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Abstract. We present a new algorithm for solving Simple Stochastic
Games (SSGs), which is fixed parameter tractable when parametrized
with the number of random vertices. This algorithm is based on an ex-
haustive search of a special kind of positional optimal strategies, the
f-strategies. The running time is O( |Vr|! - (log(|V])|E| + |p|) ), where
[V],|Vr|, |E| and |p| are respectively the number of vertices, random ver-
tices and edges, and the maximum bit-length of a transition probability.
Our algorithm improves existing algorithms for solving SSGs in three
aspects. First, our algorithm performs well on SSGs with few random
vertices, second it does not rely on linear or quadratic programming,
third it applies to all SSGs, not only stopping SSGs.

Introduction

Simple Stochastic Games (SSGs for short) are played by two players Max and
Min in a sequence of steps. Players move a pebble along edges of a directed
graph (V, E). There are three type of vertices: Viax is the set of vertices of
player Max, Vnin the set of vertices of player Min and Vg the set of random
vertices. When the pebble is on a vertex of Virax or Vwmin, the corresponding
player chooses an outgoing edge and moves the pebble along it. When the pebble
is on a random vertex, the successor is chosen randomly according to some fixed
probability distribution: from vertex v € Vg the pebble moves towards vertex
w € V with some probability p(w|v) and the probability that the game stops
is 0, i.e. 3, cy P(wlv) = 1. An SSG is depicted on Figure 1, with vertices of
VMax represented as O, vertices of Vi represented as 0, and vertices of Vg
represented as <.

Player Max and Min have opposite goals, indeed player Max wants the pebble
to reach a special vertex ¢ € V called the target vertez, if this happens the play
is won by player Max. In the opposite case, the play proceeds forever without
reaching ¢ and is won by player Min. For technical reasons, we assume that ¢
is a vertex of player Max and is absorbing. Strategies are used by players to
choose their moves, a strategy tells where to move the pebble depending on the
sequence of previous vertices, i.e. the finite path followed by the pebble from
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Fig. 1. A Simple Stochastic Game.

the beginning of the play. The value of a vertex v is the maximal probability
with which player Max can enforce the play to reach the target vertex. When
player Max, respectively player Min, uses an optimal strategy he ensures reaching
the target with a probability greater, respectively smaller, than the value of the
initial vertex.

We are interesting in solving SSGs, that is computing values and optimal
strategies.

Ezisting algorithms for solving SSGs. The complexity of solving SSGs was first
considered by Condon [Con92|, who proved that deciding whether the value of
an SSG is greater than § is in NP N co-NP. The algorithm provided in [Con92]
consists in first transforming the input SSG in a stopping SSG where the prob-
ability to reach a sink vertex is 1. The transformation keeps unchanged the fact
that the initial vertex has value strictly greater than % but induces a quadratic
blowup of the size of the SSG. The algorithm then non-deterministically guesses
the values of vertices, which are rational numbers of linear size, and checks that
these values are the unique solutions of some local optimality equations.

Three other kinds of algorithms for solving SSGs are presented in [Con93].
These algorithms require transformation of the initial SSG into an equivalent
stopping SSG and are based on local optimality equations. First algorithm com-
putes values of vertices using a quadratic program with linear constraints. Second
algorithm computes iteratively from below the values of the SSGs, and the third
is a strategy improvement algorithm a la Hoffman-Karp. These two last algo-
rithms require solving an exponential number of linear programs, as it is the
case for the algorithm recently proposed in [Som05].

Finally, these four algorithms suffer three main drawbacks.

First, these algorithms rely on solving either an exponential number of linear
programs or a quadratic program, which may have prohibitive algorithmic cost
and makes the implementation tedious.



Second, these algorithms only apply to the special class of stopping SSGs.
Although it is possible to transform any SSG into a stopping SSG with arbitrar-
ily small change of values, computing exact values this way requires to modify
drastically the original SSG, introducing either |V |? new random vertices or new
transition probabilities of bit-length quadratic in the original bit-length. This
also makes the implementation tedious.

Third, the running time of these algorithms may @ priori be exponential
whatever be the number of random vertices of the input SSG, including the case
of SSGs with no random vertices at all, also known as reachability games on
graphs. However it is well-known that reachability games on graphs are solvable
in linear time.

Notice that randomized algorithms do not perform much better since the
best randomized algorithms [Lud95,Hal07] known so far run in sub-exponential
expected time e@(V™),

Our results. In this paper we present an algorithm that computes values and
optimal strategies of an SSG in time O( |[V&|!- (log(|[V])|E| + |p|) ), where |V&]
is the number of random vertices, |V| is the number of vertices and |p| is the
maximal bit-length of transition probabilities.

The key point of our algorithm is the fact that optimal strategies may be
looked for in a strict subset of positional strategies, called the class of f-strategies.
The f-strategies are in correspondence with permutations of random vertices.
Our algorithm does an exhaustive search of optimal f-strategies among the |Vz|!
available ones and check their optimality. Optimality is easy to check, it consists
in computing a reachability probability in a Markov Chain with Vg states, which
amounts to solving a linear system with at most |Vg| equations.

Comparison with existing work. We improve existing results by three aspects: our
algorithm performs better on SSGs with few random vertices, it is arguably much
simpler, and we provide new insight about the structure of optimal strategies.

Our algorithm performs much better on SSGs with few random vertices than
previously known algorithms. Indeed, its complexity is O( |Vr|!- (log(|V])|E| +
|p|) ), hence when there are no random vertices at all, our algorithm matches
the usual quadratic complexity for solving reachability games on graphs. When
the number of random vertices is fixed, our algorithm performs in polynomial
time, and on the class of SSGs such that [Vi| < v/|VaMax| + |Vmin| our algorithm
is sub-exponential.

Whereas the complexity is optimal when there are no random vertices, this is
no more the case when there are no vertices for player Max or Min. In that case,
there exists polynomial time algorithm, whereas the complexity of our algorithm
remains exponential in the number of random vertices.

Our algorithm is arguably simpler than previously known algorithms. In-
deed, it does not require use of linear or quadratic programming. Although
linear programs can be solved in polynomial time [Kac79,Ren88], this requires
high-precision arithmetic. By contrast, our algorithm is very elementary: it enu-



merates permutations of the random vertices and for each permutation, it solves
a linear system of equations.

Our algorithm is also simpler because it applies directly to any kind of SSGs,
whereas previously known algorithms require the transformation of the input
SSG into a stopping SSG of quadratic size. As a consequence, we can use the
same algorithm for solving other types of infinite duration game; this is ongoing

work.
The full paper is available online [GHO7].
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