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Abstract

We define and examine priority mean-payoff games — a natural

extension of parity games. By adapting the notion of Blackwell op-

timality borrowed from the theory of Markov decision processes we

show that priority mean-payoff games can be seen as a limit of special

multi-discounted games.

1 Introduction

One of the major achievements of the theory of stochastic games is the re-
sult of Mertens and Neyman [15] showing that the values of mean-payoff
games are the limits of the values of discounted games. Since the limit of
the discounted payoff is related to Abel summability while the mean-payoff
is related to Cesàro summability of infinite series, and classical abelian and
tauberian theorems establish tight links between these two summability
methods, the result of Mertens and Neyman, although technically very dif-
ficult, comes with no surprise.

In computer science similar games appeared with the work of Gurevich
and Harrington [12] (games with Muller condition) and Emerson and Jutla
[5] and Mostowski [16] (parity games).

However discounted and mean-payoff games also seem very different from
Muller/parity games. The former, inspired by economic applications, are
games with real valued payments, the latter, motivated by logics and au-
tomata theory, have only two outcomes, the player can win or lose.

The theory of parity games was developed independently from the the-
ory of discounted/mean-payoff games [11] even though it was noted by Jur-
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dziński [14] that deterministic parity games on finite arenas can be reduced
to mean-payoff games1.

Recently de Alfaro, Henzinger and Majumdar [3] presented results that
indicate that it is possible to obtain parity games as an appropriate limit
of multi-discounted games. In fact, the authors of [3] use the language of
the µ-calculus rather than games, but as the links between µ-calculus and
parity games are well-known since the advent [5], it is natural to wonder
how discounted µ-calculus from [3] can be reflected in games.

The aim of this paper is to examine in detail the links between discounted
and parity games suggested by [3]. In our study we use the tools and
methods that are typical for classical game theory but nearly never used for
parity games. We want to persuade the reader that such tools, conceived
for games inspired by economic applications, can be successfully applied to
games that come from computer science.

As a by-product we obtain a new class of games — priority mean-payoff
games — that generalise in a very natural way parity games but contrary
to the latter allow to quantify the gains and losses of the players.

The paper is organised as follows.
In Section 2 we introduce the general framework of deterministic zero-

sum infinite games used in the paper, we define optimal strategies, game
values and introduce positional (i.e. memoryless) strategies.

In Section 3 we present discounted games. Contrary to classical game
theory where there is usually only one discount factor, for us it is crucial to
work with multi-discounted games where the discount factor can vary from
state to state.

Section 4 is devoted to the main class of games examined in this paper
— priority mean-payoff games. We show that for these games both players
have optimal positional strategies (on finite arenas).

In classical game theory there is a substantial effort to refine the notion
of optimal strategies. To this end Blackwell [2] defined a new notion of op-
timality that allowed him a fine-grained classification of optimal strategies
for mean-payoff games. In Section 5 we adapt the notion of Blackwell op-
timality to our setting. We use Blackwell optimality to show that in some
strong sense priority mean-payoff games are a limit of a special class of
multi-discounted games.

The last Section 6 discusses briefly some other applications of Blackwell
optimality.

Since the aim of this paper is not only to present new results but also to
familiarize the computer science community with methods of classical game
theory we have decided to make this paper totally self-contained. We present

1 But this reduction seems to be proper for deterministic games and not possible for
perfect information stochastic games.



2. GAMES 3

all proofs, even the well-known proof of positionality of discounted games2.
For the same reason we also decided to limit ourselves to deterministic
games. Similar results can be proved for perfect information stochastic
games [10, 9] but the proofs become much more involved. We think that
the deterministic case is still of interest and has the advantage of beeing
accessible through elementary methods.

The present paper is an extended and improved version of [8].

2 Games

An arena is a tuple A = (S1, S2, A), where S1 and S2 are the sets of states
that are controlled respectively by player 1 and player 2, A is the set of
actions.

By S = S1 ∪ S2 we denote the set of all states. Then A ⊆ S × S,
i.e. each action a = (s′, s′′) ∈ A is a couple composed of the source state
source(a) = s′ and the target state target(a) = s′′. In other words, an arena
is just as a directed graph with the set of vertices S partitioned onto S1 and
S2 with A as the set of edges.

An action a is said to be available at state s if source(a) = s and the set
of all actions available at s is denoted by A(s).

We consider only arenas where the set of states is finite and such that
for each state s the set A(s) of available actions is non-empty.

A path in arena A is a finite or infinite sequence p = s0s1s2 . . . of states
such that ∀i, (si, si+1) ∈ A. The first state is the source of the p, source(p) =
s0, if p is finite then the last state is the target of p, target(p).

Two players 1 and 2 play on A in the following way. If the current state
s is controlled by player P ∈ {1, 2}, i.e. s ∈ SP , then player P chooses an
action a ∈ A(s) available at s, this action is executed and the system goes
to the state target(a).

Starting from an initial state s0, the infinite sequence of consecutive
moves of both players yields an infinite sequence p = s0s1s2 . . . of visited
states. Such sequences are called plays, thus plays in this game are just
infinite paths in the underlying arena A.

We shall also use the term “a finite play” as a synonym of “a finite path”
but “play” without any qualifier will always denote an infinite play/path.

A payoff mapping

u : Sω → R (1.1)

maps infinite sequences of states to real numbers. The interpretation is that
at the end of a play p player 1 receives from player 2 the payoff u(p) (if

2 But this can be partially justified since we need positionality of multi-discounted games
while in the literature usually simple discounted games are treated. We should admit
however that passing from discounted to multi-discounted games needs only minor
obvious modifications.
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u(p) < 0 then it is rather player 2 that receives from player 1 the amount
|u(p)|).

A game is couple (A, u) composed of an arena and a payoff mapping.
The obvious aim of player 1 (the maximizer) in such a game is to maxi-

mize the received payment, the aim of player 2 (the minimizer) is opposite,
he wants to minimize the payment paid to his adversary.

A strategy of a player P is his plan of action that tells him which action
to take when the game is at a state s ∈ SP . The choice of the action can
depend on the whole past sequence of moves.

