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, Brézis and Nirenberg introduced the notion of critical level for these sequences in the case of a critical perturbation of the Laplacian homogeneous eigenvalue problem. In this paper, we give a natural and general formula of the critical level for a large class of nonlinear elliptic critical problems. The sharpness of our formula is established by the construction of suitable Palais-Smale sequences which are not relatively compact.

Introduction

In nonlinear elliptic variational problems involving critical nonlinearities, one of the major difficulties is to recover the compactness of Palais-Smale sequences of the associated Euler-Lagrange functional. Such questions were first studied, in our knowledge, by Brézis and Nirenberg in their well-known work [START_REF] Brézis | Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[END_REF]. The concentration-compactness principle due to Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, I, II[END_REF] is widely used to overcome these difficulties. Other methods, based on the convergence almost everywhere of the gradients of Palais-Smale sequences, can be also used to recover the compactness. We refer the reader to the papers by Boccardo and Murat [START_REF] Boccardo | Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations[END_REF] and by J. M. Rakotoson [START_REF] Rakotoson | Quasilinear elliptic problems with measure as data[END_REF] for bounded domains.

For arbitray domains, we refer to the recent work by A. El Hamidi and J. M. Rakotoson [START_REF] Hamidi | Compactness and quasilinear problems with critical exponents[END_REF].

In [START_REF] Brézis | Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[END_REF], the authors studied the critical perturbation of the eigenvalue problem:

   -∆u = λu + u 2 * -1 in Ω, u > 0 in Ω, u = 0 on ∂Ω, (1.1) 
where Ω is a bounded domain in R N , N ≥ 3, with smooth boundary, 2 * = 2N N -2 is the Sobolev critical exponent of the embedding W 1,2 (Ω) ⊂ L p (Ω), and λ is a positive parameter. The authors introduced an important condition on the level corresponding to the energy of Palais-Smale sequences which guarantees their relative compactness. Indeed, let (u n ) be a Palais-Smale sequence for the Euler-Lagrange functional

I λ (u) = 1 2 Ω |∇u| 2 - λ 2 Ω |u| 2 - 1 2 * Ω |u| 2 * .
More precisely, the authors showed that if

lim n→+∞ I λ (u n ) < 1 N S N 2 (1.2) 
then (u n ) est relatively compact, which implies the existence of nontrivial critical points of I λ . Here, S denotes the best Sobolev constant in the embedding W 1,2 0 (Ω) ⊂ L 2 * (Ω). In this work, we begin by giving the generalization of condition (1.2) for the quasilinear equation

-∆ p u = λf (x, u) + |u| p * -2 u in Ω, u| Γ = 0 and ∂u ∂ν | Σ = 0, (1.3) 
where Ω is a bounded domain in R N , N ≥ 3, with smooth boundary The sharpness of our result is estabished by the construction of suitable Palais-Smale sequences (corresponding to the critical level) which are not relatively compact.

∂Ω = Γ ∪ Σ,
Then we give the analogous condition to (1.2) for a general system with critical exponents

   -∆ p u = λf (x, u) + u|u| α-1 |v| β+1 in Ω -∆ q v = µg(x, v) + |u| α+1 |v| β-1 v in Ω
together with Dirichlet or mixed boundary conditions, where f and g are subcritical perturbations of |u| p * -1 and |v| q * -1 respectively, p * = N p N -p (resp. q * = N q N -q ) is the critical exponent of the Sobolev embedding W 1,p (Ω) ⊂ L r (Ω) (resp. W 1,q (Ω) ⊂ L r (Ω)). Our approach provides a general condition based on the Nehari manifold, which can be extended to a large class of critical nonlinear problems. In this work, we confine ourselves to systems involving (p, q)-Laplacian operators and critical nonlinearities.

The sharpness of our result is estabished, in the special case p = q, by the construction of suitable Palais-Smale sequences which are not relatively compact. The question of sharpness corresponding to the case p = q is still open.

For a more complete description of nonlinear elliptic systems, we refer the reader to the papers by De Figueiredo [START_REF] De Figueiredo | Nonlinear elliptic systems[END_REF] and by De Figueiredo & Felmer [START_REF] De Figueiredo | On superquadratic elliptic systems[END_REF] and the references therein.

A general local compactness result

For the reader's convenience, we start with the scalar case and to render the paper selfcontained we will recall or show some well-known facts.

