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Abstract

In this paper, we address the problem of k-out-of-ℓ exclusion, a generalization of the mutual exclusion
problem, in which there are ℓ units of a shared resource, and any process can request up to k units
(1 ≤ k ≤ ℓ). We propose the first deterministic self-stabilizing distributed k-out-of-ℓ exclusion protocol in
message-passing systems for asynchronous oriented tree networks which assumes bounded local memory
for each process.

Keywords: Fault-tolerance, self-stabilization, resource allocation, k-out-of-ℓ exclusion, oriented tree
networks.

1 Introduction

The basic problem in resource allocation is the management of shared resources, such as printers or shared
variables. The use of such resources by an agent affects their availability for the other users. In the afore-
mentioned cases (e.g., printers), at most one agent can access to the resource at any time, using a special
section of code called a critical section. The associated protocols must guarantee the mutual exclusion prop-
erty [13]: the critical section can executed by at most one process at any time. The ℓ-exclusion property [6]
is a generalization of mutual exclusion, where ℓ processes can execute the critical section simultaneously.
Thus, in ℓ-exclusion, ℓ units of a same resource (e.g., a pool of IP addresses) can be allocated. This problem
can be generalized still further by considering heterogeneous requests, e.g., bandwidth for audio or video
streaming. The k-out-of-ℓ exclusionproperty [12] allows us to deal with such requests; requests may vary
from 1 to k units of a given resource, where 1 ≤ k ≤ ℓ.

Contributions. In this paper, we propose a (deterministic) self-stabilizing distributed k-out-of-ℓ exclu-
sion protocol for asynchronous oriented tree networks. A distributed protocol is self-stabilizing [5] if, after
transient faults hit the system and place it in some arbitrary global state, the systems recovers from this
catastrophic situation without external (e.g. human) intervention in finite time. Our protocol is written in
the message-passing model, and assumes bounded memory per process. To the best of our knowledge, there
is no prior protocol of this type in the literature.

Obtaining a self-stabilizing solution for the k-out-of-ℓ exclusion problem in oriented trees is desirable, but
also complex. Our main reason for dealing with oriented trees is that extension to general rooted networks
is trivial; it consists of running the protocol concurrently with a spanning tree construction (for message
passing systems), such as given in [1, 4]. In the other hand, the complexity of the solution comes from
the fact that the problem is a generalization of mutual exclusion. This is exacerbated by the difficulty of
obtaining self-stabilizing solutions in message-passing system (the more realistic model), as underlined by
the impossibility result of Gouda and Multari [7].

Designing protocols for such problems on realistic systems often leads to obfuscated solutions. A direct
consequence is then the difficulty of checking, or analyzing the solution. To circumvent this problem, we
propose here a step-by-step approach. We start from a “naive” non-operating circulation of ℓ resource tokens.
Incrementally, we then augment this solution with several other types of tokens until we obtain a correct non
fault-tolerant solution. We then introduce an additional control mechanism that guarantees self-stabilization,
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assuming unbounded local memory. Finally, we modify the protocol to accommodate bounded local memory.
We validate our approach by showing correctness and analyzing waiting time, a crucial parameter in resource
allocation.

Related Work. Two kinds of protocols are widely used in the literature to solve the k-out-of-ℓ exclusion
problem: permission-based protocols, and ℓ token circulation. All non self-stabilizing solutions currently in
the literature are permission-based. In a permission-based protocol, any process can access a resource after
receiving permissions from all processes [12], or from the processes constituting its quorum [10, 11]. There
exist two self-stabilizing solutions for k-out-of-ℓ exclusion on the oriented rooted ring [2, 3]. These solutions
are based on circulation of ℓ tokens, where each token corresponds to a resource unit.

Outline. The remainder of the paper is organized as follows: in the next section, we define the model used
in this paper. In Section 3, we present our self-stabilizing k-out-of-ℓ exclusion protocol. In Section 4, we
provide the proof of correctness of our protocol, and we analyze its waiting time. Finally, we conclude in
Section 5.

2 Preliminaries

Distributed Systems. We consider asynchronous distributed systems having a finite number of processes.
By asynchronous, we mean that there is no bound on message delay, clock drift, or process execution rate.
Every process can directly communicate with a subset of processes called neighbors. We denote by ∆p the
number of neighbors of a process p. We consider the message-passing model where communications between
neighboring processes are carried out by messages exchanging through bidirectional links (i.e., each link can
be seen as two channels in the opposite directions). The neighbor relation defines a network. We assume
that the topology of the network is that of an oriented tree. Oriented means that there is a distinguished
process called root (denoted r in the following) and that every non-root process knows which neighbor is its
parent in the tree, i.e., the neighbor that is nearest to the root. We say that process q is a child of process
p if and only if p is the parent of q.

A process is a sequential deterministic machine that uses a bounded local memory, a local algorithm, and
input/output capabilities. Intuitively, a process executes its local algorithm by taking steps. In a step, a
process executes two actions in sequence: (1) either it tries to receive a message from another process, sends
a message to another process, or does nothing; and then (2) modifies some variables. Our local algorithms
are structured as infinite loop that contains a finite number of actions. We denote by xp the variable x in
the code of process p.