Therefore a strategy for player 1 is a mapping

σ : {p | p a finite play with target(p) ∈ S1} −→ S (1.2)

such that for each finite play p with s = target(p) ∈ S1, (s, σ(p)) ∈ A(s).
Strategy σ of player 1 is said to be positional if for every state s ∈ S1

and every finite play p with target(p) = s, σ(p) = σ(s). Thus the action
chosen by a positional strategy depends only on the current state, previously
visited states are irrelevant. Therefore a positional strategy of player 1 can
be identified with a mapping

σ : S1 → S (1.3)

such that ∀s ∈ S1, (s, σ(s)) ∈ A(s).
A finite or infinite play p = s0s1 . . . is said to be consistent with a

strategy σ of player 1 if, for each i ∈ N such that si ∈ S1, we have
(si, σ(s0 . . . si−1)) ∈ A.

Strategies, positional strategies and consistent plays are defined in the
analogous way for player 2 with S2 replacing S1.

In the sequel Σ and T will stand for the set of strategies for player 1 and
player 2 while Σp and Tp are the corresponding sets of positional strategies.

The letters σ and τ , with subscripts or superscripts if necessary, will be
used to denote strategies of player 1 and player 2 respectively.

Given a pair of strategies σ ∈ Σ and τ ∈ T and an initial state s, there
exists a unique infinite play in arena A, denoted p(s, σ, τ), consistent with
σ and τ and such that s = source(p(s, σ, τ)).

Definition 2.1. Strategies σ" ∈ Σ and τ " ∈ T are optimal in the game
(A, u) if

∀s ∈ S, ∀σ ∈ Σ, ∀τ ∈ T ,

u(p(s, σ, τ ")) ≤ u(p(s, σ", τ ")) ≤ u(p(s, σ", τ)) . (1.4)
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Thus if strategies σ" and τ " are optimal then the players do not have
any incentive to change them unilaterally: player 1 cannot increase his gain
by switching to another strategy σ while player 2 cannot decrease his losses
by switching to another strategy τ .

In other words if player 2 plays according to τ " then the best response
of player 1 is to play with σ", no other strategy can do better for him.
Conversely, if player 1 plays according to σ" then the best response of player
2 is to play according to τ " as no other strategy does better to limit his losses.

We say that a payoff mapping u admits optimal positional strategies if for
all games (A, u) over finite arenas there exist optimal positional strategies
for both players. We should emphasize that the property defined above is a
property of the payoff mapping and not a property of a particular game, we
require that both players have optimal positional strategies for all possible
games over finite arenas.

It is important to note that zero-sum games that we consider here, i.e.
the games where the gain of one player is equal to the loss of his adversary,
satisfy the exchangeability property for optimal strategies:

for any two pairs of optimal strategies (σ", τ ") and (σ#, τ#), the pairs
(σ#, τ ") and (σ", τ#) are also optimal and, moreover,

u(p(s, σ", τ ")) = u(p(s, σ#, τ#)) ,

i.e. the value of u(p(s, σ", τ ")) is independent of the choice of the optimal
strategies — this is the value of the game (A, u) at state s.

We end this general introduction with two simple lemmas.

Lemma 2.2. Let u be a payoff mapping admitting optimal positional
strategies for both players.

(A) Suppose that σ ∈ Σ is any strategy while τ " ∈ Tp is positional. Then
there exists a positional strategy σ" ∈ Σp such that

∀s ∈ S, u(p(s, σ, τ ")) ≤ u(p(s, σ", τ ")) . (1.5)

(B) Similarly, if τ ∈ T is any strategy and σ" ∈ Σp a positional strategy
then there exists a positional strategy τ " ∈ Tp such that

∀s ∈ S, u(p(s, σ", τ ")) ≤ u(p(s, σ", τ)) .

Proof. We prove (A), the proof of (B) is similar. Take any strategies σ ∈ Σ
and τ " ∈ Tp. Let A′ be a subarena of A obtained by restricting the actions
of player 2 to the actions given by the strategy τ ", i.e. in A′ the only
possible strategy for player 2 is the strategy τ ". The actions of player 1 are
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not restricted, i.e. in A′ player 1 has the same available actions as in A, in
particular σ is a valid strategy of player 1 on A′. Since u admits optimal
positional strategies, player 1 has an optimal positional strategy σ" on A′.
But (1.5) is just the optimality condition of σ" on A′. q.e.d.

Lemma 2.3. Suppose that the payoff mapping u admits optimal positional
strategies. Let σ" ∈ Σp and τ " ∈ Tp be positional strategies such that

∀s ∈ S, ∀σ ∈ Σp, ∀τ ∈ Tp,

u(p(s, σ, τ ")) ≤ u(p(s, σ", τ ") ≤ u(p(s, σ", τ)) , (1.6)

i.e. σ" and τ " are optimal in the class of positional strategies. Then σ" and
τ " are optimal in the class of all strategies.

Proof. Suppose that

∃τ ∈ T , u(p(s, σ", τ)) < u(p(s, σ", τ ")) . (1.7)

By Lemma 2.2 (B) there exists a positional strategy τ# ∈ Tp such that
u(p(s, σ", τ#)) ≤ u(p(s, σ", τ)) < u(p(s, σ", τ ")), contradicting (1.6). Thus
∀τ ∈ T , u(p(s, σ", τ ")) ≤ u(p(s, σ", τ)). The left hand side of (1.4) can be
proved in a similar way. q.e.d.

3 Discounted Games

Discounted games where introduced by Shapley [19] who proved that stochas-
tic discounted games admit stationary optimal strategies. Our exposition
follows very closely the original approach of [19] and that of [17]. Neverthe-
less we present a complete proof for the sake of completeness.

Arenas for discounted games are equipped with two mappings defined
on the set S of states: the discount mapping

λ : S −→ [0, 1)

associates with each state s a discount factor λ(s) ∈ [0, 1) and the reward
mapping

r : S −→ R (1.8)

maps each state s to a real valued reward r(s).
The payoff mapping

uλ : Sω −→ R

for discounted games is defined in the following way: for each play p =
s0s1s2 . . . ∈ Sω

uλ(p) = (1 − λ(s0))r(s0) + λ(s0)(1 − λ(s1))r(s1) + λ(s0)λ(s1)(1 − λ(s2))r(s2) + . . .

