous protocol when sending large messages, which ensures
that a matching receive has been posted before the message data is sent. The
rendezvous protocol is used primarily to avoid having to buffer the message if a
matching receive has not been posted. The LMT interface is used together with
the rendezvous protocol and allows the channel to piggyback information on
the CH3 rendezvous messages. The channel implements three LMT functions
for sending a message — lmt pre send(), lmt start send(), and lmt post

send() — and three corresponding recv functions for receiving a message.

Before sending a rendezvous RTS message, the sender calls lmt pre send(),
specifying the destination and describing the data to be sent. This allows the
channel to perform any required set up for the transfer, such as registering the
source buffer. The channel returns a send cookie, which is variable-length data
to be sent along with the RTS message to the receiver. Depending on the im-
plementation, the cookie may contain memory registration keys, a description
of the send buffer, and so forth.

Upon receiving the RTS and matching it with a posted receive, CH3 calls
lmt pre recv(), passing in the send cookie and describing the receive buffer.
This function allows the channel at the receiver to prepare for the transfer.
The channel returns a receive cookie and specifies whether CH3 should send a
rendezvous CTS message. Some data transfer mechanisms, such as when using
an RDMA get operation, can start transferring data at this point and do not
require action on the sender’s side. In such a case a CTS message will not
be sent. If required, CH3 will send the CTS message with the receive cookie.
Next, CH3 calls lmt start recv(). At this point the channel at the receiver
has all of the information it requires to start transferring data.

If a CTS message is sent by the receiver, then when it is received by the
sender, CH3 calls lmt start send(), passing in the receive cookie from the
CTS message. Now the sender has all of the information it requires to start
transferring data.
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The data is now ready to be transferred. Depending on the transfer mecha-
nism, one side or both sides will participate in transferring the data. If both
sides participate in the transfer, such as when copying through a buffer shared-
memory on an SMP machine, then when the transfer is complete, the channel
at the sender and receiver will call lmt post send() and lmt post recv(),
respectively, to signal that the request has completed, and will perform post-
transfer cleanup, such as deregistering memory or detaching from a shared-
memory region. If, however, only one side is performing the transfer, such as
when using an RDMA put or get, the channel on the side performing the
transfer will send a DONE message to the other side. Upon receiving a DONE
message, CH3 will call lmt post send() or lmt post recv(), as appropriate.

Some mechanisms may need to exchange additional information during the
transfer. For example, the size of the data to be transferred may exceed the
amount of memory that a network can register, so the message would need to
be registered and transferred in sections. To handle such a case, the channel
will send a COOKIE message to the remote side. Upon receiving a COOKIE
message, CH3 calls the lmt handle cookie() function that the channel im-
plements. The COOKIE message can be used to notify the remote side that
additional memory has been registered or that part of the message has been
successfully transferred so the memory can be deregistered.

Our current implementation uses the LMT interface for shared-memory com-
munication and communication over the GM network. Large messages are
transferred in shared-memory communication by copying through a shared
buffer. The receiver allocates a shared-memory region and passes the informa-
tion about the region to the sender in a receive cookie. On receiving the CTS
with the receive cookie, the sender attaches to the shared-memory region and
starts copying the data into the buffer. The data is copied by using a double
buffer technique to allow both processors to perform the data copy operations
simultaneously. Because both sides actively participate in the transfer, both
sides know when the transfer has completed, so there is no need to send a
DONE message.