We assume that the channels incident to a process are locally distinguished by a number. For sake of
simplicity, every process p numbers its channels from 0 to ∆p − 1, and we simply denote by the label q the
channel number of the process q in the code any other process. Without loss of generality, we also assume
that any non-root process locally designates by 0 its channel to its parent. We assume that the channels are
reliable and FIFO. Reliable means that no message can be lost (after the end of the transient faults). FIFO
means that the messages are received in the order they are sent. We also assume that the channels initially
contain a bounded number of arbitrary messages, we denote such a bound by CMAX.

1

The messages are of the following form: 〈type,value〉. The value field is omitted if the message does not
carry any value. The messages can contain more than one value.

A distributed protocol is a collection of n local algorithms, one for each process. We define the state of
each process to be the state of its local memory and the contents of each of its incoming channels. The
global state of the system, referred to as a configuration, is defined as the product of the states of processes.
We denote by C the set of all possible configuration. An execution of a distributed protocol P in a system
S is an infinite sequence of configurations (of S) γ0γ1 . . . γi . . . such that in any transition γi 7→ γi+1 either a
process take a step, or an external (w.r.t. the distributed protocol) application modifies an input variable.
Any execution are assumed to be asynchronous but fair : Every process takes an infinite number of steps in
the execution but the time between two steps of a process is unbounded.

1This assumption is required to obtain a deterministic self-stabilizing solution working with bounded process memories, see
[7].
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k-out-of-ℓ exclusion. In the k-out-of-ℓ exclusion problem, the existence of ℓ units of a shared resource
is assumed. Any process can request at most k units of the shared resource (with k ≤ ℓ). We say that a
distributed protocol satisfies the k-out-of-ℓ exclusion specification if it satisfies the following three properties:

- Safety: At any given time, each resource unit (n.b., here any resource unit corresponds to a token) is
used by at most one process, each process uses at most k resource units, and at most ℓ resource units
are used.

- Fairness: If a process requests at most k resource units, then its request is eventually satisfied (i.e. it
can eventually use the resource unit it requests using a special section of code called critical section).

- Efficiency: Informally, this means that as many requests as possible must be satisfied simultaneously.

The above mentioned notion of efficiency is difficult to define precisely. A convenient parameter was intro-
duced in [3] to formally characterize efficiency: (k, ℓ)-liveness. In this definition, it is assumed that there
is a subset I of processes such that every process in I executes its critical section forever (i.e. they holds
some resource units forever). Let ui the number of resource units held forever by each process p ∈ I. Let
α =

∑
p∈I ui. Let R be the set of processes not in I that request some resource units. Let rp be the number

of resource units requested by p ∈ R. To satisfy the (k, ℓ)-liveness, a distributed k-out-of-ℓ exclusion protocol
must guarantee that if (α < ℓ) ∧ (|R| > 0) ∧ (∀p ∈ R, rp ≤ ℓ − α), then at least one process in R eventually
satisfies its request.

Waiting Time. The waiting time [14] is the maximal number of times that all processes can enter in the
critical section before some process p, starting from the moment p requests the critical section.

Interface. In any k-out-of-ℓ exclusion protocol, the process needs to interact with the application that
requests the resource units. To manage these interactions, we use the following interface at each process:

- State ∈ {Req, In, Out}. This variable is used to known the status of the application. State = Req
means that the application is requesting some resource units. Our protocol switches State from Req
to In when the application is allowed to access to the requested resource units. Finally, State switches
from In to Out when the requested resource units are released into the system. Of course, the switching
of State from Req to In and from In to Out is managed by the k-out-of-ℓ exclusion protocol itself while
the switching from Out to In is managed by the application. Note that all other transitions (for
instance, In to Req) are forbidden.

- Need ∈ [0 . . .k]. In this input variable, the application is assumed to assign the number of resource
units it requests.

- EnterCS(): function. This function is called by the distributed protocol to execute the critical section.
From this call, the application has control of the resource units until the application releases them (we
assume that the critical section is always executed in finite, yet unbounded, time).

- ReleaseCS(): Boolean. This predicate is defined over the variables of the application. ReleaseCS() is
true if and only if the application is not executing its critical section.

Self-Stabilization [5]. In the following, we define a specification to be a predicate over the set of all
executions. A set of configurations C1 ⊆ C is an attractor for a set of configurations C2 ⊆ C if for any γ ∈ C2

and any execution whose initial configuration is γ, the execution contains a configuration of C1.

Definition 1 An protocol P is self-stabilizing for the specification SP in a system S if there exists a non-
empty subset of configurations L such that:

- Any execution of P in S starting from a configuration of L satisfies SP (Closure Property).