=
∞
∑

i=0

λ(s0) . . . λ(si−1)(1 − λ(si))r(si) . (1.9)
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Usually when discounted games are considered it is assumed that there is
only one discount factor, i.e. that there exists λ ∈ [0, 1) such that λ(s) = λ
for all s ∈ S. But for us it is essential that discount factors depend on the
state.

It is difficult to give an intuitively convincing interpretation of (1.9) if
we use this payoff mapping to evaluate infinite games. However, there is a
natural interpretation of (1.9) in terms of stopping games, in fact this is the
original interpretation given by Shapley[19].

In stopping games the nature introduces an element of uncertainty. Sup-
pose that at a stage i a state si is visited. Then, before the player controlling
si is allowed to execute an action, a (biased) coin is tossed to decide if the
game stops or if it will continue. The probability that the game stops is
1 − λ(si) (thus λ(si) gives the probability that the game continues). Let
us note immediately that since we have assumed that 0 ≤ λ(s) < 1 for all
s ∈ S, the stopping probabilities are strictly positive therefore the game
actually stops with probability 1 after a finite number of steps.

If the game stops at si then player 1 receives from player 2 the payment
r(si). This ends the game, there is no other payment in the future.

If the game does not stop at si then there is no payment at this stage
and the player controlling the state si is allowed to choose an action to
execute3.

Now note that λ(s0) . . . λ(si−1)(1 − λ(si)) is the probability that the
game have not stopped at any of the states s0, . . . , si−1 but it does stop at
state si. Since this event results in the payment r(si) received by player 1,
Eq. (1.9) gives in fact the payoff expectation for a play s0s1s2 . . ..

Shapley [19] proved4 that

Theorem 3.1 (Shapley). Discounted games (A, uλ) over finite arenas ad-
mit optimal positional strategies for both players.

Proof. Let RS be the vector space consisting of mappings from S to R. For
f ∈ RS , set ||f || = sups∈S |f(s)|. Since S is finite || · || is a norm for which
RS is complete. Consider an operator Ψ : RS −→ RS , for f ∈ RS and
s ∈ S,

Ψ[f ](s) =

{

max(s,s′)∈A(s)(1 − λ(s))r(s) + λ(s)f(s′) if s ∈ S1

min(s,s′)∈A(s)(1 − λ(s))r(s) + λ(s)f(s′) if s ∈ S2 .

Ψ[f ](s) can be seen as the value of a one shot game that gives the payoff
(1−λ(s))r(s)+λ(s)f(s′) if the player controlling the state s choses an action
(s, s′) ∈ A(s).

3 More precisely, if the nature does not stop the game then the player controlling the
current state is obliged to execute an action, players cannot stop the game by them-
selves.

4 In fact, Shapley considered a much larger class of stochastic games.
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We can immediately note that Ψ is monotone, if f ≥ g then Ψ[f ] ≥ Ψ[g],
where f ≥ g means that f(s) ≥ g(s) for all states s ∈ S.

Moreover, for any positive constant c and f ∈ RS

Ψ[f ] − cλ1 ≤ Ψ[f − c · 1] and Ψ[f + c · 1] ≤ Ψ[f ] + cλ1 , (1.10)

where 1 is the constant mapping, 1(s) = 1 for each state s, and λ =
sups∈S λ(s).

Therefore, since

f − ||f − g|| · 1 ≤ g ≤ f + ||f − g|| · 1 ,

we get
Ψ[f ] − λ||f − g|| · 1 ≤ Ψ[g] ≤ Ψ[f ] + λ||f − g|| · 1 ,

implying
||Ψ[f ] −Ψ[g]|| ≤ λ||f − g|| .

By Banach contraction principle, Ψ has a unique fixed point w ∈ RS ,
Ψ[w] = w. From the definition of Ψ we can see that this unique fixed point
satisfies the inequalities

∀s ∈ S1, ∀(s, s′) ∈ A(s), w(s) ≥ (1 − λ(s))r(s) + λ(s)w(s′) (1.11)

and

∀s ∈ S2, ∀(s, s′) ∈ A(s), w(s) ≤ (1 − λ(s))r(s) + λ(s)w(s′) . (1.12)

Moreover, for each s ∈ S there is an action ξ(s) = (s, s′) ∈ A(s) such that

w(s) = (1 − λ(s))r(s) + λ(s)w(s′) . (1.13)

We set σ"(s) = ξ(s) for s ∈ S1 and τ "(s) = ξ(s) for s ∈ S2 and we show
that σ" and τ " are optimal for player 1 and 2. Suppose that player 1 plays
according to the strategy σ" while player 2 according to some strategy τ . Let
p(s0, σ", τ) = s0s1s2 . . .. Then, using (1.12) and (1.13), we get by induction
on k that

w(s0) ≤
k

∑

i=0

λ(s0) . . . λ(si−1)(1 − λ(si))r(si) + λ(s0) . . . λ(sk)w(sk+1) .

Tending k to infinity we get

w(s0) ≤ uλ(p(s0, σ
", τ)) .

In a similar way we can establish that for any strategy σ of player 1,

w(s0) ≥ uλ(p(s0, σ, τ
"))

and, finally, that
w(s0) = uλ(p(s0, σ

", τ ")) ,

proving the optimality of σ" and τ ". q.e.d.
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4 Priority mean-payoff games

In mean-payoff games the players try to optimize (maximize/minimize) the
mean value of the payoff received at each stage. In such games the reward
mapping

r : S −→ R (1.14)

gives, for each state s, the payoff received by player 1 when s is visited. The
payoff of an infinite play is defined as the mean value of daily payments:

um(s0s1s2 . . .) = lim sup
k

1

k + 1

k
∑

i=0

r(si) , (1.15)

where we take lim sup rather than the simple limit since the latter may
not exist. As proved by Ehrenfeucht and Mycielski [4], such games admit
optimal positional strategies; other proofs can be found for example in [1, 7].

We slightly generalize mean-payoff games by equipping arenas with a
new mapping

w : S −→ R+ (1.16)

associating with each state s a strictly positive real number w(s), the weight
of s. We can interpret w(s) as the amount of time spent at state s each
time when s is visited. In this setting r(s) should be seen as the payoff by
a time unit when s is visited, thus the mean payoff received by player 1 is

um(s0s1s2 . . .) = lim sup
k

∑k
i=0 w(si)r(si)
∑k

i=0 w(si)
. (1.17)

Note that in the special case when the weights are all equal to 1, the weighted
mean value (1.17) reduces to (1.15).