The scalar case

Let Ω ⊂ R N , N ≥ 3, be a bounded domain with smooth boundary ∂Ω. Let f (x, u) : Ω × R → R be a function which is measurable in x, continuous in u and satisfying the growt condition at infinity |f (x, u)| = o(u p * -1 ) as u → +∞, uniformly in x.

(2.4)

This situation occurs, for example, in the special cases f (x, u) = u or

f (x, u) = u q-1 , 1 < q < p * .
Consider the problem

-∆ p u = λf (x, u) + |u| p * -2 u in Ω, u| Γ = 0 and ∂u ∂ν | Σ = 0, (2.5) 
where Ω is a bounded domain in R N , N ≥ 3, with smooth boundary ∂Ω = Γ ∪ Σ, where Γ and Σ are smooth (N -1)-dimensional submanifolds of ∂Ω with positive measures such that Γ ∩ Σ = ∅. Problem (2.5) is posed in the framework of the Sobolev space

W 1,p Γ (Ω) = {u ∈ W 1,p (Ω) : u| Γ = 0},
which is the closure of C 1 0 (Ω ∩ Γ, R) with respect to the norm of W 

J λ (u) := 1 p ||∇u|| p p - 1 p * ||u|| p * p * -λ Ω F (x, u(x)) dx
the corresponding Euler-Lagrange functional, where F (x, u) := u 0 f (x, s) ds.

We recall here that the Nahari manifold associated to the functional J λ is given by:

N J λ = {u ∈ W 1,p Γ (Ω) \ {0} : J ′ λ (u)(u) = 0},
and it is clear that N J λ contains all nontrivial critical points of J λ . This manifold can be characterized more explicitely by the following

N J λ = tu, (t, u) ∈ (R \ {0}) × (W 1,p Γ (Ω) \ {0}) : d dt J λ (tu) = 0 ,
where t → J λ (tu) is a function defined from R to itself, for every u given in

W 1,p Γ (Ω) \ {0}.
We define the critical level associated to Problem (2.5) by:

c * (λ) := inf w∈N J 0 J 0 (w) + inf w∈N J λ ∪{0} J λ (w). (2.6)
At this stage, we can state and show our first result Theorem 2.1 Let λ ∈ R and (u n ) be a Palais-Smale sequence of J λ such that

lim n→+∞ J λ (u n ) < c * (λ). (2.7) 
Then (u n ) is relatively compact.

Proof.

Let λ ∈ R and (u n ) be a Palais-Smale sequence for J λ of level c ∈ R ((PS) c for short) satisfying the condition (2.7). We claim that (u n ) is bounded in W 1,p Γ (Ω). Indeed, on has one hand

1 p ||∇u n || p p - 1 p * ||u n || p * p * -λ Ω F (x, u n ) dx = c + o n (1), (2.8) 
and

||∇u n || p p -||u n || p * p * -λ Ω f (x, u n )u n dx = o n (||∇u n || p ). (2.9)
Then,

1 p - 1 p * ||u n || p * p * + λ p Ω f (x, u n )u n dx-λ Ω F (x, u n ) dx = c+o n (1)+o n (||∇u n || p ).
Now, let ε > 0, using the growth condition (2.4), there exists

c 1 (ε) > 0 such that |f (x, u)| ≤ ε|u| p * -1 +c 1 and |F (x, u)| ≤ ε p * |u| p * +c 1 , a.e.
x ∈ Ω and for every u ∈ R.

Applying the Hölder and the Young inequalities to the last relations, it follows

||u n || p * p * ≤ ε||∇u n || p + c 2 (|Ω|, λ, ε). (2.10)
Combining (2.10) and (2.8), we deduce that (u n ) is in fact bounded in

W 1,p Γ (Ω).
So passing, if necessary to a subsequence, we can consider that

u n ⇀ u in W 1,p Γ (Ω), u n → u a.e. in Ω.
On the other hand, the growth condition (2.4) implies also that, for almost every x ∈ Ω, the functions s → F (x, s) and s → sf (x, s) satisfy the conditions of the Brézis-Lieb Lemma (see Theorem 2 in [START_REF] Brézis | A Relation Between Pointwise Convergence of Functions and Convergence of Functionals[END_REF]). Thus, we get the identities