- L is an attractor for C (Convergence Property).
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Algorithm 1 k-out-of-ℓ exclusion on oriented trees, code for the root r

1: variables:

2: C, myC ∈ [0 . . . 2(n− 1)(CMAX + 1)]; Succ ∈ [0 . . . ∆r − 1]
3: RSet: multiset of at most k values taken in [0 . . . ∆r − 1]
4: Need ∈ [0 . . . k]; State ∈ {Req,In,Out}
5: Prio ∈ {⊥, 0, . . . , ∆r − 1}
6: R, Reset: Booleans; SToken, PT∈[0 . . . ℓ + 1]
7: SPush, SPrio, PPr ∈ [0 . . .2]
8: repeat forever

9: for all q ∈ [0 . . . ∆r − 1] do

10: if (receive〈ResT〉 from q) ∧¬Reset then

11: if (State = Req) ∧ (|RSet| < Need) then

12: RSet← RSet ∪ {q}
13: else

14: if q = ∆r − 1 then

15: SToken← min(SToken + 1, ℓ + 1)
16: end if

17: send〈ResT〉 to q + 1
18: end if

19: end if

20: if (receive〈PushT〉 from q) ∧¬Reset then

21: if (Prio 6=⊥) ∧ (State 6= Req∨ |RSet| < Need)∧
(State 6= In) then

22: for all i ∈ RSet do

23: if i = ∆r − 1 then

24: SToken← min(SToken + 1, ℓ + 1)
25: end if

26: send〈ResT〉 to i + 1
27: end for

28: RSet← ∅
29: end if

30: if q = ∆r − 1 then

31: SPush← min(SPush + 1, 2)
32: end if

33: send〈PushT〉 to q + 1
34: end if

35: if (receive〈PrioT〉 from q) ∧¬Reset then

36: if Prio =⊥ then

37: Prio← q

38: else

39: send〈PrioT〉 to q + 1
40: end if

41: end if

42: if (receive〈ctrl, C, R, PT, PPr〉 from q) then

43: if (q = Succ) ∧ (myC = C) then

44: Succ← Succ + 1
45: if Succ = 0 then

46: myC← myC + 1
47: Reset← (PT + SToken > ℓ)∨

(PPr + SPrio > 1) ∨ (SPush > 1)
48: if Reset then

49: RSet← ∅
50: Prio←⊥
51: else

52: if PPr + SPrio < 1 then

53: send〈PrioT〉 to 0
54: end if

55: while PT + SToken < ℓ do

56: send〈ResT〉 to 0
57: SToken← min(SToken + 1, ℓ + 1)
58: end while

59: if SPush < 1 then

60: send〈PushT〉 to 0
61: end if

62: end if

63: SToken← 0
64: SPrio← 0
65: SPush← 0
66: PT ← 0
67: PPr ← 0
68: end if

69: PT ← min(PT + |RSet|q, ℓ + 1)
70: if Prio = q then

71: PPr ← min(PPr + 1, 2)
72: end if

73: send〈ctrl, myC, Reset, PT, PPr〉 to Succ

74: RestartTimer()
75: end if

76: end if

77: end for

78: if (State = Req) ∧ (|RSet| ≥ Need) then

79: State← In

80: EnterCS()
81: end if

82: if (State = In) ∧ ReleaseCS() then

83: for all i ∈ RSet do

84: if i = ∆r − 1 then

85: SToken← min(SToken + 1, ℓ + 1)
86: end if

87: send〈ResT〉 to i + 1
88: end for

89: RSet← ∅
90: State← Out

91: end if

92: if (Prio 6=⊥) ∧ (State 6= Req∨ |RSet| ≥ Need) then

93: if Prio = ∆r − 1 then

94: SPrio← min(SPrio + 1, 2)
95: end if

96: send〈PrioT〉 to Prio + 1
97: Prio←⊥
98: end if

99: if TimeOut() then

100: send〈ctrl, myC, Reset, 0, 0〉 to Succ

101: RestartTimer()
102: end if

103: end repeat
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Figure 1: Depth-first token circulation on oriented trees.

3 Protocol

In this section we present our self-stabilizing k-out-of-ℓ exclusion protocol for oriented trees (Algorithms 1
and 2). Our solution uses circulation of several types of tokens. To clearly understand the goal of these
tokens, we adopt a step-by-step approach: We start from a “naive” non-operating circulation of ℓ resource
tokens. Incrementally, we then augment this solution with several other types of tokens until we obtain a
correct non fault-tolerant solution. We then define an additional control mechanism that guarantees self-
stabilization assuming unbounded local memory of processes. Finally, we modify our protocol to work with
bounded memory.