As a final ingredient we add to our arena a priority mapping

π : S −→ Z+ (1.18)

giving a positive integer priority π(s) of each state s.
We define the priority of a play p = s0s1s2 . . . as the smallest priority

appearing infinitely often in the sequence π(s0)π(s1)π(s2) . . . of priorities
visited in p:

π(p) = lim inf
i

π(si) . (1.19)

For any priority a, let 1a : S −→ {0, 1} be the indicator function of the set
{s ∈ S | π(s) = a}, i.e.

1a(s) =

{

1 if π(s) = a

0 otherwise.
(1.20)
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Then the priority mean payoff of a play p = s0s1s2 . . . is defined as

upm(p) = lim sup
k

∑k
i=0 1π(p)(s) · w(si) · r(si)
∑k

i=0 1π(p)(si) · w(si)
. (1.21)

In other words, to calculate priority mean payoff upm(p) we take weighted
mean payoff but with the weights of all states having priorities different from
π(p) shrunk to 0. (Let us note that the denominator

∑k
i=0 1π(p)(si) · w(si)

is different from 0 for k large enough, in fact it tends to infinity since
1π(p)(si) = 1 for infinitely many i. For small k the numerator and the
denominator can be equal to 0 and then, to avoid all misunderstanding, it
is convenient to assume that the indefinite value 0/0 is equal to −∞.)

Suppose that for all states s,

• w(s) = 1 and

• r(s) is 0 if π(s) is even, and r(s) is 1 if π(s) is odd.

Then the payoff obtained by player 1 for any play p is either 1 if π(p) is odd,
or 0 if π(p) is even. If we interpret the payoff 1 as the victory of player 1, and
payoff 0 as his defeat then such a game is just the usual parity game [5, 11].

It turns out that

Theorem 4.1. For any arena A the priority mean-payoff game (A, upm)
admits optimal positional strategies for both players.

There are many possible ways to prove Theorem 4.1, for example by
adapting the proofs of positionality of mean payoff games from [4] and [1]
or by verifying that upm satisfies sufficient positionality conditions given in
[7]. Below we give a complete proof based mainly on ideas from [7, 20].

A payoff mapping is said to be prefix independent if for each play p
and for each factorization p = xy with x finite we have u(p) = u(y), i.e.
the payoff does not depend on finite prefixes of a play. The reader can
readily persuade herself that the priority mean payoff mapping upm is prefix
independent.

Lemma 4.2. Let u be a prefix-independent payoff mapping such that both
players have optimal positional strategies σ" and τ " in the game (A, u). Let
val(s) = p(s, σ", τ "), s ∈ S, be the game value for an initial state s.

For any action (s, t) ∈ A,

(1) if s ∈ S1 then val(s) ≥ val(t),

(2) if s ∈ S2 then val(s) ≤ val(t),

(3) if s ∈ S1 and σ"(s) = t then val(s) = val(t),
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(4) if s ∈ S2 and τ "(s) = t then val(s) = val(t).

Proof. (1) This is quite obvious. If s ∈ S1, (s, t) ∈ A and val(s) < val(t)
then for a play starting at s player 1 could secure for himself at least val(t) by
executing first the action (s, t) and next playing with his optimal strategy.
But this contradicts the definition of val(s) since from s player 2 has a
strategy that limits his losses to val(s).

The proof of (2) is obviously similar.
(3) We know by (1) that if s ∈ S1 and σ"(s) = t then val(s) ≥ val(t).

This inequality cannot be strict since from t player 2 can play in such a way
that his loss does not exceed val(t).

(4) is dual to (1).
q.e.d.

Proof of Theorem 4.1. We define the size of an arena A to be the difference
|A| − |S| of the number of actions and the number of states and we carry
the proof by induction on the size of A. Note that since for each state there
is at least one available action the size of each arena is ≥ 0.

If for each state there is only one available action then the number
of actions is equal to the number of states, the size of A is 0, and each
player has just one possible strategy, both these strategies are positional
and, obviously, optimal.

Suppose that both players have optimal positional strategies for arenas
of size < k and let A be of size k, k ≥ 1.

Then there exists a state with at least two available actions. Let us fix
such a state t, we call it the pivot. We assume that t is controlled by player 1

t ∈ S1 (1.22)

(the case when it is controlled by player 2 is symmetric).
Let A(t) = AL(t)∪AR(t) be a partition of the set A(t) of actions available

at t onto two disjoint non-empty sets. Let AL and AR be two arenas, we
call them left and right arenas, both of them having the same states as
A, the same reward, weight and priority mappings and the same available
actions for all states different from t. For the pivot state t, AL and AR

have respectively AL(t) and AR(t) as the sets of available actions. Thus,
since AL and AR have less actions than A, their size is smaller than the
size of A and, by induction hypothesis, both players have optimal positional
strategies: (σ"

L, τ "
L) on AL and (σ"

R, τ "
R) on AR.

We set valL(s) = upm(p(s, σ"
L, τ "

L)) and valR(s) = upm(p(s, σ"
R, τ "

R)) to
be the values of a state s respectively in the left and the right arena.

Without loss of generality we can assume that for the pivot state t

valL(t) ≤ valR(t) . (1.23)
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We show that this implies that

∀s ∈ S, valL(s) ≤ valR(s) . (1.24)

Suppose the contrary, i.e. that the set

X = {s ∈ S | valL(s) > valR(s)}

is non-empty. We define a positional strategy σ∗ for player 1

σ∗(s) =

{

σ"
L(s) if s ∈ X ∩ S1

σ"
R(s) if s ∈ (S \ X) ∩ S1.

(1.25)

Note that, since the pivot state t does not belong to X , for s ∈ X ∩ S1,
σ"

L(s) is valid action for player 1 not only in AL but also in AR, therefore
the strategy σ∗ defined above is a valid positional strategy on the arena AR.