When using GM to transfer large messages, we use RDMA put operations.
In the lmt pre functions, the buffers are registered. Also, because the sender
side needs to specify the target buffer for the message in the receiver’s memory,
the receiver includes that information in the receive cookie. In order to handle
the case where the receive buffer is noncontiguous, the receiver sends the
dataloop representation [6] of the MPI datatype to the sender in the receive
cookie. The sender then uses one or more RDMA put operations to transfer the
data. For very sparse datatypes it would be more efficient to transfer the data
by packing it into an intermediate buffer and transferring it in a contiguous
chunk rather than performing many small RDMA put operations. Our current
implementation does not check for this case. We leave this for future work.
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3.3 Bypassing the Posted Receive Queue

We performed another optimization to improve the latency of small messages
by bypassing the CH3 posted receive queue in certain cases. In the current
implementation of CH3 when a receive is posted by the application, CH3
first searches the unexpected message queue to see whether it has already
received a matching message. If a matching message is not found, the request
is posted on the posted receive queue. CH3 then calls the progress engine to
check for incoming messages. When a new message is received, CH3 looks for a
matching receive request by searching the posted receive queue and enqueues
the message in the unexpected queue if the message is not found.

Notice that if a receive is posted for which there is no matching message
in the unexpected message queue, and the matching message is waiting to be
received on the Nemesis receive queue or network, the receive request is queued
on the posted receive queue, only to be matched and dequeued in the next
step when the progress engine is called and the matching message received.
Our optimization implements a new function to call the progress engine with
a receive request. As messages are received from the Nemesis receive queue,
they are checked for a match with the receive request. Only when no matching
messages are found on the receive queue is the request enqueued onto the
posted receive queue. Note that if there already is a request on the posted
receive queue that can possibly match the same message as the new receive
request, we cannot use the optimization and, instead, add the new request to
the receive queue as in the original implementation. This optimization reduced
latency by about 18%, or 62 ns.

3.4 Shared-Memory Barrier Synchronization

The default implementation of barrier synchronization (i.e., MPI Barrier())
in MPICH2 is implemented by using point-to-point messages. Furthermore,
the algorithm does not differentiate between processes on the same node
and processes on remote nodes. We optimized the barrier operation by us-
ing shared-memory variables to synchronize processes on the same node, and
point-to-point messages to synchronize the processes on different nodes

The algorithm we use to perform a barrier by using shared memory has been
previously presented in [7]. In this algorithm, processes atomically increment
a count variable in shared memory, and then wait for a signal variable,
also in shared-memory, to change. The last process to increment count, resets
count for the next barrier and then flips the value of signal variable. To
reduce the number of cache invalidations, we located each shared-memory
variable in its own cache line. This way, while the processes who have already
entered the barrier are polling on the signal variable, cache misses won’t be
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1 barrier() {

2 int prev, sense;

3

4 sense = sig;

5 prev = FETCH AND INC(counter);

6 if (prev == P - 1) {

7 count = 0;

8 signal = 1 - sense;

9 } else

10 while (signal == sense)

11 SKIP;

12 }

Fig. 2. Shared-memory barrier algorithm. P is the number of processes par-
ticipating in the barrier, and signal and count are variables in shared
memory.

generated when other processes increment the count variable. Only when the
last process flips the value of the signal variable will all of the cache lines for
the waiting processes be invalidated and have to be reloaded. Figure 2 shows
the pseudocode for this algorithm.

In order to handle the case where not all processes participating in the barrier
are on the same node, each process identifies the set of processes running on its
node. The process with the lowest global rank on each node is selected as the
leader. The leader processes then identify the set of all leader processes on all
nodes. An additional shared variable, signal leader, is used in these types
of barriers. To perform the barrier, the nonleader processes perform an atomic
increment on count and then wait on signal to change. The last nonleader
process that increments count sets signal leader to true before waiting on
the signal variable. The leader process waits for signal leader to become
true and then performs a message-based barrier with the other leader pro-
cesses, using the dissemination barrier algorithm [8]. Once the leader process
completes the message-based barrier, it resets the count and signal leader

variables and then flips the value of the signal variable, allowing the other
processes to exit the barrier.

