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The existence of multiple nonnegative solutions to the anisotropic critical problem -

is proved in suitable anisotropic Sobolev spaces. The solutions correspond to extremal functions of a certain best Sobolev constant. The main tool in our study is an adaptation of the well-known concentrationcompactness lemma of P.-L. Lions to anisotropic operators. Futhermore, we show that the set of nontrival solutions S is included in L ∞ (R N ) and is located outside of a ball of radius τ > 0 in L p * (R N ).

Résumé

Nous montrons l'existence d'une infinité de solutions positives pour le problème anisotropique avec exposant critique. La méthode consiste à regarder la meilleure constante d'une inégalité du type Poincaré-Sobolev et à adapter le fameux principe de concentration-compacité de P.L. Lions. De plus, on montre que l'ensemble des solutions S est contenu dans L ∞ (R N ) et est localisé en dehors d'une boule de rayon τ > 0 dans L p * (R N ).

1 Introduction.

In this paper, the existence of nontrivial nonnegative solutions to the anisotropic critical problem

- N i=1 ∂ ∂x i ∂u ∂x i p i -2 ∂u ∂x i = |u| p * -2 u in R N (1) 
is studied, where the exponents p i and p * satisfy the following conditions

p i > 1, N i=1 1 p i > 1,
and the critical exponent p * is defined by

p * := N N i=1 1 p i -1 .
In the best of our knowledge, anisotropic equations with different orders of derivation in different directions, involving critical exponents were never studied before. In the subcritical case, we can refer the reader to the recent paper by I. Fragala et al [START_REF] Fragala | Existence and nonexistence results for anisotropic quasilinear elliptic equation[END_REF].

In the special case p i = 2, i ∈ {1, 2, • • • , N}, Problem (1) is reduced to the limiting equation arising in the famous Yamabe problem [START_REF] Yamabe | On a deformation of Riemannian structures on compact manifolds[END_REF]:

-∆u = u 2 * -1 , u > 0 in R N . (2) 
Indeed, let (M, g) be a N-dimensional Riemannian manifold and S g be the scalar curvature of the metric g. Consider a conformal metric g on M defined by g := u 4 N-2 g whose scalar curvature (which is assumed to be constant) is denoted by S g , where u is a positive function in C ∞ (M, R). The unknown function u satisfies then

-∆ g u + N -2 4(N -1) S g u = N -2 4(N -1) S g u 2 * -1 , u > 0 in M, (3) 
where ∆ g denotes the Laplace-Beltrami operator. It is clear that, up to a scaling, the limiting problem of (3) (Equation (3) without the subcritical term

N -2 4(N -1) S g u) is exactly (2)
. The question of existence of minimizing solutions to (2) was completely solved by Aubin [START_REF] Aubin | Problèmes isopérimètriques et espaces de Sobolev[END_REF] and G. Talenti [START_REF] Talenti | Best constant in Sobolev inequality[END_REF]. Their proofs are based on symmetrisation theory. Notice that this theory is not relevent in our context since the radial symmetry of solutions can not hold true because of the anisotropy of the operator. In [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, part1[END_REF], P.-L. Lions introduced the famous concentration-compactness lemma which constitutes a powerful tool for the study of critical nonlinear elliptic equations. The concentration-compactness lemma allows an elegant and simple proof of the existence of solutions to (2) by minimization arguments. In the present work, we will adapt the concentration-compactness lemma to the anisotropic case and show that the infimum

Inf |u| L p * (R N ) =1 N i=1 1 p i ∂u ∂x i p i p i
is achieved, of course, the functional space has to be specified. The motivation of the present work is to give a new result which can provide extremal functions associated to the critical level corresponding to anisotropic problems involving critical exponents. Notice that the genuine extremal functions are obtained by minimization on the Nehari manifold associated to the problem and the critical level is nothing than the energy of these extremal functions.

