
HAL Id: hal-00344229
https://hal.science/hal-00344229

Submitted on 5 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generic approach to the control of discrete event
systems

Andre Arnold, Xavier Briand, Gérald Point, Aymeric Vincent

To cite this version:
Andre Arnold, Xavier Briand, Gérald Point, Aymeric Vincent. A generic approach to the control of
discrete event systems. Conference on Decision and Control and European Control Conference ECC
(CDC-ECC), 2005, Sevilla, France. pp.1-5. �hal-00344229�

https://hal.science/hal-00344229
https://hal.archives-ouvertes.fr

A generic approach to the control of discrete event systems

André Arnold, Xavier Briand, Ǵerald Point and Aymeric Vincent

Abstract— In this paper, we present extensions of the frame-
work of the µ-calculus which allow us to handle in a very
generic and extensible way many control problems. The funda-
mental new tool is a division operator, and two new modalities
are given as examples which allow us to handle observability
and distinguishability. Furthermore, all this gives rise to a
method for the synthesis of controllers which is implemented
in a tool presented here.

I. INTRODUCTION

We discuss the problem of the synthesis of a controller to
enforce a given process (orplant) to satisfy a given specifi-
cation. We would like to present here our method [1], which
extends the well-known framework of Ramadge and Won-
ham [2] by providing a very generic framework in which we
can solve a variety of synthesis problems.

The most important part of the extension of the Ramadge
and Wonham framework is that specifications are given in a
logic (the modalµ-calculus). It is used to specify properties
of a controlled plant but also restrictions on controller, as
for examplea controller must accept an uncontrollable event
at any point in time. The approach viaµ-calculus formulas
permits specification of more general properties such asan
event is controllable until a failure event occurs.

This allows us to express in a uniform way a wide variety
of control problems. Moreover, finding their solutions can
also be done in a uniform way: namely finding a model of
a formula.

We will first present our method when no observability
requirements are made on the controller. Most notably, this
section will introduce a quotient operator which allows us to
translate a synthesis problem into a problem of extracting
a model from a formula. By generalizing this quotient
operator, we obtain a framework which allows us to compute
decentralized controllers.

In the next section, we describe a tool we have developed
around this framework, and we give pointers to the algo-
rithms we have chosen to implement.

Handling of unobservable events will be postponed until
section IV, because we need to extend theµ-calculus in order
to embed the observability constraints in our framework, and
this comes with a few technical difficulties that would clutter
a first presentation.

II. OUR METHOD

A. Processes

The plant to be controlled and the controller will be mod-
elled as deterministic transition systems. By deterministic,

Laboratoire Bordelais de Recherche en Informatique (LaBRI), Universit́e
Bordeaux 1 & CNRS (UMR 5800)

we mean that in any given state, any action (from a fixed set
Σ) can lead to at most one state. Furthermore, in order to
distinguish some states, every state will be tagged by a set
of labels (from a fixed setΛ). Formally, a labelled process
is defined as follows:

Definition 1: A processis a tuple
〈

Q, q0, δ, λ
〉

whereQ is
a finite set of states,q0 ∈ Q is the initial state of the process,
δ : Q×Σ → Q is its transition function, andλ : Q→ P(Λ)
is its labelling function.

An executionof a process is a sequence of actions that
a process can take (a path in the transition system). In
the framework of Ramadge and Wonham specifications talk
only about the set of executions. In our framework, we will
talk about the tree of executions (unfolding of the transition
system).

From an automata-theoretic point of view, we are switch-
ing from word automata to tree automata. Rather than au-
tomata themselves we will use here an equivalent formalism
that is better suited for our purposes. We will work with
the propositionalµ-calculus which is a modal propositional
logic with fixpoint operators.

Because in our framework both a controller and a plant are
processes, we need to model the action of the controller on
the plant. This is done by defining thesynchronized product
of two processes. Basically, the synchronized product of two
processes is itself a process which keeps track of the states
in which the two processes are and allows only the actions
which both processes allow.

Definition 2: Thesynchronized productP =
〈

Q, q0, δ, λ
〉

of two processes
〈

Q1, q
0
1 , δ1, λ1

〉

and
〈

Q2, q
0
2 , δ2, λ2

〉

is
defined as:

Q = Q1 × Q2, ∀(q1, q2) ∈ Q,∀a ∈ Σ, δ((q1, q2), a) =
(δ(q1, a), δ(q2, a)) if δ(q1, a) andδ(q2, a) are defined and is
undefined otherwise. The initial state is the pair of initial
states:q0 = (q01 , q

0
2), and the labelling is taken here as

the union of both labellings:∀(q1, q2) ∈ Q,λ((q1, q2)) =
λ1(q1) ∪ λ2(q2).