Ω F (x, v n ) dx = Ω F (x, u n ) - Ω F (x, u) + o n (1), Ω f (x, v n )v n dx = Ω f (x, u n )u n - Ω f (x, u)u + o n (1). Moreover, let ε > 0, there is c 1 (ε) > 0 such that Ω f (x, v n )v n dx ≤ ε||v n || p * p * + c 1 ||v n || 1 . Let C > 0 (which is independent of n and ε), such that ||v n || p * p * ≤ C. Since (v n ) converges strongly to 0 in L 1 (Ω), there is n 0 (ε) ∈ N such that ||v n || 1 ≤ ε/c 1 , for every n ≥ n 0 (ε), and consequently | Ω f (x, v n )v n dx| ≤ ε(1 + C), ∀n ≥ n 0 (ε).
In the same way, rewriting F (x, v n ) = vn 0 f (x, s) ds and using the same arguments as above, we deduce that

Ω F (x, v n ) dx = o n (1) (2.11) Ω f (x, v n )v n dx = o n (1).
(2.12)

Applying once again the Brézis-Lieb Lemma, we conclude that u ∈ N J λ ∪{0}

and

||v n || p -||v n || p * p * = o n (1), (2.13) 
J 0 (v n ) := 1 p ||v n || p - 1 p * ||v n || p * p * = c -J λ (u) + o n (1). ( 2 

.14)

A direct computation gives

N J 0 = t 0 (u)u : u ∈ W 1,p Γ (Ω) \ {0} ,
where

t 0 (u) := ||u|| p ||u|| p * p * 1 p * -p
. Now, let b be the common limit of ||v n || p and ||v n || p * p * . Suppose that b = 0. On one hand we have

J 0 (t 0 (v n )v n ) = 1 p - 1 p * ||v n || p ||v n || p p * p * p * -p ≥ inf w∈N J 0 J 0 (w). Then lim n→+∞ J 0 (t 0 (v n )v n ) = b N ≥ inf w∈N J 0 J 0 (w).
On the other hand, the identity (2.14) leads to

b N = c -J λ (u). It follows then c ≥ inf w∈N J 0 J 0 (w) + J λ (u) ≥ inf w∈N J 0 J 0 (w) + inf w∈N J λ ∪{0} J λ (w),
which contradicts the condition (2.7). This achives the proof.

Sharpness of the critical level formula in the scalar case

To show the sharpness of the critical level formula (2.7), it suffices to carry out a Palais-Smale sequence for J λ of level c * (λ) which contains no convergent subsequence.

Consider, for a given ε > 0, the extremal function

Φ ε (x) = C N ε N-p p 2 ε + |x| p p-1 p-N p with C N := N N -p p -1 p-1 (N -p)/p 2
which attains the best constant S of the Sobolev embedding

D 1,p (R N ) ֒→ L p * (R N ).
Without loss of generality, we can consider that 0 ∈ Σ. Moreover, the set ∂Ω satisfies the following property (see more details in Adimurthi, Pacella and Yadava [START_REF] Admurthi | Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity[END_REF]):

There exist δ > 0, an open neighborhood V of 0 and a diffeomorphism Ψ : B δ (0) -→ V which has a jacobian determinant equal to one at 0, with

Ψ(B + δ ) = V ∩ Ω, where B + δ = B δ (0) ∩ {x ∈ R N : x N > 0}. Let ϕ ∈ C ∞ 0 (R N
) such that ϕ ≡ 1 in a neighborhood of the origin. We define the sequence defined by

ψ n (x) := ϕ(x)Φ 1/n (x), for n ∈ N * .
(2.15)

It is well known that the sequence (ψ n ) ⊂ W 1,p Γ (Ω) is a Palais-Smale sequence for J 0 of level inf w∈N J 0 J 0 (w), which satisfies

ψ n → 0 a.e. in Ω, ∇ψ n → 0 a.e. in Ω, ||ψ n || p * p * -→ N inf w∈N J 0 J 0 (w) p/N := ℓ as n -→ +∞, ||∇ψ n || p p -→ N inf w∈N J 0 J 0 (w) p/N := ℓ as n -→ +∞.
Now, let (u n ) be a Palais-Smale sequence of J λ of level inf w∈N J λ ∪{0} J λ (w).