The natural functional framework of Problem ( 1) is the anisotropic Sobolev spaces theory developed by [START_REF] Nikol | On imbedding, continuation and approximation theorems for differentiable functions of several variables[END_REF][START_REF] Ven | On embedding theorems for spaces of functions with partial derivatives of various degrees of summability[END_REF][START_REF] Rakosnik | Some remarks to anisotropic Sobolev spaces I[END_REF][START_REF] Rakosnik | Some remarks to anisotropic Sobolev spaces II[END_REF][START_REF] Troisi | Teoremi di inclusione per spazi di Sobolev non isotropi[END_REF]. Then, let D 1, p (R N ) be the completion of the space D(R N ) with respect to the norm

u 1, - → p := N i=1 ∂u ∂x i p i . It is well known that D 1, p (R N ), • 1, - → p is a reflexive Banach space which is continuously embedded in L p * R N .
In what follows, we will assume that

p + = max{p 1 , p 2 , ..., p N } < p * ,
then p * is the critical exponent associated to the operator:

N i=1 ∂ ∂x i ∂ ∂x i p i -2 ∂ ∂x i .
The space D 1, p (R N ) can also be seen as

D 1, p (R N ) = u ∈ L p * (R N ) : ∂u ∂x i ∈ L p i (R N ) .
In the sequel, we will set p -= min{p 

Existence of extremal functions for a Sobolev type inequality

In this paragraph, we shall prove that a certain best Sobolev constant is achieved.

Theorem 1. Under the above assumptions on p i , i = 1, . . . , N, N 2, there exists at least one function u ∈ D 1, - → p (R N ), u 0, u = 0 :

- N i=1 ∂ ∂x i ∂u ∂x i p i -2 ∂u ∂x i = u p * -1 in D ′ (R N ).
The proof will need two fundamental lemmas, the first one is a result due to M. Troisi [START_REF] Troisi | Teoremi di inclusione per spazi di Sobolev non isotropi[END_REF]:

Lemma 1. (Troisi [10])

There is a constant T 0 > 0 depending only on -→ p and N such that :

T 0 u p * N j=1 ∂u ∂x i 1 N p i and u p * 1 NT 0 N i=1 ∂u ∂x i p i , for all u ∈ D 1, - → p (R N ).
The second lemma is a rescaling type result ensuring the conservation of suitable norms:

Lemma 2. Let α i = p * p i -1, i = 1, . . . , N. For every y ∈ R N , u ∈ D 1, - → p (R N ), and 
λ > 0, if we write x = (x 1 , . . . , x N ), y = (y 1 , . . . , y N ), v(x) =u λ,y (x) = λu(λ α 1 x 1 + y 1 , . . . , λ α N x N + y N ), we get u p * = v p * , ∂u ∂x i p i = ∂v ∂x i p i , f or i = 1, . . . , N, thus, u 1, - → p = u λ,y 1, - → p .
Proof.

Noticing that

N i=1 α i = p * , a straightforward computation with adequate changes of variables gives the result.

Lemma 3.

Let S = Inf u∈D 1, - → p (R N ), u p * =1 N i=1 1 p i ∂u ∂x i p i p i
. Then S > 0.

Proof.

From Lemma 1, we obtain that if u p * = 1, then

N i=1 ∂u ∂x i p i NT 0 > 0. (4) 
Using standard argument, the infimum 

Inf N i=1 1 p i a p i i , (a 1 , . . . , a n ) ∈ R N , N i=1 a i NT 0 , a i 0 =S 1 is achieved
σ p + if σ 1, σ p -if σ 1. Then for every u ∈ D 1, - → p (R N ), one has SF u p * N i=1 1 p i ∂u ∂x i p i p i =P (∇u). Proof. Let u be in D 1, - → p (R N ). If u = 0 the inequality is true. If u = 0, set w = u u p * ,
then from the definition of S one has :

N i=1 1 p i ∂w ∂x i p i p i S. (5) 
Since t p i t p + if t > 1 and t p i t p -otherwise, the result follows from relation [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, part1[END_REF] and the definition of F . ♦ Remark 1. Along this paragraph, we only need the inequality :