B. Logic

The logic we will use is the modalµ-calculus [3]. We
will present this logic in three steps: the core of the logic is
made up of the classical boolean operators and constants,
then atomic propositions andmodalities allow to express
properties on a bounded part of the behaviours of processes,
and finally, by grouping these expressions in systems of
equations, we can express many properties on finite or

infinite behaviours of processes. For the reader familiar with
other logics in the verification world, this logic is more
expressive than CTL*.

The basis of the logic is the propositional calculus

ϕ ::= ⊥ | ⊤ | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ

wherep ranges over the set of labels.
The semantics of a formula in a given stateq of a given

processP =
〈

Q, q0, δ, λ
〉

is given by

P, q 6|= ⊥; P, q |= ⊤;
P, q |= p if p ∈ λ(q); P, q |= ¬p if p 6∈ λ(q);
P, q |= ϕ1 ∨ ϕ2 if P, q |= ϕ1 or P, q |= ϕ2 holds;
P, q |= ϕ1 ∧ ϕ2 if P, q |= ϕ1 andP, q |= ϕ2 hold.

For every action inΣ, we introduce modalities which allow
us to check if any or all of the neighbours of stateq satisfy
a given subformula.

ϕ ::= 〈a〉ϕ | [a]ϕ

wherea ∈ Σ. We have
P, q |= 〈a〉ϕ if ∃q′, q′ = δ(q, a) andP, q′ |= ϕ
P, q |= [a]ϕ if ∀q′, q′ = δ(q, a) impliesP, q′ |= ϕ

With this logic, we can describe requirements on the
behaviours of processes, but only to a size which is bounded,
roughly by the size of the formula.

For example,[a] (〈b〉⊤ ∧ [c]⊥) describes the states in
which if an actiona is possible, then after that action the
process is in a state in whichb must be possible and noc
can occur.

In order to be able to express properties like “a possible
execution of the system reaches a propertyp”, we need more
expressive power. We think that the most convenient way to
extend the logic for this purpose is to introduce recursivity
in the form of a system of equations.

An equation will be of the formx = ϕ(x), where x
is a variable introduced in the equation. Intuitively, and
semantically,x represents a set of states which satisfy the
fixpoint equation. For example, in order to describe the set of
states from which there exists a path ofb actions which leads
to a propertyp, we can characterize this set as a solution of
the following equation:

x = p ∨ 〈b〉x

However, several sets of states satisfy this equation: for
example in a process where there is a loop consisting ofb’s,
the set of states in the loop will satisfy the equation even if
there is no way to reach a state wherep holds.

This motivates the introduction of a way to select two
particular solutions among the possible ones: the least (set-
wise) solution and the greatest solution are the two solutions
we will consider. Here, if we want to enforce that at some
pointp is reached, we need to consider only the least fixpoint.
If we were interested in finding states which lead top or
loop infinitely in b’s then the greatest fixpoint would be our
solution of choice.

We denote the least and greatest solutions of an equation
respectively by placing aµ or a ν above the ‘equal’ sign.
E.g.: x

µ
= p ∨ 〈b〉x or x

ν
= p ∨ 〈b〉x.

In this article, we would like to avoid the intricacies
needed to present the full power of this logic, but the reader
has to know two things that allow to use its full expres-
siveness. Basically, equations can be used within ordered
equations systems. This allows to compute a first set of states
and then use it in another equation, to express properties like
“from this set of states it is possible to reach a state such
that from that state yet another state is not reachable”.

Finally, it is also possible to make the equations mutually
reference themselves. Mutually referencing equations of dif-
ferent kinds (greatest and least fixpoint) is what gives rise
to the full expressive power of theµ-calculus; in order to
express liveness properties such as “from this state, action b
happens infinitely often”, this mutual recursion is needed.

Results on theµ-calculus: The µ-calculus is studied for
more than twenty years (see e.g. [4]). Among the results,
one is of special interest to us: given aµ-calculus formula,
it is possible to extract all the finite processes which satisfy
this formula. We refer the interested reader to the original
paper [1] covering all the details. This important fact means
that if we can have a specification given by aµ-calculus
formula we can find all the controllers we are interested in.
Building such a formula is the aim of the next sub-section.

C. Quotient and generalized quotient

Basically, the previous statements mean that if we have a
system of equationsϕ, we can compute a processC such
that C |= ϕ. However, in the controller synthesis problem,
we are interested in finding aC such that, given a plantP ,
P ×C |= ϕ. This problem can be reduced to the former, and
for this purpose we introduce a quotient operator defined in
such a way that:

P × C |= ϕ ⇐⇒ C |= ϕ/P

andϕ/P is itself a system of equations.