A non fault-tolerant protocol. The basic principle of our protocol is to use ℓ circulating resource tokens
(the ResT messages) following depth-first search (DFS) order: when a process p receives a token from channel
number i, it keeps the token if necessary and then retransmits it in the channel number i + 1 (modulo ∆p).
Figure 1 shows a possible path followed by depth-first token circulation into an oriented tree (remember that
any non-root process locally numbers the channel to its parent by 0). As explained Section 2, the requests
are managed by the variables State and Need. Each process also uses the multiset2 variable RSet to collect
the tokens, any collected token is said “reserved”. While State = Req and |RSet| < Need, a process collects
all the tokens it receives: it stores in RSet the channel numbers from which it receives the tokens. When
State = Req and |RSet| ≥ Need, it enters into the critical section: State is set to In and the function
EnterCS() is called. Once the critical section is done (i.e., when State = In and the predicate ReleaseCS()
holds) State is set to Out, and every token in RSet is retransmitted following DFS order3, and RSet is set
to ∅. Note also that when a process receives a token it does not need, it immediately retransmits it to its
successor, in DFS order.

Unfortunately, such a simple protocol does not always guarantee liveness. Figure 2 show a case where
liveness is not maintained. In this example, there are five resources tokens (i.e., ℓ = 5) and each process can
request up to three tokens (i.e., k = 3). In the configuration shown on the left side of the figure, processes
a, b, c, and d request more tokens than they will receive. This configuration will lead to the deadlock
configuration shown on the right side of the figure: processes a, b, c, and d reserve all the tokens they receive
and never release them because their requests are never satisfied.

We correct this deadlock by adding a particular token called the pusher (the message PushT). It perma-
nently circulates in the tree (following DFS order) and prevents a process that is not in the critical section
from holding resource tokens forever: when a process receives the pusher, it releases all its reserved tokens,
unless if it is either in its critical section (State = In) or it has the guarantee to enter it soon (State = Req
and |RSet| ≥ Need). In either case, it retransmits the pusher to its successor in the DFS order.

The pusher protects the system from deadlock. However, it can cause livelock ; an example is shown
in Figure 3, for 2-out-of-3 exclusion in a tree of three processes. In configuration (i), every process is a
requester: r and b request one resource token and a requests two resource tokens. Also, every process has a
resource token in one of its incoming channels, and holds no token. Finally, the pusher is in the channel from

2
N.b. a multiset can contain several identical items.

3Thanks to the channel numbers stored in RSet, the process knows in which channel it must send each token to follow DFS
order.
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Figure 2: Possible deadlock.
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Algorithm 2 k-out-of-ℓ exclusion on oriented trees, code for the other process p

1: variables:

2: C, myC ∈ [0 . . . 2(n− 1)(CMAX + 1)]; Succ ∈ [0 . . . ∆p − 1]
3: RSet: multiset of at most k values taken in [0 . . . ∆p − 1]
4: Need ∈ [0 . . . k]; State ∈ {Req,In,Out}
5: Prio ∈ {⊥, 0, . . . , ∆p − 1}
6: R, Ok: Booleans; PT∈[0 . . . ℓ + 1]; PPr∈[0 . . . 2]
7: repeat forever

8: for all q ∈ [0 . . . ∆p − 1] do

9: if (receive〈ResT〉 from q) then

10: if (State = Req) ∧ (|RSet| < Need) then

11: RSet← RSet ∪ {q}
12: else

13: send〈ResT〉 to q + 1
14: end if

15: end if

16: if (receive〈PushT〉 from q) then

17: if (Prio 6=⊥) ∧ (State 6= Req∨ |RSet| < Need)∧
(State 6= In) then

18: for all i ∈ RSet do

19: send〈ResT〉 to i + 1
20: end for

21: RSet← ∅
22: end if

23: send〈PushT〉 to q + 1
24: end if

25: if (receive〈PrioT〉 from q) then

26: if Prio =⊥ then

27: Prio← q

28: else

29: send〈PrioT〉 to q + 1
30: end if

31: end if

32: if (receive〈ctrl, C, R, PT, PPr〉 from q) then

33: Ok← false

34: if (q = Succ) ∧ (myC = C) ∧ (Succ 6= 0) then

35: Succ← Succ + 1
36: Ok← true

37: if R then

38: RSet← ∅

39: Prio←⊥
40: end if

41: end if

42: if (q = 0) then

43: Ok← true

44: if myC 6= C then

45: Succ← min(1, ∆p − 1)
46: if R then

47: RSet← ∅
48: Prio←⊥
49: end if

50: end if

51: myC← C

52: end if

53: if Ok then

54: PT ← min(PT + |RSet|q, ℓ + 1)
55: if Prio = q then

56: PPr ← min(PPr + 1, 2)
57: end if

58: send〈ctrl, myC, R, PT, PPr〉 to Succ

59: end if

60: end if

61: end for

62: if (State = Req) ∧ (|RSet| ≥ Need) then

63: State← In

64: EnterCS()
65: end if

66: if (State = In) ∧ ReleaseCS() then

67: for all i ∈ RSet do

68: send〈ResT〉 to i + 1
69: end for

70: RSet← ∅
71: State← Out

72: end if

73: if (Prio 6=⊥) ∧ (State 6= Req∨ |RSet| ≥ Need) then

74: send〈PrioT〉 to Prio + 1
75: Prio←⊥
76: end if

77: end repeat

a to r behind a resource token. So, every process will collect the incoming resource token and the system will
reach the configuration (ii) where r and b execute their critical section while a is still waiting for a resource
token and the pusher is reaches r . When r receives the pusher, it directly retransmits it to b, while keeping
its resource token, as shown in configuration (iii). Similarly, b receives the pusher while executing its critical
section, and then b retransmits it to r , as shown in configuration (iv), and then r retransmits the pusher to
a (configuration (v)). Assume now that a receives the pusher while r and b leave their critical sections. We
obtain configuration (vi): a must release its resource tokens because of the pusher. In configuration (vii),
r and b directly retransmit the resource token they receive because they are not requesters. Finally, r and
b again become requesters for one resource token in configuration (viii), identical to configuration (i). We
can repeat this cycle indefinitely, and process a never satisfies its request.