S u p + p * P (∇u) whenever u p * 1.
We shall call (P) the minimization problem (P) Inf

u p * =1 N i+1 1 p i ∂u ∂x i p i p i = Inf u p * =1 {P (∇u)} . Let (u n ) ⊂ D 1, - → p (R N
) be a minimizing sequence for the problem (P). As in [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, part1[END_REF] and Willem [START_REF] Willem | Minimax Theorems[END_REF], we define the Levy concentration function:

Q n (λ) = sup y∈R N E(y,λ α 1 ,...,λ α N ) |u n | p * dx, λ > 0.
Here E(y, λ α 1 , . . . , λ α N ) is the ellipse defined by

z = (z 1 , . . . , z N ) ∈ R N , N i=1 (z i -y i ) 2 λ 2α i 1 6
with y = (y 1 , . . . , y N ) and α i > 0 as in Lemma 2. Since for every n,

lim λ→0 Q n (λ) = 0 and Q n (λ) ----→ λ→+∞ 1. There exists λ n > 0 such that Q n (λ n ) = 1 2
. Moreover there exists y n ∈ R N such that

E(yn,λ α 1 n ,...,λ α N n ) |u n | p * dx = 1 2 .
Thus by a change of variables one has for v n =u λn,yn n :

B(0,1) |v n | p * dx = 1 2 = sup y∈R N B(y,1) |v n | p * dx. Since v n p * = u n p * , ∂v n ∂x i p i = ∂u n ∂x i p i , P (∇u n ) = P (∇v n ) we deduce that (v n ) is bounded in D 1, - → p (R N
) and is also a minimizing sequence for (P).

We may then assume that :

• v n ⇀ v in D 1, - → p (R N ), • ∂ ∂x i (v n -v) p i ⇀ µ i in M + (R N ), • |v n -v| p * ⇀ ν in M + (R N ), • v n → v a.e in R N .
We define :

µ = N i=1 1 p i µ i , µ ∞ = lim R→+∞ lim n N i=1 1 p i |x|>R ∂v n ∂x i p i dx, (6) 
ν ∞ = lim R→+∞ lim n |x|>R |v n | p * dx. (7) 
We start with some general lemmas. First by the Brezis-Lieb's Lemma [START_REF] Brezis | A relation between pointwise convergence of functions and convergence of functionals[END_REF], direct computations give the following Lemma 4.

|v n | p * ⇀ |v| p * + ν in M + (R N ).
The lemma which follows gives some reverse Hölder type inequalities connecting the measures ν, µ and µ i , 1 i N.

Lemma 5.

Under the above statement, one has for all ϕ ∈ C ∞ c (R N )

|ϕ| p * dν 1 p * 1 T 0 N i=1 |ϕ| p i dµ i 1 Np i , |ϕ| p * dν 1 p * p 1 N + 1 p * + µ 1 N + 1 p * -1 p + • 1 T 0 |ϕ| p + dµ 1 p + . Proof. Let ϕ ∈ C ∞ c (R N ) and set w n = v n -v. Since |ϕ x i | p i |w n | p i dx ----→ n→+∞ 0, we then have : lim n ∂ ∂x i (ϕw n ) p i dx = lim n |ϕ| p i ∂w n ∂x i p i dx = |ϕ| p i dµ i . (8) 
Thus from Lemma 1, it follows that

|ϕ| p * dν 1 p * = lim n |ϕw n | p * dx 1 p * 1 T 0 N i=1 |ϕ| p i dµ i 1 Np i . (9) 
On the other hand, since

|ϕ| p i dµ i p + |ϕ| p i dµ p + µ 1- p i p + |ϕ| p + dµ p i p + (10) 
applying the estimates ( 9) and ( 10) and knowing that N i=1

1 p i = 1 + N p * , we deduce |ϕ| p * dν 1 p * p 1 N + 1 p * + µ 1 N + 1 p * -1 p + • 1 T 0 |ϕ| p + dµ 1 p + .
This ends the proof. ♦

We then have v p * 1. So if v p * = 1 then v is an extremal function since P (∇v) lim inf n P (∇v n ) = S and S P (∇v). Thus, we want to show that fact, by proving that if it is not true then we have a concentration of ν at a single point and therefore v = 0.