We will not go into further details concerning which subcritical terms f (u) allow the existence of such sequences, but in the litterature, this occurs for various classes of subcritical terms. Applying Theorem 2.1, there exists a subsequence, still denoted by (u n ), which converges to some u ∈ W 1,p Γ (Ω). Then

||u n + ψ n || p * ≤ C, u n + ψ n → u a.e. in Ω, ||∇u n + ∇ψ n || p ≤ C, ∇u n + ∇ψ n → ∇u a.e. in Ω.
where C a positive constant independent of n. We apply the Brézis-Lieb Lemma to the sequence (u n + ψ n ) and get

||u n + ψ n || p * p * = ||(u n -u) + ψ n || p * p * + ||u|| p * p * + o n (1).
Moreover, one has

-||u n -u|| p * +||ψ n || p * -ℓ 1/p * ≤ ||(u n -u)+ψ n || p * -ℓ 1/p * ≤ ||u n -u|| p * +||ψ n || p * -ℓ 1/p * which implies that ||(u n -u) + ψ n || p * -ℓ 1/p * = o n (1).
Therefore, we conclude that

||u n + ψ n || p * p * = ||u|| p * p * + ℓ + o n (1).
The same argumets applied to the sequence (∇u n + ∇ψ n ) give

||∇u n + ∇ψ n || p p = ||∇u|| p p + ℓ + o n (1).
Finally, using the fact that

|ψ n | p * * ⇀ ℓ δ 0 weakly * in M + (Ω) (2.16
)

|∇ψ n | p * ⇀ ℓ δ 0 weakly * in M + (Ω) (2.17)
where δ 0 is the Dirac measure concentrated at the origin and M + (Ω) is the space of positive finite measures [START_REF] Willem | Minimax theorems[END_REF]), we get that the sequence (

u n + ψ n ) is a Palais-Smale sequence of J λ of level c * (λ).
We hence constructed a Palais-Smale sequence (u n + ψ n ) of J λ of level c * (λ) which can not be relatively compact in W 1,p Γ (Ω). This justifies the sharpness of the critical level formula (2.7).

Remark 2.1 If we are interested by the homogeneous Dirichlet conditions, i.e. if Σ = ∅, the same arguments developed above are still valid, it suffices to assume that the origin 0 ∈ Ω and consider ϕ ∈ C ∞ 0 (Ω) such that ϕ ≡ 1 in a neighborhood of the origin.

The system case

Now, consider the system

   -∆ p u = λf (x, u) + u|u| α-1 |v| β+1 , -∆ q v = µg(x, v) + |u| α+1 |v| β-1 v, (2.18)
together with Dirichlet or mixed boundary conditions

   u| Γ 1 = 0 and ∂u ∂ν | Σ 1 = 0, v| Γ 2 = 0 and ∂v ∂ν | Σ 2 = 0, (2.19) 
where, Ω is a bounded domain in R N , N ≥ 3, with smooth boundary ∂Ω = Γ i ∪ Σ i , where Γ i and Σ i are smooth (N -1)-dimensional submanifolds of ∂Ω with positive measures such that Γ i ∩ Σ i = ∅, i ∈ {1, 2}. ∆ p is the p-Laplacian and ∂ ∂ν is the outer normal derivative. Also, it is clear that when Γ 1 = Γ 2 = ∂Ω, one deals with homogeneous Dirichlet boundary conditions.

We assume here that

1 < p < N, 1 < q < N, (2.20) 
and the critical condition 

α + 1 p * + β + 1 q * = 1. ( 2 
W = W 1,p Γ 1 (Ω) × W 1,q Γ 2 (Ω), where W 1,p Γ 1 (Ω) = {u ∈ W 1,p (Ω) : u| Γ 1 = 0}, W 1,q Γ 2 (Ω) = {u ∈ W 1,q (Ω) : u| Γ 2 = 0},
which are respectively the closure of C 1 0 (Ω∩Γ 1 , R) with respect to the norm of W 1,p (Ω) and C 1 0 (Ω ∩ Γ 2 , R) with respect to the norm of W 1,q (Ω). Notice that meas(Γ i ) > 0, i = 1, 2, imply that the Poincaré inequality is still available in W 1,p Γ 1 (Ω) and W 1,q Γ 2 (Ω), so W can be endowed with the norm

||(u, v)|| = ||∇u|| p + ||∇v|| q
and (W, || . ||) is a reflexive and separable Banach space. The associated Euler-Lagrange functional I λ,µ ∈ C 1 (W, R) is given by