To solve this problem, we add a priority token (message PrioT) whose goal is to cancel the effect of
the pusher. A process which receives the priority token retransmits it immediately to its successor (in DFS
order), unless it has an unsatisfied request. In this case, the process holds the priority token (the variable
Prio is set from ⊥ to the channel number from which the process receives the priority token) until its request
is satisfied: the token will be released when the process enters its critical section. A process that holds the
priority token does not have to release its reserved resource tokens when it receives the pusher: it only
retransmits the pusher to its DFS order successor.

Using these three types of tokens, we obtain a simple non self-stabilizing k-out-of-ℓ exclusion protocol.
Below, we present the module that turns this protocol into a self-stabilizing one.

A controller for self-stabilization. After a finite period of transient faults, some tokens may have
disappeared or may been duplicated. To resume correct behavior, we need an additional self-stabilizing
mechanism that regulates the number of tokens in the network: to achieve that, we use a self-stabilizing
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controller. Such a mechanism is similar to the one introduced in [8] for a self-stabilizing ℓ-exclusion protocol
on a ring.

Basically, the controller is a special token (message ctrl) that is used as a flag to count the other tokens:
at the end of each full depth-first circulation of the controller into the tree, the root learns the number of
tokens of each type (resource, pusher, priority) and adjusts this number if it is incorrect.

Of course, the controller can be effected by transient faults, too. So, we use the counter flushing technique
of Varghese [15] to design the controller as a self-stabilizing depth-first token circulation (DFTC) in the tree.
We will see in the next paragraph (page 9) how to design such self-stabilizing token circulation.
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Figure 4: Virtual ring.

We now explain how we count the tokens using the controller. To that end, consider the problem of
counting the resource tokens. The counting of the other types of tokens derives from this method. Any
token circulation follows a virtual ring of the network: e.g., Figure 4 shows the virtual ring followed by the
depth-first token circulation of Figure 1. The controller uses this virtual structure to count the (resource)
tokens. We split the count of the resource tokens into two subcounts:

- The “passed” tokens. When a process holds some resource tokens that came from channel i and receives
the controller from the channel i, it retransmits the controller through channel i + 1 while keeping the
resource tokens: in this case, we say that the controller passes these tokens in the virtual ring. Indeed,
these tokens were ahead the controller (in the virtual ring) before the process received the controller,
and are behind afterwards. The field PT of the controller message is used to compute the number of
the passed resource tokens.

- The tokens that are never passed by the controller. These tokens are counted in the variable SToken

maintained at the root process. At the beginning of any circulation of the controller, the variable
SToken is reset to 0. Then, until the end of the circulation of the controller, each time a resource token
starts a new circulation (i.e. the token leaves the root from channel 0), SToken is incremented.

Hence, when the controller terminates its circulation, the number of resource tokens in the network is equal
to PT + SToken. Three cases are then possible:

- The number of tokens is correct. in this case, the system is stabilized.

- There are too few tokens. In this case, the root creates the number of necessary tokens at the end of
the traversal; the system is then stabilized.

- There are too many tokens. In this case, we reset the network. To that goal, we mark the controller
token with a special flag (the field R in the message ctrl). The root sends the marked controller,
erases its reserved tokens as well as all the tokens it receives until the termination of the controller’s
traversal. Upon receiving the controller, every other process erases its reserved tokens. When the
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controller finishes its traversal, there is no token in the network, and then the root creates exactly ℓ

resource tokens; the system is stabilized.

By extending this technique to the other types of tokens, we obtain a self-stabilizing controller.

Self-stabilizing DFTC. Using the counter flushing technique, we design a self-stabilizing DFTC to
implement the controller. The principle of counter flushing is the following: after transient faults, the token
message can be lost. Hence, the root must use a timeout mechanism to retransmit the token in case of
deadlock. The timeout is managed using the function RestartTimer() (that allows it to reinitialize the
timeout) and the predicate TimeOut(), which holds when a specified time interval is exceeded.4

Due to the use of the timeout, we must now deal with duplicated messages. Also, arbitrary messages may
exist in the network after faults (however they are assumed to be bounded). To distinguish the duplicates
from the valid token and to flush the system of corrupted messages, every process maintains a counter
variable myC that takes values in [0 . . . 2(n − 1)(CMAX + 1)] and marks each message with that value. Every
process also maintains a pointer Succ to know to which process it must send the token. The effects of the
reception of a token message differs for the root and the other processes:

- The root considers a token message as valid when the message comes from Succ and is marked with
a value c such that myC = c. Otherwise, it simply ignores the message. In case of a valid message,
the root increments Succ (modulo ∆r) and retransmits the token with the flag value myC to Succ

so that the valid token follows DFS order. If Succ = 0, this means that the token just finished its
previous circulation. As a consequence, the root increments myC (modulo 2(n − 1)(CMAX + 1)) before
retransmitting the token.