We claim that

For games on AR starting at a state s0 ∈ X strategy σ∗ guarantees that

player 1 wins at least valL(s0) (against any strategy of player 2).
(1.26)

Suppose that we start a game on AR at a state s0 and player 1 plays
according to σ∗ while player 2 uses any strategy τ . Let

p(s0, σ
∗, τ) = s0s1s2 . . . (1.27)

be the resulting play. We define

∀s ∈ S, val(s) =

{

valL(s) for s ∈ X,

valR(s) for s ∈ S \ X.
(1.28)

We shall show that the sequence val(s0), val(s1), val(s2), . . . is non-decreasing,

∀i, val(si) ≤ val(si+1) . (1.29)

Since strategies σ"
L and σ"

R are optimal in AL and AR, Lemma 4.2 and
(1.28) imply that for all i

val(si) = valL(si) ≤ valL(si+1) if si ∈ X, (1.30)

and

val(si) = valR(si) ≤ valR(si+1) if si ∈ S \ X. (1.31)

To prove (1.29) there are four cases to examine:
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(1) Suppose that si and si+1 belong to X . Then val(si+1) = valL(si+1) and
(1.29) follows from (1.30).

(2) Suppose that si and si+1 belong to S \X . Then val(si+1) = valR(si+1)
and now (1.29) follows from (1.31).

(3) Let si ∈ X and si+1 ∈ S \X . Then (1.29) follows from (1.30) and from
the fact that valL(si+1) ≤ valR(si+1) = val(si+1).

(4) Let si ∈ S\X and si+1 ∈ X . Then valR(si+1) < valL(si+1) = val(si+1),
which, by (1.31), implies (1.29). Note that in this case we have the strict
inequality val(si) < val(si+1).

This terminates the proof of (1.29).
Since the set {val(s) | s ∈ S} is finite (1.29) implies that the sequence

val(si), i = 0, 1, . . . , ultimately constant. But examining the case (4) above
we have established that each passage from S \X to X strictly increases the
value of val. Thus from some stage n onward all states si, i ≥ n, are either
in X or in S \ X . Therefore, according to (1.25), from the stage n onward
player 1 always plays either σ"

L or σ"
R and the optimality of both strategies

assures that he wins at least val(sn), i.e.

upm(p(s0, σ
∗, τ)) = upm(s0s1 . . .) = upm(snsn+1sn+2 . . .) ≥ val(sn) ≥ val(s0).

In particular, if s0 ∈ X then using strategy σ∗ player 1 secures for himself
the payoff of at least val(s0) = valL(s0) against any strategy of player
2, which proves (1.26). On the other hand, the optimality of τ "

R implies

that player 2 can limit his losses to valR(s0) by using strategy τ "
R. But how

player 1 can win at least valL(s0) while player 2 loses no more than valR(s0)
if valL(s0) > valR(s0) for s0 ∈ X? We conclude that the set X is empty
and (1.24) holds.

Now our aim is to prove that (1.23) implies that the strategy σ"
R is

optimal for player 1 not only in AR but also for games on the arena A.
Clearly player 1 can secure for himself the payoff of at least valR(s) by
playing according to σ"

R on A. We should show that he cannot do better.
To this end we exhibit a strategy τ " for player 2 that limits the losses of
player 2 to valR(s) on the arena A.

At each stage player 2 will use either his positional strategy τ "
L optimal

in AL or strategy τ "
R optimal in AR. However, in general neither of these

strategies is optimal for him in A and thus it is not a good idea for him
to stick to one of these strategies permanently, he should rather adapt his
strategy to the moves of his adversary. To implement the strategy τ " player
2 will need one bit of memory (the strategy τ " we construct here is not
positional). He uses this memory to remember if at the last passage through
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the pivot state t player 1 took an action of AL(t) or an action of AR(t). In
the former case player 2 plays using the strategy τ "

L, in the latter case he

plays using the strategy τ "
R. In the periods between two passages through

t player 2 does not change his strategy, he sticks either to τ "
L or to τ "

R,
he switches from one of these strategies to the other only when compelled
by the action taken by player 1 during the last visit at the pivot state5.
It remains to specify which strategy player 2 uses until the first passage
through t and we assume that it is the strategy τ "

R.
Let s0 ∈ S be an initial state and let σ be some, not necessarily posi-

tional, strategy of 1 for playing on A. Let

p(s0, σ, τ
") = s0s1s2 . . . (1.32)

be the resulting play. Our aim is to show that

upm(p(s0, σ, τ
")) ≤ valR(s0) . (1.33)

If p(s0, σ, τ ") never goes through t then p(s0, σ, τ ") is in fact a play in AR

consistent with τ "
R which immediately implies (1.33).

Suppose now that p(s0, σ, τ ") goes through t and let k be the first stage
such that sk = t. Then the initial history s0s1 . . . sk is consistent with τ "

R

which, by Lemma 4.2, implies that

valR(t) ≤ valR(s0) . (1.34)

If there exists a stage n such that sn = t and player 2 does not change
his strategy after this stage6, i.e. he plays from the stage n onward either τ "

L

or τ "
R then the suffix play snsn+1 . . . is consistent with one of these strate-

gies implying that either upm(snsn+1 . . .) ≤ valL(t) or upm(snsn+1 . . .) ≤
valR(t). But upm(snsn+1 . . .) = upm(p(s0, σ, τ ")) and thus (1.34) and (1.23)
imply (1.33).

The last case to consider is when player 2 switches infinitely often be-
tween τ "

R and τ "
L.

In the sequel we say that a non-empty sequence of states z contains only
actions of AR if for each factorization z = z′s′s′′z′′ with s′, s′′ ∈ S, (s′, s′′)
is an action of AR. (Obviously, there is in a similar definition for AL.)

5 Note the intuition behind the strategy τ !: If at the last passage through the pivot
state t player 1 took an action of AL(t) then, at least until the next visit to t, the play
is like the one in the game AL (all actions taken by the players are actions of AL)
and then it seems reasonable for player 2 to respond with his optimal strategy on AL.
On the other hand, if at the last passage through t player 1 took an action of AR(t)
then from this moment onward until the next visit to t we play like in AR and then
player 2 will respond with his optimal strategy on AR.

6 In particular this happens if p(s0, σ, τ!) goes finitely often through t.
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Since now we consider the case when the play p(s0, σ, τ ") contains in-
finitely many actions of AL(t) and infinitely many actions of AR(t) there
exists a unique infinite factorization

p(s0, σ, τ
") = x0x1x2x3 . . . , (1.35)

such that

• each xi, i ≥ 1, is non-empty and begins with the pivot state t,

• each path x2it, i = 0, 1, 2, . . . contains only actions of AR while

• each path x2i+1t contains only actions of AL.