I λ,µ (u, v) = (α+1) P (u) p -λ Ω F (x, u) +(β+1) Q(v) q -µ Ω G(x, v) -R(u, v),
where

P (u) = ||∇u|| p p , Q(v) = ||∇v|| q q , F (x, u) = u 0 f (x, s) ds, G(x, v) = v 0 g(x, t) dt, and R(u, v) = Ω |u| α+1 |v| β+1 dx. Notice that R(u, v) ≤ ||u|| α+1
p * ||v|| β+1 q * < +∞. Consider the Nehari manifold associated to Problem (2.18) given by

N λ,µ = {(u, v) ∈ W \ {(0, 0)} / D 1 I λ,µ (u, v)(u) = D 2 I λ,µ (u, v)(v) = 0},
where D 1 I λ,µ and D 2 I λ,µ are the derivative of I λ,µ with respect to the first variable and the second variable respectively.

An interesting and useful characterization of N λ,µ is the following

N λ,µ = {(su, tv) / (s, u, t, v) ∈ Z * and ∂ s I λ,µ (su, tv) = ∂ t I λ,µ (su, tv) = 0},
where

Z * = {(s, u, t, v); (s, t) ∈ R 2 , (u, v) ∈ W 1,p Γ 1 (Ω) × W 1,q
Γ 2 (Ω), (su, tv) = (0, 0)} and I λ,µ is considered as a functional of four variables (s, u, t, v) in

Z := R × W 1,p Γ 1 (Ω) × R × W 1,q Γ 2 (Ω).
Definition 2.1 Let λ and µ be two real parameters. A sequence

(u n , v n ) ∈ W is a Palais-Smale sequence of the functional I λ,µ if • there exists c ∈ R such that lim n→+∞ I λ,µ (u n , v n ) = c (2.24) • DI λ,µ (u n , v n ) converges strongly in the dual W ′ of W (2.25)
where DI λ,µ (u n , v n ) denotes the Gâteaux derivative of I λ,µ .

The last condition (2.25) implies that

D 1 I λ,µ (u n , v n )(u n ) = o (||u n || p * ) (2.26) D 2 I λ,µ (u n , v n )(v n ) = o (||v n || q * ). (2.27) 
where

D 1 I λ,µ (u n , v n ) (resp. D 2 I λ,µ (u n , v n ))
denotes the Gâteaux derivative of I λ,µ with respect to its first (resp. second) variable.

We introduce the critical level corresponding to Problem (2.18) by

c * (λ, µ) := inf w∈N 0,0 I 0,0 (w) + inf w∈N λ,µ ∪{(0,0)} I λ,µ (w). 
(2.28)

Then we have the following Theorem 2.2 Let λ and µ be two real parameters and (u n , v n ) be a Palais-Smale sequence of I λ,µ such that

c := lim n→+∞ I λ,µ (u n , v n ) < c * (λ, µ). (2.29) 
Then (u n , v n ) relatively compact.
Proof. Let λ and µ be two real parameters and (u n , v n ) be a Palais-Smale sequence of I λ,µ satisfying the condition (2.29). We claim that (u n , v n ) is bounded in W . Indeed, on one hand conditions (2.24), (2.26) and (2.27) can be rewritten as the following

I λ,µ (u n , v n ) = c + o n (1) 
(2.30)

P (u n ) -λ Ω f (x, u n )u n dx = R(u n , v n ) + o (||u n || p * ) (2.31) Q(v n ) -µ Ω f (x, v n )v n dx = R(u n , v n ) + o (||v n || q * ). (2.32) 
Using (2.21), one gets 