Technically speaking,ϕ/P should rather be seen as a kind
of product ofϕ with P , in the sense that the quotient is
a system of equations which will have a variable for each
possible pair(ψ, s) whereψ is a subformula ofϕ and s is
a state ofP .

The idea in defining this operator is that the new system
of equations should take into account all the information
that is available fromP . More specifically, given a process
P =

〈

Q, q0, δ, λ
〉

and a system of equationsϕ, every pair
(s, ψ) of a state and a subformula ofϕ is replaced like this
in the following cases:

(s, p) ⊤ if p ∈ λ(s)
⊥ otherwise

(s, [a]ψ′) ⊤ if δ(s, a) doesn’t exist
(s, [a]ψ′) otherwise

(s, 〈a〉ψ′) ⊥ if δ(s, a) doesn’t exist
(s, 〈a〉ψ′) otherwise

Following this idea, it is also possible to define the quotient
of two systems of equationsϕ/ψ, such that

Mod(ϕ/ψ) =
⋃

P∈Mod(ψ)

ϕ/P

where Mod(ϕ) denotes the set of processes which satis-
fy ϕ.

D. Application to the synthesis of controllers

Given a plantP , the aim of the synthesis of a controller
is to find a processC called a controller which, when
supervisingP forces it to satisfy a control objective, given
that for example the controller may not be able to prevent
some of the events from occurring.

This problem can be recast in our framework as follows:
the supervision ofP by C is modelled as the synchronized
product of P and C, and the control objective is given
as a system of equationsϕ. Finding a controllerC such
that P × C |= ϕ can be achieved by extracting a process
satisfying formulaϕ/P , as seen in the previous sub-section.
It so happens that the fact that some events are uncontrollable
can be expressed in theµ-calculus. Given a setΣuc of un-
controllable events, a controller which satisfies the following
formula will not be able to prevent the occurence of events
in Σuc:

x
ν
=

∧

a∈Σuc

〈a〉x ∧
∧

a∈Σ\Σuc

[a]x

In other words, given a controllability constraintψ on the
controller, a processP , and a control objectiveϕ, we can
extract a controller from the system of equationsϕ/P ∧ ψ.

Decentralized control problems can also be treated in our
framework thanks to the extended quotient operator, and the
problem can be stated as follows: given a plantP , a control
objectiveϕ, and controller constraintsψ1 andψ2, find two
controllersC1 andC2 such thatP ×C1×C2 |= ϕ. And this
can be solved like this:






P × C1 × C2 |= ϕ
C1 |= ψ1

C2 |= ψ2

⇐⇒
C1 |= ϕ/ψ2/P ∧ ψ1

C2 |= ϕ/(P × C1) ∧ ψ2

This generalizes to any number of controllers.

III. THE ‘SYNTHESIS’ TOOL

The presentation of our framework in this article is very
simplistic. However, the whole method has been imple-
mented in a tool which will be made available shortly on
http://altarica.labri.fr/ for free.

A. The method in practice

The Synthesis tool [5] is a command-line interpreter
providing the user with commands for handling the objects
involved in the synthesis of controllers:

• Processesdescribe plants and controllers. They are
described in Mec 4 format [6].

• Modal automataare systems of fixpoint equations with
modalities very similar to that presented in the previous
section. Parities (natural numbers) or vectors of parities
can be associated to equations instead of theµ and
ν specifiers. Vectors are used to describe multi-parity
conditions.

• Two-player games with parity conditionsare used to
compute processes encoding the controllers (see below).

Given a plant, a control objective and controller con-
straints, the user has to describe all steps of the method
(this approach gives the user the opportunity to handle
intermediate objects).

In a first step the user has to compute the modal automaton
that must be satisfied by the controller. Here, one applies
quotient and product operations as described in the previous
section; if both operands are modal automata the result is a
modal automaton equipped with a multi-parity condition.

The second step consists in transforming the multi-
parity modal automaton into a parity game. This operation
is mandatory and, unfortunately, generates an exponential
blow-up in the size of the transformed object. This blow-
up comes from the unfolding of the multi-parity condition
using records similar to L.A.R [7]. The user can do the
transformation directly or in several steps; he can change
separately the multi-parity condition into a parity-condition
and the nature of the object.