One issue that we had to address is the allocation of the shared-memory vari-
ables. Because in Nemesis shared memory is allocated once at initialization
time and cannot be expanded, shared memory is a limited resource. For this
reason we cannot simply allocate a set of shared-memory variables for every
MPI communicator created. Instead, we allocate the variables to a communica-
tor when the first barrier is performed on that communicator. This allocation
is done by organizing the variables in a list, keyed on the communicator’s con-
text ID, which is initially set to a NULL value. The leader process of a node
walks this list performing an atomic compare-and-swap comparing the key of
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each element with the NULL value. When the compare-and-swap succeeds,
the leader process has successfully allocated the element. At this point be-
cause only the leader process knows which list element has been allocated, the
processes cannot use shared memory to perform the barrier. Instead, the pro-
cesses perform a message-based dissemination barrier. In the messages being
exchanged, the index of the list element is disseminated among the processes.
After this barrier, the index of the list element is known by all processes on
the node, so subsequent barriers can use shared memory. The list element is
freed when the communicator is destroyed.

If no free list elements are available, the leader process disseminates the NULL
value in the message-based barrier to the other processes on the node, and the
processes will again attempt to allocate a list element in the next barrier. We
intend to modify Nemesis to be able to dynamically add shared memory after
initialization time. This feature would eliminate the possibility of running out
of list elements.

4 Performance Evaluation of MPICH2 over Nemesis

In this section we evaluate the shared-memory performance of our implemen-
tation of MPICH2 over the Nemesis communication subsystem. We present
a microbenchmark evaluation on a 2 GHz dual-processor dual-core Opteron
280 machine with 2 GiB of memory. An evaluation of the optimized barrier
implementation was performed on a cluster of eight dual-processor dual-core
Opteron 275 machines with 4 GiB of memory. We configured MPICH2 with
the --enable-fast option that disables error checking and configured Open-
MPI to disable error checking and support for heterogeneous clusters, which
should improve the performance for those implementations. All implementa-
tions were compiled by using the -O3 optimization.

4.1 Latency and Bandwidth

We compare our implementation to LAM/MPI [9] version 7.1.2, OpenMPI [10]
version 1.1, MPICH-GM [3] version 1.2.6..14b, and MPICH2 version 1.0.3 con-
figured with the CH3 shm channel that communicates by using shared memory.
All these MPI implementation use shared-memory intranode communication.
Except where noted, the results for MPICH2 Nemesis have both the LMT and
posted receive queue bypass optimizations applied. We measured latency and
bandwidth using Netpipe [11]. Figure 3 shows these results.

The latency graph in Figure 3(a) shows two data series for MPICH2 Nemesis.
The results shown by the data series labeled “MPICH2 Nemesis no BP” were
taken without the posted receive queue bypass optimization. This optimization
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Fig. 3. Shared-memory performance of MPI implementations

improves latency by about 62 ns, resulting in a zero-byte latency of 341 ns.
With the optimizations applied, MPICH2 Nemesis has lower latency than
the other MPI implementations. Even up to 128 bytes, the MPICH2 Nemesis
latency is just over 500 ns.

Figure 3(b) shows the bandwidth comparison. Nemesis uses an optimized
memory copy routine that uses nontemporal store operations. Using the non-
temporal copy routine results in dramatically higher bandwidth for MPICH2
Nemesis compared to the other MPI implementations. The results shown by
the data series labeled “MPICH2 Nemesis no-LMT” were taken without ap-
plying the LMT optimization to MPICH2 Nemesis. The LMT optimization
improves bandwidth by about 130 MiBps for large messages, resulting in a
peak bandwidth of over 1,500 MiBps. Notice that for MPICH2 Nemesis, at
16 KiB the bandwidth of the non-LMT implementation is a little higher than
the implementation with LMT. The reason is that at 16 KiB, the commu-
nication protocol switches from eager to rendezvous and additional setup is
performed for LMT. The figure shows that MPICH2 Nemesis has higher band-
width than the other MPI implementations except for messages between about
16 KiB and 256 KiB. We intend to perform additional tuning to improve the
medium-sized message bandwidth and find the optimal message size for the
crossover from eager to rendezvous protocol.