R(u n , v n ) = α + 1 p * P (u n ) -λ Ω f (x, u n )u n + o (||u n || p * ) + β + 1 q * Q(v n ) -µ Ω g(x, v n )v n + o (||v n || q * ). ( 2 
Ω |f (x, u n )u n | = o (P (u n )), Ω |F (x, u n )| = o (P (u n )),
since (2.22) implies that for every ε > 0, there exists c 1 (ε) > 0 such that

|f (x, s)| ≤ ε|s| p * -1 + c 1 and |F (x, s)| ≤ ε p * |s| p * + c 1 , a.e. x ∈ Ω, ∀ s ∈ R. Similarly, if lim n→+∞ ||∇v n || q = +∞, then using (2.23) it follows Ω |g(x, v n )v n | = o (Q(v n )), Ω |G(x, v n )| = o (Q(v n )).
On one hand, suppose that

lim n→+∞ ||∇u n || p = lim n→+∞ ||∇v n || q = +∞.
Substituting (2.33) in (2.30), we obtain At this stage, we can assume, up to a subsequence, that

c + o n (1) = (α + 1) 1 p - 1 p * + o (P (u n )) p * -p p P (u n ) + (β + 1) 1 q - 1 q * + o (Q(v n )) q * -q q Q(v n ) -→ n→+∞ + ∞
u n ⇀ u in W 1,p Γ 1 (Ω), v n ⇀ v in W 1,q Γ 2 (Ω), u n → u a.e. in Ω, v n → v a.e. in Ω. It is clear that (u, v) ∈ N λ,µ ∪ {(0, 0)}.
Let us set

X n = u n -u and Y n = v n -v.
Using again the growth conditions (2.22) and (2.23), we show easily that the functions, which are defined on Ω × R: (x, s) → sf (x, s), (x, s) → sg(x, s), (x, s) → F (x, s) and (x, s) → G(x, s) satisfy the conditions of the Brézis-Lieb lemma [START_REF] Brézis | A Relation Between Pointwise Convergence of Functions and Convergence of Functionals[END_REF]. Then, we have the decompositions

Ω F (x, X n ) = Ω F (x, u n ) - Ω F (x, u) + o n (1), Ω f (x, X n )X n = Ω f (x, u n )u n - Ω f (x, u)u + o n (1), Ω G(x, Y n ) = Ω G(x, v n ) - Ω G(x, v) + o n (1), Ω g(x, Y n )Y n = Ω g(x, v n )v n - Ω g(x, v)v + o n (1). Moreover, let ε > 0, then there is c 1 (ε) > 0 such that Ω f (x, X n )X n dx ≤ ε||X n || p * p * + c 1 ||X n || 1 .
Let C be a positive constant such that ||X n || p * p * ≤ C. Since X n converges to 0 in L 1 (Ω), there exists n 0 (ε)

∈ N verifying ||X n || 1 ≤ ε/c 1 , for every n ≥ n 0 (ε), thus Ω f (x, X n )X n dx ≤ ε(1 + C), ∀n ≥ n 0 (ε).
In the same manner, writing F (x, X n ) = Xn 0 f (x, s) ds and using the same arguments as above, we get

Ω F (x, X n ) = o n (1) and Ω f (x, X n )X n = o n (1). Similarly, it follows that Ω G(x, Y n ) = o n (1) and Ω g(x, Y n )Y n = o n (1).
Applying a slightly modified version of the Brézis-Lieb lemma [START_REF] De Morais Filho | Systems of p-Laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees[END_REF], one has

R(X n , Y n ) = R(u n , v n ) -R(u, v) + o n (1). It follows that P (X n ) -R(X n , Y n ) = o n (1), Q(Y n ) -R(X n , Y n ) = o n (1), I 0,0 (X n , Y n ) = c -I λ,µ (u, v) + o n (1).
Notice that the Nehari manifold associated to I 0,0 is given by

N 0,0 = (s 0 (u, v)u, t 0 (u, v)v); (u, v) ∈ W 1,p Γ 1 (Ω) × W 1,q Γ 2 (Ω), u ≡ 0, v ≡ 0 , where s 0 (u, v) = P (u)Q(v) r(β+1) q(α+1) R(u, v) r α+1 1 r-p , t 0 (u, v) = t(s 0 (u, v)), and 
r = (α + 1)q q -(β + 1) > p, t(s) = R(u, v) Q(v) r q(α+1) s r q .
Let ℓ be the common limit of P (X n ), Q(Y n ) and R(X n , Y n ). We claim that ℓ = 0. By contradiction, suppose that ℓ = 0, then on one hand we get

I 0,0 (s 0 (X n , Y n )X n , t 0 (X n , Y n )Y n ) = (α + 1) 1 p - 1 r K(X n , Y n ), (2.34) ≥ inf w∈N 0,0 I 0,0 (w),
where