- A non-root process p considers a message as valid in two cases: (1) When it receives a token message
from its parent (channel 0) marked with a value c such that myC 6= c or (2) when it receives a token
message from Succ and the message is marked with a value c such that myC = c. In case (1), p sets myC
to c and Succ to min(1, ∆p − 1) (n.b. in case of a leaf process Succ is set to 0) before retransmitting
the token message marked with myC to Succ. In case (2), p increments Succ (modulo ∆p) and then
sends the token marked with myC to Succ so that the valid token follows DFS order. In all other cases,
p considers the message to be invalid. In the case of an invalid message coming from channel 0 with
myC = c, p does not consider the message in the computations but retransmits it to prevent deadlocks.
In all other cases, p simply ignores the message.

Using this method, the root increments its counter myC infinitely often and, due to the size of the myC’s
domain, the myC variable of the root eventually takes a value that does not exist anywhere else in the system
(because the number of possible values initially in the system is bounded by 2(n−1)(CMAX +1)). In this case,
the token marked with the new value will traverse the whole network and will be considered to be a valid
token by every process. Until the end of that traversal, the root will ignore all other token messages. Hence,
at the end of the traversal, the system will be stabilized.

Dealing with bounded memory. Due to the use of reset, the root does not need to know the exact
number of tokens at the end of the controller’s traversals. Actually, the root must only know if the number
of tokens is too high, or the number of tokens it needs to add if the number is too low. Hence, the counting
variables can be bounded by ℓ + 1 for the resource tokens and by 2 for the other types of token. The fact
that a variable is assigned to its maximal value will mean that there are too many tokens in the network
and so a reset must be started. Otherwise, the value of the counting variable will state whether there is a
deficient number of tokens, and in that case, how many must be added. For any assignment to one of these
bounded variables, the value is set to the minimum between its new computed value and the maximal value
of its domain.

4 Correctness and Waiting Time

In this section, we first prove that our protocol is a self-stabilizing k-out-of-ℓ exclusion protocol. We then
analyze its waiting time.

4We assume that this time interval is sufficiently large to prevent congestion.
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Correctness. We split the proof into three steps. (1) Recall that the controller part of our protocol is
a self-stabilizing DFS token circulation. (2) We show that once the controller is stabilized to DFS token
circulation, the system eventually stabilizes to the expected number of different tokens. (3) We show that
once the system contains the expected tokens, the system stabilizes to the k-out-of-ℓ exclusion specification.

In our protocol, when a process receives a ctrl message, either it considers the message as valid or not.
The process takes account of the messages for computations only when they are valid. Assume that a process
p receives a ctrl message marked with the flag value c from channel q. Process p considers this message as
valid if and only if (q = Succp ∧ c = myCp) ∨ (p 6= r ∧ (q = 0 ∧ c 6= myCp)).

In the following, we call any ctrl message a control token. Each time a process receives a valid ctrl

message, it makes some local computations, and then sends another ctrl message. In the case of a non-root
process, the sent message is marked with the same flag as the received message: we consider it to be the
same control token. In the case of the root, the sent message is marked either with the same value or with a
new one. In the former case, we consider it to be the same control token, while in the latter case, we consider
the received control token to have terminated its traversal, and the transmitted control token to be new.

To implement the control part, we uses the counter flushing techniques introduced by Varghese in [15].
Hence, from [15], we can deduce the following lemma:

Lemma 1 Starting from any configuration, the system converges to a configuration at which:

1. There exists at most one valid control token in the network.

2. The root regularly creates a new valid control token.

3. Any valid control token visits all processes following in DFS order.

Remark 1 In our protocol, only the valid control tokens are considered in the computations. Hence, from
now on, we only consider the valid control tokens and we simply refer to them as control tokens.

We now show that starting from any configuration, the system eventually contains the expected number of
each type of token.

Note that each resource token is either in a link (in this case, the token is said to be free) or it is stored
in the RSet of a process (in this case, the token is said to be reserved). Hence, at any time the number of
resource tokens in the network is equal to the sum of the size of the RSet multisets plus the number of free
resource tokens.

Similarly, note that at any time the number of priority tokens is equal to the number of processes satisfying
Prio 6=⊥ plus the number of free priority tokens.

Finally, as a process cannot store any pusher token, the number of pusher tokens is equal to the number
of free pusher tokens.