Finally the user computes a winning strategy in the
parity-game obtained from the modal automaton specifying
the controller. With this strategy,Synthesis produces a
process encoding the expected controller; as explained in the
previous section, in the case of decentralized supervision,
this controller is reused in the first step of the method to
compute the next controller. Winning strategies are obtained
using the algorithm presented in [8]. This algorithm works
in O(nd/2+1) in time andO(nd log(n)) in space wheren
is the number of positions of the game andd the number of
different parities labelling positions.

B. A simple example

To illustrate the use ofSynthesis we consider the plant
P depicted on the figure 1. This process can do three actions
a, c andd; only c andd are controllable. From its initial state
0, these actions might putP on a wrong way modeled by
the state5 (labelled withWW).

5
WW

f

4

f

3
a

f

2
a

f
1

d

c

f

0
initial

a

f

Fig. 1. The plantP

We want to preventP to go the wrong way. We will use
two controllers. The first one,C1, is a low-cost controller
which can break down on an eventf . In order to model the

fact thatf can happen at any time, we have to handlef in
each state ofP ; so we add anf -loop to each state of its
transition system (see figure 1).

To fulfil the safety objective, we need a second controller
C2 which will be used as a standby redundancy.C2 never
fails and is started only when eventf occurs.

The control objectiveφ that must be fulfilled byP ×C1×
C2, specifies that any action puts the supervised system into
a state whereWW is not true:

φ : x
ν
=¬WW ∧









〈a〉x ∧ [c, d, f]x
∨ 〈c〉x ∧ [a, d, f]x
∨ 〈d〉x ∧ [a, c, f]x
∨ 〈f〉x ∧ [a, c, d]x









(e1, . . . , en)x is a shortcut for(e1)x∧ . . . (en)x where(.)
is 〈.〉 or [.]).

Now we have to describe the controller constraints:ψ1,
the constraint forC1, specifies that eventsc andd are under
control until the occurence of eventf :

ψ1 :























x
ν
=









〈a〉x ∧ [c, d]x ∧ 〈f〉 y
∨ 〈a, c〉x ∧ [d]x ∧ 〈f〉 y
∨ 〈a, d〉x ∧ [c]x ∧ 〈f〉 y
∨ 〈a, c, d〉x ∧ 〈f〉 y









y
ν
= 〈a, c, d, f〉 y

ψ2 specifies thatC2 does not take into account eventsc and
d until the failure ofC1 whenf occurs:

ψ2 :























x
ν
= 〈a, c, d〉x ∧ 〈f〉 y

y
ν
=









〈a, f〉 y ∧ [c, d]y
∨ 〈a, c, f〉 y ∧ [d]y
∨ 〈a, d, f〉 y ∧ [c]y
∨ 〈a, c, d, f〉 y









It remains to askSynthesis to compute the controllers;
this task is achieved by executing the tool with the script
listed and explained below.

First we load the plantP and the formulasphi, psi1
and psi2. The next step computes the modal automaton
SpecC1= (φ/ψ2/P)∧ψ1. Then we computeC1 as follows:
pgame produces the parity game associated withSpecC1,
strategy computes a winning strategy which is used by
control to generate the controller. We use the command
minimize in order to reduce the number of states of the
controller.

load plant.mec specs.fam

SpecC1 := product (quotient phi psi2 P) psi1
C1 := minimize (control (strategy \

(pgame SpecC1))

The second controller is obtained in a similar way, except
that we start by computing the systemP C1 supervised by
C1. This process is used to compute the modal automaton
SpecC2=φ/(P × C1) ∧ ψ2 that must be satisfied byC2.

P_C1 := sync P C1
SpecC2 := product (quotient phi P_C1) psi2
C2 := minimize(control (strategy \

(pgame SpecC2)))

Finally we askSynthesis to compute the whole super-
vised systemP C1 C2 and to output it withC1 andC2 using
the dot graph format [9].

P_C1_C2 := sync P_C1 C2

dot C1 C2 P_C1_C2 > result.dot

The two controllers and the supervised system are depicted
on figure 2.

0
initial

1

a

2

f

f 3

a,d

a,f,c,d

f

a

0
initial

1

a

2

f

3

c,d

a,c,d 5

f

f

c,d

a

a,f,c,d

a,d

f

C1 C2

0_0_0
initial

1_1_1
a

0_2_2

f

1_2_5

f

3_3_3
d

f

a

f

3_2_3
d

f

4_3_3
a

f 4_2_3
a

f
f

P × C1 × C2

Fig. 2. The expected controllers and the supervised system. On the left,
C1, it can be partially blocked on an eventf . On the right is depictedC2

the redundant controller. Below, the supervised system which never executes
actionc which would otherwise lead to the wrong way.