Main Lemma

v p * = 1.
The remainder of this section is devoted to the proof of the main Lemma Lemma 6.

If v = 0 then lim n v n -v p * p * = 1 -v p * p * < 1.
Proof.

From Brezis-Lieb's Lemma we have :

lim n v n p * p * -v n -v p * p * = v p * p * , Since v n p * = 1, we derive the result. ♦ Lemma 7. S ν p + p * µ .
Proof.

For large n, according to Lemma 6, we have :

|v n -v| p * dx 1. Thus for all ϕ ∈ C ∞ c (R N ), |ϕ| ∞ 1, it holds: S |ϕ| p * |v n -v| p * p + p * N i=1 1 p i |ϕ| p i ∂(v n -v) ∂x i p i dx + o n (1).
Letting n → +∞, one gets :

S |ϕ| p * dν p + p * N i=1 1 p i |ϕ| p i dµ i µ . (11) 
Using the density of

C ∞ c (R N ) in C c (R N ), we get then S sup ϕ∈Cc(R N ), |ϕ| ∞ =1 |ϕ| p * dν p + p * µ ,
that is the desired result.

♦ Lemma 8. Let ψ R be in C 1 (R), 0 ψ R 1, ψ R = 1 if |x| > R + 1, ψ R (x) = 0 if |x| < R.
Then for any γ i > 0, i = 0, . . . , N, the two equalities

ν ∞ = lim R→+∞ lim n |v n | p * ψ γ 0 R dx, µ ∞ = lim R→+∞ lim n N i=1 1 p i ∂v n ∂x i p i ψ γ i R dx.
hold true, where ν ∞ and µ ∞ are defined by ( 6), [START_REF] Rakosnik | Some remarks to anisotropic Sobolev spaces I[END_REF].

Proof.

As in Willem [START_REF] Willem | Minimax Theorems[END_REF], one has :

|x|>R+1 |v n | p * dx |v n | p * ψ γ 0 R dx |x|>R |v n | p * dx, |x|>R+1 ∂v n ∂x i p i dx ∂v n ∂x i ψ γ i R |x|>R ∂v n ∂x i p i dx.
We conclude with the definition of ν ∞ and µ ∞ . ♦ Lemma 9.

Let w n = v nv. Then, for any γ i > 0, i = 0, . . . , N, we get

ν ∞ = lim R→∞ lim n |w n | p * ψ γ 0 R dx, and 
µ ∞ = lim R→∞ lim n ∂w n ∂x i p i ψ γ i R dx. Proof. Since lim R→+∞ |v| p * ψ γ 0 R = lim R→+∞ ∂v ∂x i p i ψ γ i R dx = 0. Thus lim R→∞ lim n |w n | p * ψ γ 0 R dx = lim R→∞ lim n |v n | p * ψ γ 0 R dx = ν ∞ and lim R→∞ lim n N i=1 1 p i ∂w n ∂x i p i ψ γ i R dx = lim R→∞ lim n N i=1 1 p i ∂v n ∂x i p i ψ γ i R dx. ♦ Lemma 10. Sν p + p * ∞ µ ∞ .
Proof.