4.2 Barrier

We evaluated our shared-memory barrier optimization by comparing the la-
tency of the barrier operation using the optimization to the default imple-
mentation. The benchmark consists of measuring the average time to com-
plete 100,000 barriers. We ran this benchmark on a cluster of eight machines
with four processors each. The machines were connected with a gigabit Eth-
ernet network. Figure 4 shows the results of this benchmark. Notice that the
optimized implementation has much lower latency than that of the default
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MPICH2 implementation. For a four-process barrier on a single node, the la-
tency of our optimized implementation is 0.4 µs, whereas the latency for the
default implementation is 2.6 µs. This is more than a factor of 6 improve-
ment. For barriers across processes on different nodes, the optimized imple-
mentation shows regular jumps in performance corresponding to the O(lg n)
number of messages required to perform the dissemination barrier between
the leader processes on each node. The default implementation also shows an
O(lg n) increase in latency; however, whereas the latency of the optimized
implementation increases as a function of the number of nodes, the latency of
the default implementation increases as function of the number of processes.
Furthermore, because more than one process on one node may be sending
messages to processes on another node, contention on the network interface
increases the average latency of those messages. For multinode barriers, the
optimized implementation shows a factor of improvement greater than 2 over
the default implementation.

4.3 Instruction Count

One of the goals of our implementation is to streamline the critical path. One
way of measuring our success is by counting the number of instructions re-
quired to send or receive a message. Using the PAPI [12] performance counter
interface, we measured the instruction count for send and receive eight-byte
messages. When measuring the instruction count for the receive operations,
we wanted to avoid counting instructions performed polling while waiting for
the message to arrive because the waiting time can vary quite a bit. To do
this we added a delay equal to the round trip time before starting to count in-
structions and performing the receive. This ensured that the incoming message
had arrived and was waiting at the receive queue when MPI Recv was called.
Table 1 shows these results. All MPI implementations were compiled with the
-O3 optimization level, except for MPICH-GM, where the unoptimized code
had fewer instructions.
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Table 1
Instruction count for sending and receiving an eight-byte message.

MPI Implementation MPI Send MPI Recv Total

OpenMPI 550 1,745 2,295

MPICH-GM 455 617 1,072

LAM MPI 436 472 908

MPICH2 CH3:shm 311 748 1,059

MPICH2 Nemesis no BP 241 712 952

MPICH2 Nemesis 241 259 500

The row labeled “MPICH2 Nemesis no BP” shows the instruction counts when
the posted receive queue bypass optimization was not applied. The results
show that this optimization reduces the combined send and receive instruction
count by almost half. With the optimization, the combined instruction count
for MPICH2 Nemesis is less than 22% that of OpenMPI, less than 50% that
of MPICH2 CH3:shm and MPICH-GM, and 55% that of LAM MPI. The
instruction counts show that the critical path in our implementation is already
quite efficient; however, we believe that we still can further streamline the
critical path and improve cache utilization, which will reduce overall latency
for small messages.

4.4 The Halo Benchmark

One of the benchmarks we used to predict the application performance of
MPICH2 Nemesis was the Halo benchmark [13]. This benchmark simulates
a nearest neighbor exchange of a 1 to 2 row and column “halo” from a 2D
array. The authors of the Halo benchmark state that performance of the Halo
benchmark correlates well with the performance of their layered ocean model
application. We ran the benchmark on the Opteron machine using four pro-
cesses.