IV. PARTIAL INFORMATION AND
UNDECIDABILITY

In the area of controller synthesis, it is very often con-
sidered that the controllers do not know all the behaviors
(i.e. sequences of actions) of the plant but have onlypartial
informationabout it. It would be nice to be able to express
this kind of constraints in our systems of equations, and if
it were the case, we would immediately handle it in our
framework.

A. Notion of unobservability

In most of the studies, the notion of partial information
is the case ofunobservable events: the controller does not
see all the events which the plant reacts to. Therefore,
it amounts to saying that upon receipt of this event, the
controller is not allowed to change state. A logic which
could state such a property would not be “bisimulation
invariant”: it could distinguish between processes which have
the same behaviour but not exactly the same structure. As
it is known that theµ-calculus is bisimulation invariant,
we cannot express unobservability constraints as-is in our
framework.

B. Notion of indistinguishability

One can also take into account the case ofindistinguish-
able events: the controller can detect the occurrence of an
event but is not able to distinguish it from certain events. That
comes down to saying that upon receipt of indistinguish-
able events, the controller is not allowed to reach different
states. Remark that, for each state of the controller, we
can have various classes of indistinguishable events. As for
unobservable events, we cannot express indistinguishability
constraints with the standard modalµ-calculus.

C. Framework extension

This is the motivation behind the introduction of new
modalities, the loop modality, denoted byLOOPa and the
convergence modality, denotedCONVa,b. A state s of a
process satisfies the modalityLOOPa if it has ana-transition
from itself to itself, i.e. ifδ(s, a) = s. Moreover,s satisfies
the modalityCONVa,b if it has an a-transition and ab-
transition such thatδ(s, a) = δ(s, b).

It so happens that these extensions don’t break the major
results of theµ-calculus we are interested in, and that
with this extension, we can express the observability and
indistinguishability constraints a controller has to satisfy.

For instance, with these new modalities, one can specify
that a subset of eventsΣuo ⊂ Σ are unobservable:

x
ν
=

(

∧

a∈Σuo

LOOPa ∨ [a]⊥

)

∧
∧

a∈Σ\Σuo

[a]x

One can also specify a partition{Σ1,Σ2, . . . ,Σn} of Σ of
indistinguishable events, i.e., events are indistinguishable if
they belong to the sameΣi:

x
ν
=





∧

1≤i≤n

∧

a,b∈Σi

CONVa,b ∨ [a]⊥ ∨ [b]⊥



 ∧
∧

a∈Σ

[a]x

Everything we have explained so far extends seemlessly to
these extensions except for the quotient operatorϕ/ψ which
is defined only ifψ is a “classical” system of equations,
without any LOOP and CONV modalities.

D. Undecidability

As soon as two controllers have to satisfy observability
or indistinguishability constraints, the problem of knowing
if two such controllers exist is undecidable. This is proved
in [1] by reducing the Post correspondance problem to
a control problem with two controllers having to satisfy
unobservability constraints.

REFERENCES

[1] A. Arnold, A. Vincent, and I. Walukiewicz, “Games for synthesis
of controllers with partial observation,”Theoretical Computer
Science, vol. 303, no. 1, pp. 7–34, June 2003. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6V1G-487DRHS-
1/2/314a88f9636f4887be6660a19eec19ad

[2] P. Ramadge and W. M. Wonham, “The control of discrete event
systems,” inProceedings of the IEEE, vol. 77, Jan. 1989, pp. 79–98.

[3] D. Kozen, “Results on the propositionalµ-calculus,”Theoretical Com-
puter Science, vol. 27, pp. 333–354, 1983.

[4] A. Arnold and D. Niwínski, Rudiments ofµ-calculus, ser. Studies in
Logic and the Foundations of Mathematics. North-Holland, 2001.

[5] G. Point, “The Synthesis Toolbox - From modal automata to controller
synthesis,” LaBRI, Tech. Rep. RR-1342-05, 2005.

[6] A. Arnold, D. Bégay, and P. Crubillé, Construction and analysis of
transition systems with MEC. World Scientific, 1994.

[7] S. Dziembowski, M. Jurdziński, and I. Walukiewicz, “How much
memory is needed to win infinite games?” inProceedings, 12th Annual
IEEE Symposium on Logic in Computer Science, Warsaw, Poland, 1997,
pp. 99–110.

[8] J. Bernet, D. Janin, and I. Walukiewicz, “Permissive strategies: from
parity games to safety games,”Theoretical Informatics and Applications
(RAIRO), vol. 36, no. 3, pp. 261–275, 2002.

[9] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,”Software — Practice and
Experience, vol. 30, no. 11, pp. 1203–1233, 2000.