From Lemma 6, we know that for n large enough, we have

ψ p * R |w n | p * |w n | p * dx 1.
Thus by Sobolev inequality (Corollary 1 of Lemma 3), it follows

S |ψ R w n | p * dx p + p * N i=1 1 p i ∂ ∂x i (ψ R w n ) p i , S lim R→+∞ lim n |ψ R w n | p * dx p + p * lim R→+∞ lim n N i=1 1 p i ∂ ∂x i (ψ R w n ) p i . (12) 
Since

lim n N i=1 1 p i ∂ψ R ∂x i p i |w n | p i = 0, then lim R→+∞ lim n N i=1 1 p i ∂ ∂x i (ψ R w n ) p i = lim R→+∞ lim n N i=1 1 p i ∂w n ∂x i p i ψ p i R = µ ∞ .
relation [START_REF] Willem | Minimax Theorems[END_REF] and Lemma 9 give :

Sν p + p * ∞ µ ∞ .
♦ Following again the arguments used in [START_REF] Willem | Minimax Theorems[END_REF] we claim that:

Lemma 11. 1 = lim n v n p * p * = v p * p * + ν + ν ∞ .
Proof.

From Lemma 4, we have :

|v n | p * ⇀ |v| p * + ν.
Thus lim

R→+∞ lim n (1 -ψ p * R ) |v n | p * dx = |v| p * dx + dν. Rewriting v n p * p * as v n p * p * = (1 -ψ p * R ) |v n | p * + ψ p * R |v n | p * , we obtain lim n v n p * p * = lim R→+∞ lim n (1 -ψ p * R ) |v n | p * + lim R→+∞ lim n ψ p * R |v n | p * = v p * p * + ν + ν ∞
♦ Next, we shall prove the following corollary:

Corollary 1. (of Lemma 5)

There exists an at most countable index set J of distinct points {x j } j∈J ⊂ R N and nonnegative weights a j and b j , j ∈ J such that :

1. ν = j∈J a j δ x j . 2. µ j∈J b j δ x j . 3. Sa p + p * j b j , ∀j ∈ J.

Proof.

The proof follows essentially the concentration compactness principle of P.L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, part1[END_REF] because we have the reverse Hölder type inequalities of Lemma 5.

Indeed, the second statement of this lemma implies that for all borelian sets E ⊂ R N , one has:

ν(E) c µ µ(E) p * p + . ( 13 
)
Since the set

D = {x ∈ R N : µ({x}) > 0} is at most countable be- cause µ ∈ M(R N ), therefore D = {x j , j ∈ J} and b j =µ({x j }) satisfies µ j∈J b j δ x j .
Relation [START_REF] Yamabe | On a deformation of Riemannian structures on compact manifolds[END_REF] implies that ν is absolutely continuous with respect to µ, i.e., ν < < µ and ν B(x, r) µ B(x, r) c µ µ B(x, r)

p * p + -1 ,
provided that µ B(x, r) = 0 (remember that p * > p + ). Thus, we have : Setting a j = D µ ν(x j )b j , relation [START_REF] Yamabe | On a deformation of Riemannian structures on compact manifolds[END_REF] implies that ν has only atoms that are given by {x j }, that we have already get.

ν(E) = E lim r→0 ν B(x,
Let ϕ ∈ C ∞ c (R N ), ϕ(x j ) = 1, ϕ ∞ = 1.
Then, using statement 1. of this corollary and relation [START_REF] Ven | On embedding theorems for spaces of functions with partial derivatives of various degrees of summability[END_REF], we have

Sa p + p * j S |ϕ| p * dν p + p * N i=1 1 p i |ϕ| p i dµ i . ( 14 
)
We shall consider φ ∈ C ∞ c (R N ), 0 φ 1, support(φ) ⊂ B(0, 1), φ(0) = 1. We fix j ∈ J and set x j = (x j,1 , . . . , x j,N ), q i = p i p * p *p i , i = 1, . . . , N.