(Intuitively, we have factorized the play p(s0, σ, τ ") according to the strategy
used by player 2.)

Let us note that the conditions above imply that

xR = x2x4x6 . . . and xL = x1x3x5 . . . . (1.36)

are infinite paths respectively in AR and AL.
Moreover xR is a play consistent with τ "

R while xL is consistent with τ "
L.

By optimality of strategies τ "
R, τ "

L,

upm(xR) ≤ valR(t) and upm(xL) ≤ valL(t) . (1.37)

It is easy to see that path priorities satisfy π(xR) ≥ π(p(s0, σ, τ ")) and
π(xL) ≥ π(p(s0, σ, τ ")) and at most one of these inequalities is strict.

(1) If π(xR) > π(p(s0, σ, τ ")) and π(xL) = π(p(s0, σ, τ ")) then there ex-
ists m such that all states in the suffix x2mx2m+2x2m+4 . . . of xR have
priorities greater than π(p(s0, σ, τ ")) and do not contribute to the payoff
upm(x2mx2m+1x2m+2x2m+3 . . .).

This and the prefix-independence property of upm imply

upm(p(s0, σ, τ
")) = upm(x2mx2m+1x2m+2x2m+3 . . .) =

upm(x2m+1x2m+3 . . .) = upm(xL) ≤ valL(s0) ≤ valR(s0),

where the first inequality follows from the fact that xL is consistent with
the optimal strategy τ "

L.

(2) If π(xL) > π(p(s0, σ, τ ")) and π(xR) = π(p(s0, σ, τ ")) then we get in a
similar way upm(p(s0, σ, τ ")) = upm(xR) ≤ valR(s0).

(3) Let a = π(xR) = π(p(s0, σ, τ ")) = π(xL). For a sequence t0t1 . . . tl of
states we define

Fa(t0 . . . tl) =
l

∑

i=1

1a(ti) · w(ti) · r(ti)
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and

Ga(t0 . . . tl) =
l

∑

i=1

1a(ti) · r(ti),

where 1a is defined in (1.20). Thus for an infinite path p, upm(p) =
lim supi Fa(pi)/Ga(pi), where pi is the prefix of length i of p.

Take any ε > 0. Eq. (1.37) implies that for all sufficiently long prefixes
yL of xL, Fa(yL)/Ga(yL) ≤ valL(t) + ε ≤ valR(t) + ε and similarly for all
sufficiently long prefixes yR of xR, Fa(yR)/Ga(yR) ≤ valR(t) + ε. Then we
also have

Fa(yR) + Fa(yL)

Ga(yR) + Ga(yL)
≤ valR(t) + ε . (1.38)

If y is a proper prefix of the infinite path x1x2x3 . . . then

y = x1x2 . . . x2i−1x
′
2ix

′
2i+1 ,

where

• either x′
2i is a prefix of x2i and x′

2i+1 is empty or

• x′
2i = x2i and x′

2i+1 is a prefix of x2i+1

(and xi are as in factorization (1.35)). Then yR = x2x4 . . . x′
2i is a prefix of

xR while yL = x1x3 . . . x2i−1x′
2i+1 is a prefix of xL. If the length of y tends

to ∞ then the lengths of yR and yL tend to ∞. Since Ga(y) = Ga(yR) +
Ga(yL) and Fa(y) = Fa(yR)+Ga(yL) Eq. (1.38) implies that Ga(y)/Fa(y) ≤
valR(t) + ε. Since the last inequality holds for all sufficiently long finite
prefixes of x1x2x3 . . . we get that upm(p(s0, σ, τ ")) = upm(x1x2x3 . . .) ≤
valR(s0) + ε. As this is true for all ε > 0 we have in fact upm(p(s0, σ, τ ")) ≤
valR(s0).

This terminates the proof that if player 2 plays according to strategy τ "

then his losses do not extend valR(s0).
We can conclude that strategies σ"

R and τ " are optimal on A and for
each initial state s the value of a game on A is the same as in AR.

Note however that while player 1 can use his optimal positional strategy
σ"

R to play optimally on A the situation is more complicated for player 2.
The optimal strategy that we have constructed for him is not positional and
certainly if we pick some of his optimal positional strategies on AR then we
cannot guarantee that it will remain optimal on A.

To obtain an optimal positional strategy for player 2 we proceed as
follows:

If for each state s ∈ S2 controlled by player 2 there is only one available
action then player 2 has only one strategy (τ "

R = τ "
L). Thus in this case

player 2 needs no memory.
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If there exists a state t ∈ S2 with at least two available actions then we
take this state as the pivot and by the same reasoning as previously we find
a pair of optimal strategies (σ∗, τ ") such that τ " is positional while σ∗ may
need one bit of memory to be implemented.

By exchangeability property of optimal strategies we can conclude that
(σ", τ ") is a couple of optimal positional strategies.

q.e.d.

5 Blackwell optimality

Let us return to discounted games. In this section we examine what happens
if, for all states s, the discount factors λ(s) tend to 1 or, equivalently, the
stopping probabilites tend to 0.

When all discount factors are equal and tend to 1 with the same rate
then the value of discounted game tends to the value of a simple mean-payoff
game, this is a classical result examined extensively by many authors in the
context of stochastic games, see [6] and the references therein.

What happens however if discount factors tend to 1 with different rates
for different states? To examine this limit we assume in the sequel that
arenas for discounted games are equipped not only with a reward mapping
r : S −→ R but also with a priority mapping π : S −→ Z+ and a weight
mapping w : S −→ (0, 1], exactly as for priority mean-payoff games of
Section 4.

Let us take β ∈ (0, 1] and assume that the stopping probability of each
state s is equal to w(s)βπ(s), i.e. the discount factor is

λ(s) = 1 − w(s)βπ(s) . (1.39)

Note that with these discount factors, for two states s and s′, π(s) < π(s′)
iff 1 − λ(s′) = o(1 − λ(s)) for β ↓ 0.

If (1.39) holds then the payoff mapping (1.9) can be rewritten in the
following way, for a play p = s0s1s2 . . .,

uβ(p) =
∞
∑

i=0

(1 − w(s0)β
π(s0)) . . . (1 − w(si−1)β

π(si−1))βπ(si)w(si)r(si) .