Lemma 2 Let γ be the first configuration after the control part is stabilized. If, after γ, the root creates a
control token having a reset field R equal to true, then the system contains no resource, priority, and pusher
token at the end of the traversal of the control token.

Proof. Consider any control token created by the root after configuration γ. Assume that the reset field R

of the control token is set to true. Then, the Reset variable of the root is also true (see Line 73 in Algorithm
1). Resetr remains true until the control token terminates its traversal. Hence, during the traversal, any
token (except the control token) that is received by the root is ignored by the root and so disappears from
the network (see Lines 10, 20, and 35 in Algorithm 1). Also, during its traversal, each process erases all
tokens (except the control token) it holds when visited by the control token (see Line 48 in Algorithm 1,
and Lines 37, and 46 in Algorithm 2). Hence, every resource, priority, or pusher token is either erased at a
process when the process is visited by the control token or is pushed to the root and then disappears: at the
end of the traversal of the control token, the system contains no resource, priority, or pusher tokens. 2

Lemma 3 Let γ be the first configuration after the control part is stabilized. When a control token created
by the root after γ terminates its traversal, we have:

- If PT + STokenr > ℓ, then there are more than ℓ resource tokens in the network.
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- If PT + STokenr ≤ ℓ, then there are exactly PT + SToken resource tokens in the network.

Proof. Consider any control token created by the root after configuration γ. Let us study the following
two cases:

- The reset field R of the control token is true. By Lemma 2, there is no resource token in the network
when the control token terminates its circulation. So, to prove the lemma in this case, we must show
that PT + STokenr = 0 at the end of the circulation.
First, STokenr is reset to 0 (Line 63) before the control token starts its circulation (Line 73). Also,
Resetr is true when the control token starts its circulation (see Line 73 in Algorithm 1). Thus, until
termination of the circulation, r ignores any resource tokens it receives (see Lines 10, 20, and 35) and
so STokenr is still equal to 0 at the end of the control token circulation.
Consider now the PT field of the control token. Before the start of the control token circulation, r
executes the following action: RSet is set to ∅ (Line 49 in Algorithm 1), PT is set to 0 (Line 66 in
Algorithm 1), and, as a consequence, PT is set to min(0, ℓ + 1) (Line 69 in Algorithm 1). So, at the
start of the control token circulation, the control token is sent with its PT field equal to 0. Since the
reset field R of the control token is equal to true, each time the control token arrives at a process, the
process resets its RSet variable to ∅ (see Lines 49 in Algorithm 1, Lines 38, and 47 in Algorithm 2)
before setting PT to min(PT + |RSet|q, ℓ + 1) (see Line 69 in Algorithm 1 and Line 54 in Algorithm
2) and then retransmitting the token. Hence, PT remains equal to 0 until the end of the circulation.
When the control token terminates its circulation, PT + STokenr = 0, and we are done.

- The reset field R of the control token is false. In this case, we can remark that no resource token is
erased during the circulation of the control token, because both R and Resetr are false.
(*) We now show that any resource token is counted at most once during the circulation of the control
token. Due to the FIFO quality of the links and the fact that when the control token is received by
a process, the process receives no other message before retransmitting the control token, we have the
following property: A resource token is passed by the control token at most once during a circulation.
So, during the circulation, either the resource token is counted into the PT field of the control token
when the resource token is passed by the control token (see Line 69 in Algorithm 1 and Line 54 in
Algorithm 2) or it is counted at the root when it terminates a loop of the virtual ring (Line 15). Hence,
any resource token is counted at most once.
(**) Finally we show, by contradiction, that any resource token is counted at least once during the
circulation of the control token. Assume that a resource token is not counted during that circulation.
Then, the resource token is never passed by the control token. The links are FIFO, and when the
control token is received by a process, the process receives no other message before retransmitting
the control token. So, the resource token is always ahead the control token in the virtual ring. As
a consequence, the resource token is eventually counted at the root when it terminates a loop of the
virtual ring (Line 15), contradiction.
From (*), we know that if PT + STokenr > ℓ at the end of the control token circulation, then there
are more that ℓ resource tokens in the network. From (*) and (**), we know that if PT + STokenr ≤ ℓ

at the end of the control token circulation, then there are exactly PT +STokenr resource tokens in the
network, and we are done.

2

Following similar reasoning, we obtain the following two lemmas:

Lemma 4 Let γ be the first configuration after the control part is stabilized. When a control token created
by the root after γ terminates its traversal, we have:

- If SPrior + PPr > 1, there is more that one priority token in the network.

- If SPrior + PPr ≤ 1, there are exactly SPrio+ PPr priority tokens in the network.

Lemma 5 Let γ be the first configuration after the control part is stabilized. When a control token created
by the root after γ terminates its traversal, we have:

11



- If SPushr > 1, then there is more that one pusher token in the network.

- If SPushr ≤ 1, then there are exactly SPushr pusher tokens in the network.

Lemma 6 Starting from any configuration, the system eventually reaches a configuration from which there
always exist exactly ℓ resources tokens.