Then

α i = 1 q i satisfy N k=1
α kα i q i = 0. For ε > 0, we define, for every

z ∈ R N , z = (z 1 , . . . , z N ): φ ε (z) = φ z 1 -x j,1 ε α 1 , . . . , z N -x j,N ε α N . ( 15 
)
Thus we have :

∂φ ε ∂x i q i = ∂φ ∂x i q i (z)dz ( 16 
)
and then

∂φ ε ∂x i p i |v| p i ∂φ ∂x i q i dz 1- p i p * B(x j ,max i ε 1 q i ) |v| p * dz p i p * --→ ε→0 0. ( 17 
)
Lemma 12. Let x j ∈ D and φ ε be the function defined above associated to x j . Then :

Sa p + p * j lim ε→0 lim n N i=1 1 p i φ p i ε ∂v n ∂x i p i dx.
Proof. Since 0 φ ε 1 then

φ p * ε |v n | p * dx 1. From Corollary 1 of Lemma 3, it follows S φ p * ε |v n | p * dx p + p * N i=1 1 p i ∂ ∂x i (φ ε v n ) p i . (18) 
From relation (17), we have

lim ε→0 ∂φ ε ∂x i p i |v| p i dx = 0. (19) 
Since

lim n→+∞ ∂φ ε ∂x i p i |v n -v| p i dx = 0, (20) 
then one has :

lim ε→0 lim n N i=1 1 p i ∂ ∂x i (φ ε v n ) p i dx = lim ε→0 lim n N i=1 1 p i ∂v n ∂x i p i φ p i ε dx (21) 
From relations (18) and ( 21), knowing that |v n | p * ⇀ |v| p * + ν (see Lemma 4), we obtain

Sa p + p * j lim ε→0 lim n N i=1 1 p i φ p i ε ∂v n ∂x i p i dx. ♦ Lemma 13.
Assume that

N i=1 1 p i ∂v n ∂x i p i ⇀ µ in M + (R N ). Then 1. For all j ∈ J, Sa p + p * j lim ε→0 µ(supportφ ε ) (one has support φ ε ⊂ B(x j , max i ε 1 q i )).

µ S ν

p + p * + P (∇v).

S = lim

n→+∞ P (∇v n ) = µ + µ ∞ P (∇v) + S ν p + p * + µ ∞ .
Proof.

From Lemma 12, since

φ p i ε φ ε and lim n N i=1 1 p i φ p i ε ∂v n ∂x i p i dx φ ε d µ, one obtains Sa p + p * j lim ε→0 φ ε d µ lim ε→0 µ B(x j ; max 1 i N ε 1 q i ) . (22) 
This shows that {x j } j∈J are all atomic points of µ and since

N i=1 1 p i ∂v ∂x i p i is orthogonal to the atomic part of µ, one deduces from relation (22) that µ S j∈J a p + p * j δ x j + N i=1 1 p i ∂v ∂x i p i . (23) 
This implies in particular that :

µ S j∈J a p + p * j + P (∇v). (24) 
Since

p + p * < 1 one has j∈J a j p + p * j∈J a p + p * j . (25) 
As ν = j∈J a j δ x j , it holds

ν = j∈J a j , (26) 
which means, combining relations (24) to (26), that :

µ S ν p + p * + P (∇v).
For the last statement, we argue as before:

S = lim n P (∇v n ) = lim R→+∞ lim n R N (1 -ψ R ) N i=1 1 p i ∂v n ∂x i p i dx + lim R→+∞ lim n ψ R N i=1 1 p i ∂v n ∂x i p i dx,
where

ψ R = 1 on |x| > R + 1, 0 ψ R 1, ψ R = 0 if |x| < R, ψ R ∈ C(R).
By the definition of µ, one has :

lim R→+∞ lim n (1 -ψ R ) N i=1 1 p i ∂v n ∂x i p i dx = lim R (1 -ψ R )d µ = µ ,
and (see Lemma 8):

lim R→+∞ lim n ψ R N i=1 1 p i ∂v n ∂x i p i dx = µ ∞ ,
thus, by the preceding statements:

S = µ + µ ∞ P (∇v) + S ν p + p * + µ ∞ . ♦ Lemma 14. If v p * < 1 then ν = 1, ν ∞ = 0 and v = 0.
Proof.