(1.40)
Let us fix a finite arena A. Obviously, it depends on the parameter β

which positional strategies are optimal in the games with payoff (1.40). It
is remarkable that for β sufficiently close to 0 the optimality of positional
strategies does not depend on β any more. This phenomenon was discov-
ered, in the framework of Markov decision processes, by David Blackwell [2]
and is now known under the name of Blackwell optimality.

We shall say that positional strategies (σ", τ ") ∈ Σ× T are β-optimal if
they are optimal in the discounted game (A, uβ).
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Definition 5.1. Strategies (σ", τ ") ∈ Σ×T are Blackwell optimal in a game
(A, uβ) if they are β-optimal for all β in an interval 0 < β < β0 for some
constant β0 > 0 (β0 depends on the arena A).

Theorem 5.2. (a) For each arena A there exists 0 < β0 < 1 such that if
σ", τ " are β-optimal positional strategies for players 1 and 2 for some
β ∈ (0, β0) then they are β-optimal for all β ∈ (0, β0), i.e. they are
Blackwell optimal.

(b) If σ", τ " are positional Blackwell optimal strategies then they are also
optimal for the priority mean-payoff game (A, upm).

(c) For each state s, limβ↓0 val(A, s, uβ) = val(A, s, upm), where val(A, s, uβ)
and val(A, s, upm) are the values of, respectively, the β-discounted game
and the priority mean-payoff game.

The remaining part of this section is devoted to the proof of Theorem 5.2.

Lemma 5.3. Let p be an ultimately periodic infinite sequence of states.
Then uβ(p) is a rational function7 of β and

lim
β↓0

uβ(p) = upm(p) . (1.41)

Proof. First of all we need to extend the definition (1.40) to finite sequences
of states, if x = s0s1 . . . sl then upm(x) is defined like in (1.40) but with the
sum taken from 0 to l.

Let p = xyω be an ultimately periodic sequence of states, where x, y are
finite sequences of states, y non-empty. Directly from (1.40) we obtain that,
for x = s0 . . . sl,

uβ(p) = uβ(x) + (1 − w(s0)β
π(s0)) . . . (1 − w(sl)β

π(sl))uβ(yω) . (1.42)

For any polynomial f(β) =
∑l

i=0 aiβi the order8 of f is the smallest j such
that aj .= 0. By definition the order of the zero polynomial is +∞.

Now note that uβ(x) is just a polynomial of β of order strictly greater
than 0, which implies that limβ↓0 uβ(x) = 0. Thus limβ↓0 uβ(p) = limβ↓0 uβ(yω).
On the other hand, upm(p) = upm(yω). Therefore it suffices to prove that

lim
β↓0

uβ(yω) = upm(yω) . (1.43)

7 The quotient of two polynomials.
8 Not to be confounded with the degre of f which is te greatest j such that aj "= 0.
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Suppose that y = t0t1 . . . tk, ti ∈ S. Then

uβ(yω) = uβ(y)
∞
∑

i=0

[(1 − w(t0)β
π(t0)) · · · (1 − w(tk)βπ(tk))]i =

uβ(y)

1 − (1 − w(t0)βπ(t0)) · · · (1 − w(tk)βπ(tk))
. (1.44)

Let a = min{π(ti) | 0 ≤ i ≤ k} be the priority of y, L = {l | 0 ≤ l ≤
k and π(tl) = a}. Now it suffices to observe that the right hand side of
(1.44) can be rewritten as

uβ(yω) =

∑

l∈L w(tl)r(tl)βa + f(β)
∑

l∈L w(tl)βa + g(β)
,

where f and g are polynomials of order greater than a. Therefore

lim
β↓0

uβ(yω) =

∑

l∈L w(tl)r(tl)
∑

l∈L w(tl)
. (1.45)

However, the right hand side of (1.45) is the value of upm(yω). q.e.d.

Proof of Theorem 5.2. The proof of condition (a) given below follows very
closely the one given in [13] for Markov decision processes.

Take a sequence (βn), βn ∈ (0, 1], such that limn→∞ βn = 0. Since
for each βn there is at least one pair of βn-optimal positional strategies and
there are only finitely many positional strategies for a finite arena A, passing
to a subsequence of (βn) if necessary, we can assume that there exists a pair
of positional strategies (σ", τ ") that are βn-optimal for all βn.

We claim that there exists β0 > 0 such that (σ", τ ") are β-optimal for
all 0 < β < β0.

Suppose the contrary. Then there exists a state s and a sequence (γm),
γm ∈ (0, 1], such that limm→∞ γm = 0 and either σ" or τ " is not γm-optimal.
Therefore

(i) either for each m player 1 has a strategy σ#
m such that uγm

(p(s, σ", τ ")) <
uγm

(p(s, σ#
m, τ ")),

(ii) or for each m player 2 has a strategy τ#
n such that uγm

(p(s, σ", τ#
m)) <

uγm
(p(s, σ", τ ")).

Due to Lemma 2.2, all the strategies σ#
m and τ#

m can be chosen to be po-
sitional and since the number of positional strategies is finite, taking a
subsequence of (γm) if necessary, we can assume that
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(1) either there exist a state s, a positional strategy σ# ∈ Σp and a sequence
(γm), γm ↓ 0, such that

uβ(p(s, σ", τ ")) < uβ(p(s, σ#, τ ")) for all β = γ1, γ2, . . . , (1.46)

(2) or there exist a state s, a positional strategy τ# ∈ Tp and a sequence
(γm), γm ↓ 0, such that

uβ(p(s, σ", τ#)) < uβ(p(s, σ", τ ")) for all β = γ1, γ2, . . . . (1.47)

Suppose that (1.46) holds.
The choice of (σ", τ ") guarantees that

uβ(p(s, σ#, τ ")) ≤ uβ(p(s, σ", τ ")) for all β = β1, β2, . . . . (1.48)

Consider the function

f(β) = uβ(p(s, σ#, τ ")) − uβ(p(s, σ", τ ")). (1.49)

By Lemma 5.3, for 0 < β < 1, f(β) is a rational function of β. But from
(1.46) and (1.48) we can deduce that when β tends to 0 then f(β) ≤ 0
infinitely often and f(β) > 0 infinitely often. This is possible for a ratio-
nal function f only if this function is identicaly equal to 0, contradicting
(1.46). In a similar way we can prove that (1.47) entails a contradiction.
We conclude that σ" and τ " are Blackwell optimal.