K(X n , Y n ) = P (X n ) (α+1) Q(Y n ) (β+1) p q R(X n , Y n ) p r (α+1)(r-p) . A direct computation shows that lim n→+∞ K(X n , Y n ) = ℓ, therefore lim n→+∞ I 0,0 (s 0 (X n , Y n )X n , t 0 (X n , Y n )Y n ) = ℓ(α + 1) 1 p - 1 r .
On the other hand,

lim n→+∞ I 0,0 (X n , Y n ) = ℓ α + 1 p + β + 1 q -1 = ℓ(α + 1) 1 p - 1 r .
Hence, we obtain

ℓ(α + 1) 1 p - 1 r = c -I λ,µ (u, v),
and consequently

c ≥ inf w∈N 0,0 I 0,0 (w) + I λ,µ (u, v) ≥ inf w∈N 0,0 I 0,0 (w) + inf w∈N λ,µ ∪{(0,0)} I λ,µ (w).
This leads to a contradiction with (2.29), then ℓ = 0, which achieves the proof.

Remark 2.2 1) In the scalar case, we obtain the analogous of Theorem 2.2, the proof follows easily with the same arguments. We note here that if we consider the special case (1.1), direct computations show that inf where S p (resp. S q ) denotes the best Sobolev constant in the embedding W 1,p Γ 1 (Ω) ⊂ L p * (Ω) (resp. W 1,q Γ 2 (Ω) ⊂ L q * (Ω)).

We end this note by the following interesting relation arising in the special case p = q and Γ 1 = Γ 2 .

Proposition 2.1 Assume that p = q > 1. Then, inf (u,v)∈N 0,0 I 0,0 (u, v) = p Np S N p p .

Proof. In the special case p = q, direct computations give On the other hand, let (u n ) ⊂ W 1,p Γ 1 (Ω) be a minimizing sequence of S p . Then using the identity (2.34), we get inf w∈N 0,0 I 0,0 (w) ≤ I 0,0 (s 0 (u n , u n )u n , t 0 (u n , u n )u n ) = Remark 2.3 For the sharpness of the critical level (2.29), we define the sequence ψ n (x) := ϕ(x)Φ 1/n (x) as in (2.15). We consider then a Palais-Smale sequence (u n , v n ) for J λ,µ of level inf w∈N λ,µ ∪{(0,0)} I λ,µ (w). Following the same argumets developed in the scalar case and using Proposition 2.1, we prove that the sequence (u n + ψ n , v n + ψ n ) is a Palais-Smale sequence for J λ,µ of level c * (λ, µ) and which can not be relatively compact in W . This implies the sharpness of the critical level formula (2.29).

  where Γ and Σ are smooth (N -1)-dimensional submanifolds of ∂Ω with positive measures such that Γ ∩ Σ = ∅. ∆ p is the p-Laplacian and ∂ ∂ν is the outer normal derivative. Here, f is a subcritical perturbation of |u| p * -1 .

I 2 )

 2 λ (w) = 0, which recovers the famous Brézis-Nirenberg condition (1.2). It is clear that our condition (2.7) or (2.29) can be extended to a large class of quasilinear or semilinear differential operators: Leray-Lions type operators, fourth-order operators.3) Using the Hölder inequality in the denominator R(u, v), we get inf (u,v)∈N 0,0 I 0,0 (u, v) ≥ (α + 1

p * = α + β + 2

 2 

.

  It is clear that the last quantity goes to p Np S N p p as n + ∞, which achieves the proof.

  .33) Suppose that there is a subsequence, still denoted by (u n , v n ) in W which is unbounded, i.e. ||∇u n || p + ||∇v n || q tends to +∞ as n goes to +∞.

	If	
	lim n→+∞	||∇u n || p = +∞,
	then using (2.22) one has	

  || p = +∞ and the sequence ||∇v n || q is bounded, then (2.31) implies that R(u n , v n ) is unbounded while (2.32) implies, on the contrary, that R(u n , v n ) is bounded. The case lim n→+∞ ||∇v n || q = +∞ and the sequence ||∇u n || p is bounded, leads to a contradiction with the same argument, which achieves the claim.

	which can not hold true. On the other hand, suppose that
	lim n→+∞	||∇u n