From Lemma 10, we know that

Sν p + p * ∞ µ ∞ .
And by Corollary 1 of Lemma .

Thus the a j are equal either to zero or to 1 that is, there is only one index i 0 such that a i 0 = 1 and a j = 0 for j = i 0 : ν = a i 0 δ x i 0 . ♦ End of the proof of the main Lemma : If v p * < 1 thus ν concentrates at x i 0 and ν = 1. On the other hand we

have 1 2 = sup y∈R N B(y,1) |v n | p * B(x i 0 ,1) |v n | p * dx → ν = 1, which is impossi- ble, we conclude then that v p * = 1. ♦
Consequently, the function v is a (non trivial) extremal function that can be chosen nonnegative (replacing v by |v|).

End of the proof of Theorem 1 :

From usual Lagrange multiplier rule, there is λ 0 > 0, such that :

- N i=1 ∂ ∂x i ∂v ∂x i p i -2 ∂v ∂x i = λ 0 v p * -1 in D 1, - → p (R N ) ′ .
A similar rescaling argument used above (say v(λ

-1 p 1 0 x 1 , . . . , λ -1 p N 0 x N ) ) gives the result. ♦
The multiplicity of solutions comes directly from Lemma 2, that is :

Lemma 16. : Let α ∈ R, α i = α p * p i -α, i = 1, . . . , N and u ∈ S.
Then, for all λ ∈ R * + for all z = (z 1 , . . . , z N ) ∈ R N , the function defined by

u λ,z (x) = λ α u(λ α 1 x 1 + z 1 , . . . , λ α N x N + z N ), with x = (x 1 , . . . , x N ) belongs to S.

Proof.

It is the same as for Lemma 2 using a direct computation.

By the Troisi's inequality (see Lemma 1)

R N (u min[u a , L]) p * 1 p * c N i=1 R N |∂ i (u min[u a , L])| p i 1 p i (33) 
Setting

I i = |∂ i (u min[u a , L])| p i 1 p i , ε k = u k u p * dx, relations (28) to 
(33), lead to :

|∂ j (u • min[u a , L])| p j dx (a + 1) p j min[u ap j , L p j ] |∂ j u| p j dx (a + 1) p j k ap j u p * dx +c(a + 1) p j ε 1- p j p * k N i=1 |∂ i (u min[u a , L])| p i 1 p i p j .
Thus, for all j :

I j (a + 1)k a u p * dx 1 p j + c(a + 1)ε 1 p j -1 p * k N i=1 I i (34) 
The relation(34) infers : Let q = (a + 1)p * , then we obtain the result. ♦ Proposition 2. Any nonnegative solution u being in D 1, - → p (R N ) of (1) belongs to L ∞ (R N ). Moreover, there exists a number τ 0 depending only on p j , N such that u p * τ 0 > 0, f or u non trivial.

Proof.

For u 0 solution of (1), we set A τ = {x ∈ R N , u(x) τ } and |A τ | its Lebesgue measure. Since p * > p + , one can choose q > p * so that ε = -

1 p * + 1 - p * q 1 - 1 p * 1 p + -1 > 0.
Let ϕ k = (uk) + , for k > 0 fixed. Chosing this function as a test function and using proposition 1, one has :

N i=1 ∂ϕ k ∂x i p i p i = u p * -1 (u -k) + c 1 |A k | 1-p * q (1-1 p * ) ϕ k p * , (36) 
with c 1 = u p * -1 q . Since ϕ k p * u p * , thus the corollary 1 of Lemma 3 and relation (36) imply :

ϕ k p + p * c 2 N i=1 ∂ϕ k ∂x i p i p i c 3 |A k | 1-p * q (1-1 p * ) ϕ k p * , (37) 
with c 2 = 1 S • p - Max