To prove condition (b) of Theorem 5.2 suppose the contrary, i.e. that
there are positional Blackwell optimal strategies (σ", τ ") that are not optimal
for the priority mean-payoff game. This means that there exists a state s
such that either

upm(p(s, σ", τ ")) < upm(p(s, σ, τ ")) (1.50)

for some strategy σ of player 1 or

upm(p(s, σ", τ)) < upm(p(s, σ", τ ")) (1.51)

for some strategy τ of player 2. Since priority mean-payoff games have
optimal positional strategies, by Lemma 2.2, we can assume without loss
of generality that σ and τ are positional. Suppose that (1.50) holds. As
σ, σ", τ " are positional the plays p(s, σ", τ ") and p(s, σ, τ ") are ultimately
periodic, by Lemma 5.3, we get

lim
β↓0

uβ(p(s, σ", τ ")) = upm(p(s, σ", τ ")) < upm(p(s, σ, τ ")) = lim
β↓0

uβ(p(s, σ, τ ")).

(1.52)
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However inequality (1.52) implies that there exists 0 < β0 such that

∀β < β0, uβ(p(s, σ", τ ")) < uβ(p(s, σ, τ ")) ,

in contradiction with the Blackwell optimality of (σ", τ "). Similar reasoning
shows that also (1.51) contradicts the Blackwell optimality of (σ", τ ").

This also shows that

lim
β↓0

val(A, s, uβ) = lim
β↓0

uβ(p(s, σ", τ ")) = upm(p(s, σ", τ ")) = val(A, s, upm),

i.e. condition (c) of Theorem 5.2 holds as well. q.e.d.

Let us note that there is another known link between parity and dis-
counted games: Jurdziński [14] has shown how parity games can be reduced
to mean-payoff games and it is well-known that the value of mean-payoff
games is a limit of the value of discounted games, see [15] or [21] for the
particular case of deterministic games. However, the reduction of [14] does
not seem to extend to priority mean-payoff games and, more significantly, it
also fails for perfect information stochastic games. Note also that [21] con-
centrates only on value approximation and the issue of Blackwell optimality
of strategies in not touched at all.

6 Final remarks

6.1 Interpretation of infinite games

In real life all systems have a finite life span: computer systems become
obsolete, economic environment changes. Therefore it is reasonable to ask
if infinite games are pertinent as models of such systems. This question is
discussed for example in [18].

If there exists a family of payoff mappings un such that un : Sn −→ R

is defined for paths of length n (n-stage payoff) and the payoff u(s0s1 . . .)
for an infinite play is a limit of un(s0s1 . . . sn−1) when the number of stages
n tends to ∞ then we can say that infinite games are just approximations
of finite games where the length of the game is very large or not precisely
known. This interpretation is quite reasonable for simple mean-payoff games
for example, where the payoff for infinite plays is a limit of n stage mean-
payoff. However such an interpretation fails for priority mean-payoff games
and for parity games where no appropriate n-stage payoff mappings exist.

However the stopping (or discounted) games offer another attractive
probabilistic interpretation of priority mean-payoff games. For sufficiently
small β if we consider a stopping game with the stopping probabilities
w(s)βπ(s) for each state s then Theorem 5.2 states that optimal positional
strategies for the stopping game are optimal for the priority mean-payoff
game. Moreover, the value of the stopping game tends to the value of the
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priority mean-payoff game when β tends to 0. And the stopping game is
a finite game but in a probabilistic rather than deterministic sense, such
a game stops with probability 1. Thus we can interpret infinite priority
mean-payoff games as an approximation of stopping games where the stop-
ping probabilities are very small. We can also see that smaller priorities are
more significant since the corresponding stopping probabilities are much
greater: w(s)βπ(s) = o(w(t)βπ(t)) if π(s) > π(t).

6.2 Refining the notion of optimal strategies for priority

mean-payoff games

Optimal strategies for parity games (and generally for priority mean-payoff
games) are under-selective. To illustrate this problem let us consider the
game of Figure 6.2.

x tπ(x) = 2i + 1

π = 2i π = 2i π = 2i

π = 2iπ = 2iπ = 2i

π = 2i

yπ(y) = 2i + 1

Figure 1. The left and the right loop contain one state, x and y respec-
tively, with priority 2i + 1, all the other states have priority 2i. The weight
of all states is 1. The reward for x and for y is 1 and 0 for all the other
states. This game is in fact a parity (Büchi) game, player 1 gets payoff 1 if
one of the states {x, y} is visited infinitely often and 0 otherwise.

For this game all strategies of player 1 guarantee him the payment 1.
Suppose however that the left loop contains 21000000 states while the right
loop only 3 states. Then, intuitively, it seems that the positional strategy
choosing always the small right loop is much more advantageous for player 1
than the positional strategy choosing always the big left loop. But with the
traditional definition of optimality for parity games one strategy is as good
as the other.

On the other hand, Blackwell optimality clearly distinguishes both strate-
gies, the discounted payoff associated with the right loop is strictly greater
than the payoff for the left loop.

Let us note that under-selectiveness of simple mean-payoff games origi-
nally motivated the introduction of the Blackwell’s optimality criterion [2].
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Indeed, the infinite sequence of rewards 100, 0, 0, 0, 0, . . . gives, at the limit,
the mean-payoff 0, the same as an infinite sequence of 0. However it is clear
that we prefer to get once 100 even if it is followed by an infinite sequence
of 0 than to get 0 all the time.

6.3 Evaluating β0.

Theorem 5.2 is purely existential and does not provide any evaluation of the
constant β0 appearing there. However it is not difficult to give an elementary
estimation for β0, at least for deterministic games considered in this paper.
We do not do it here since the bound for β0 obtained this way does not
seem to be particularly enlightening.

The preceding subsection discussing the meaning of the Blackwell op-
timality raises the question what is the complexity of finding Blackwell
optimal strategies. This question remains open. Note that if we can find
efficiently Blackwell optimal strategies then we can obviously find efficiently
optimal strategies for priority mean-payoff games and, in particular, for par-
ity games. But the existence of a polynomial time algorithm solving parity
games is a well-known open problem.
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