The Halo benchmark performs the halo exchanges by using several different
algorithms. Figure 5 shows the results for the algorithm that performed best
for each MPI implementation. The algorithm that used MPI SendRecv() per-
formed best in MPICH2 Nemesis, MPICH-GM, and OpenMPI. In MPICH2
CH3:shm, the algorithm using MPI ISend() and MPI IRecv() performed best.
In LAM MPI, the best performance was seen when using the algorithm that
used persistent sends and receives, where the receives are posted before the
send operations are called. In the figure, we see that MPICH2 Nemesis per-
forms considerably better than the other implementations for all tile sizes. Of
the others, MPICH2 CH3:shm performs better than LAM MPI, MPICH-GM,
and OpenMPI for small tile sizes. For larger tile sizes MPICH-GM performs
better than MPICH2 CH3:shm, LAM MPI, and OpenMPI. The performance
of this benchmark is dominated by latency for small tile sizes and by band-
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Fig. 5. Results of the Halo benchmark using four processes

width for large tile sizes. The factor of improvement for MPICH2 Nemesis over
the other implementations ranges from 1.5 to 2.6. This suggests that MPICH2
Nemesis should perform well on applications that are sensitive to latency or
need high bandwidth.

5 Related Work

Other high-performance MPI implementations also use shared-memory to im-
prove intranode communication. In order to manage concurrent access to
queues in the shared-memory region, some implementations, e.g., MPICH-
PM [14], use spin-locks. By using spin-locks the overhead of accessing OS-locks
is eliminated. However, because access to queues in shared memory is serial-
ized, this can impact performance in cases where messages are rapidly received
by one process while other processes are rapidly sending to that process.

To address such potential serialization, an implementation can use lock-free
data structures. Lock-free data structures are used in MPI-BIP [15,16], AM-
II [17,18], and Nemesis. MPI-BIP uses separate queues for each pair of pro-
cesses communicating via shared-memory. This method may waste shared-
memory resources when some pairs of processes never communicate. AM-II
and Nemesis implement lock-free queues using atomic operations, such as swap
and compare-and-swap. By using atomic operations, a lock-free queue can be
implemented that allows multiple processes to access the queue concurrently,
so each process needs only a single queue to be able to receive messages from
any other process. In AM-II, to send a message, a process will attempt to
dequeue a packet from a free queue, but if another process dequeued the same
packet before the first process finished, the first process must try again. This
can lead to starvation and considerable traffic in the memory system when
many processes are trying to send to the same processes at the same time.
Nemesis uses a lock-free queue which does not require repeated attempts, thus
ensuring fairness and reduces memory bus traffic. Details on the implementa-
tion of lock-free queues in Nemesis can be found in [2].
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In order to improve intranode throughput, MPI-BIP and MPICH-PM use
kernel modules to copy data directly from the source process’s buffer space
to the destination process’s buffer. The data can then be transferred with
a single copy, as opposed to two copies if the data were copied through a
shared-memory segment. Nemesis does not provide such a single-copy data
copy mechanism itself, but the LMT interface is general enough that support
for such a mechanism could be easily added where such a mechanism exists.

6 Discussion and Future Work

In this paper we have presented our new implementation of MPICH2 over the
Nemesis communication subsystem. We evaluated the shared-memory com-
munication and barrier performance of our implementation on 4-core Opteron
machines using microbenchmarks. Our implementation achieved a zero-byte
latency of 341 ns and a 128-byte latency of just over 500 ns. The peak band-
width of our implementation was over 1,500 MiBps. Our optimized barrier
implementation achieved a factor of improvement greater than 2 over the de-
fault implementation. We also measured the number of instructions required
to send and receive MPI messages. MPICH2 Nemesis uses only 500 instruc-
tions to send and receive an eight-byte messages. To evaluate application-level
performance, we used the Halo benchmark, which favors low-latency and high-
bandwidth MPI implementations, and saw a factor of improvement from 1.5 to
2.6 compared to the other implementations we evaluated. These results show
that MPICH2 Nemesis has an efficient implementation of shared-memory com-
munication, which achieves low latency and high bandwidth. Moreover, the
results indicate that MPICH2 Nemesis would be especially suitable for smaller-
grained applications, which are sensitive to latency and bandwidth.

Future work on MPICH2 Nemesis is to implement Nemesis as a full ADI3 de-
vice, which should further improve performance. We also intend to implement
other optimized collective communication operations that take advantage of
shared memory, as well as collective operation primitives provided by network
interfaces.
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