1 j N u p + -p j p * , c 3 = c 1 c 2 .
Thus,

ϕ k p * c 4 |A k | 1 p + -1 1-p * q ( 1-1 p * ) . ( 38 
)
with c 4 = c 1 p + -1

3

. By Cavalieri's principle, Hölder inequality and relation(38), one has, for all k > 0:

+∞ k |A τ | dτ = R N (u -k) + (x)dx |A k | 1-1 p * ϕ k p * c 4 |A k | 1+ε . (39)

  and thus this minimum is positive. By relation (4), one concludes that S S 1 > 0. ♦ Corollary 1. of Lemma 3 (Sobolev type inequality) Let p -= min(p 1 , . . . , p N ), p + = max(p 1 , . . . , p N ) and F be the real valued function defined by F (σ) =

  µ a.e. on R N \ D.

p

  there exists k a > 0 such that for all k k a , such that c(a + 1) * , f or k k a .By the Troisi's inequality, one has :u • min[u a , L] L p * c

  1 , p 2 , ..., p N }, p + = max{p 1 , p 2 , ..., p N } and • p i will denote the usual Lebesgue norm in L p i (R N ). We denote by M(R N ) (resp. M + (R N )) the space of finite measures (resp. positive finite measures) on R N , and by • its usual norm.

	and -→ p = (p 1 , p 2 , • • • , p n ). Also, the integral symbol	will denote
		R N

  If v p * < 1 then the measure ν is concentrated at a single point z = x i 0 .

	(see relation(24)) and 1 = ν =	a j , we then have :
							j∈J
						p +		p +
						p *		p +	p *
				a j			a j p *	a j
				j∈J			j∈J	j∈J
				3, we have
				S v p + p *	P (∇v).
	From the last statement of Lemma 13 and the above inequalities we deduce
	that :		S S ( v p * p * )	p + p * + ν	p + p * ∞ p * + ν p +	.
	Thus we obtain, due to Lemma 11, that
	( v p * p * )	p + p * + ν	p + p * + ν ∞ p + p *			1 =	v p * p * + ν + ν ∞	p + p *	.
	Using the inequality				
		v p * p * + ν + ν ∞	p + p *	v	p + p * p * + ν	p + p * ∞ , p * + ν p +
	we get	v	p + p * p * + ν	p + p * + ν ∞ = p + p *	v p * p * + ν + ν ∞	p + p *	.
	It follows that v p * p * , ν and ν ∞ are equal either to 0 or to 1. But using the fact that ν ∞ 1 2 , since B(0,1) |v n | p * dx = 1 2 , we conclude that ν ∞ = 0,
	v p * < 1 (by our assumption) so that v = 0 and thus ν = 1.	♦
	Lemma 15.						
	Proof.						
	Since							p +
			S = µ + µ ∞ S	a j , p *
								j∈J
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3 Some properties of the solutions of [START_REF] Aubin | Problèmes isopérimètriques et espaces de Sobolev[END_REF] We want to show first the : Proposition 1. Any nonnegative solution u being in D 1, - → p (R N ) of (1) belongs to L q (R N ) for all p * q < +∞.

Proof.

We follow the proof of [START_REF] Fragala | Existence and nonexistence results for anisotropic quasilinear elliptic equation[END_REF]. Let a > 0. Let j be fixed in {1, . . . , N}, for L > 0 (large) we define ϕ j,L =u min[u ap j , L p j ] ∈ D 1, - → p (R N ) and for all i

and

Choosing ϕ j,L as a test function, one has :

Introducing k > 0, one has :

Writing that :

The Hölder inequality applied to the right hand side of relation (31) shows that :

This last relation is a Gronwall inequality, which shows that ∀k > 0

4 .

(40)

Setting

and noticing that

Separating the contribution of u q and u p * , we have a continuous map Λ : R + → R + and constants c 5 > 0 and β depending only on p + , p * so that

. Thus, from relation (42),we deduce

But the number κ =1β 1 -p * q = 0, so relation (43) implies that there is a number τ 0 > 0 depending only p j , p * such that u p * τ 0 > 0. ♦