Proof. Let γ be the first configuration after the control part is stabilized. Consider any control token
created by the root after γ. Let us study the two following cases:

- PT + STokenr ≤ ℓ at the end of the control token traversal. Then, Resetr is set to false (Line 47 in
Algorithm 1) and, as a consequence, the reset field of the next control token will be equal to false

(Line 73 of Algorithm 1). Hence, no resource token will be erased during the next circulation of a
control token. If PT + STokenr < ℓ, then exactly ℓ − (PT + STokenr) are created (see Lines 55 to 58
in Algorithm 1). Hence, the number of resource tokens will be exactly equal to ℓ at the beginning of
the next control token circulation. By Lemma 3, PT + STokenr will be equal to ℓ at the end of the
next control token circulation, no resource token will be added. Any later circulation of the control
token cannot change the number of resource tokens. Hence, the system will contain ℓ resource tokens
forever.

- PT + STokenr > ℓ at the end of the control token traversal. Then, Resetr is set to true (Line 47 in
Algorithm 1) and, as a consequence, the reset field of the next control token will be equal to true (Line
73 of Algorithm 1). By Lemmas 2 and 3, reducing to the previous case when the circulation of the
next control token terminates, and we are done.

2

Following similar reasoning, we can deduce from Lemmas 2, 4, and 5, the following two lemmas:

Lemma 7 Starting from any configuration, the system eventually reaches a configuration from which there
always exists one priority token.

Lemma 8 Starting from any configuration, the system eventually reaches a configuration from which there
always exists one pusher token.

We now show that once the system contains the correct number of each type of token, the system stabilizes
to the k-out-of-ℓ exclusion specification.

Lemma 9 Starting from any configuration, every process receives a pusher token infinitely many times.

Proof. By Lemmas 6, 7, and 8, starting any configuration, the system eventually reaches a configuration
γ from which there are exactly ℓ resource tokens, one priority token, and one pusher token in the network.
From γ, the system is then never again reset. So, from γ, the unique pusher token of the system always
follows DFS order. Each time a process receives the pusher token, it retransmits it in finite time. Hence,
every processes receives it infinitely often and the lemma holds. 2

Lemma 10 Starting from any configuration, every process receives a priority token infinitely many times.

Proof. By Lemmas 6, 7, and 8, starting any configuration, the system eventually reaches a configuration
γ from which there are ℓ resource tokens, one priority token, and one pusher token in the network. From γ,
the system is never again reset. So from γ, the unique priority token of the system always follow the DFS
order.

By way of contradiction, assume that, from γ, a process eventually stops receiving the priority token.
Since the priority token circulate following the DFS order and it traverses any link in a finite time, we can
deduce that some other process p eventually holds it forever. In this case, p is a requester and its request
is never satisfied. Now, by Lemma 9 any other process receives the pusher token infinitely often. So, each
other process retransmits the resource tokens it holds within finite time, because it eventually either satisfies
its request, executes its critical sections, and then release its tokens or does satisfy its request, but receives
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the pusher, and then releases its resource tokens. Similarly to the pusher token, the resource tokens always
follows the DFS order from γ. Hence, p receives resource tokens infinitely many times, and, as it holds the
priority token it never releases it even if it receives the pusher token. As k ≤ ℓ, the request of p is eventually
satisfied, contradiction. 2

Lemma 11 Starting from any configuration, every process receives resource tokens infinitely many times.

Proof. By Lemmas 6, 7, and 8, starting any configuration, the system eventually reaches a configuration
γ from which there is ℓ resource tokens, one priority token, and one pusher token in the network. From γ,
the system is then never again reset. So, from γ, the resource tokens of the system always follow the DFS
order.

Assume, by way of contradiction, that some process only receives resource tokens finitely many times.
This implies that every resource token is eventually held forever by some process. Consider one process that
holds at least one resource token forever. By Lemma 9, that process cannot hold the priority token forever.
When it releases the priority token, either its request is satisfied, it executes the critical section within finite
time, and then releases its resource tokens, or it is not a requester and thus must release its resource token.
Either case is a contradiction, and we are done. 2

Lemma 12 Starting from any configuration, the fairness property of the k-out-of-ℓ exclusion specification
is eventually satisfied.

Proof. Assume that there a request on some process p that is never satisfied.
By Lemmas 6, 7, and 8, starting any configuration, the system eventually reaches a configuration γ from

which there are ℓ resource tokens, one priority token, and one pusher token into the network. From γ, the
system is then never again reset. Hence, from γ, if p holds the priority token, it releases it only if its request is
satisfied. By Lemma 11, p eventually receives the priority token. Again by Lemma 11, p eventually releases
the priority token, and so its request must have been satisfied, contradiction. 2

Lemma 13 Starting from any configuration, the safety property of the k-out-of-ℓ exclusion specification is
eventually satisfied.

Proof. First, each resource unit corresponds to a resource token. Hence each resource unit can be used
by at most one process at any time.

By Lemma 6, there are eventually exactly ℓ resource tokens in the network. Hence, eventually, exactly ℓ

resource unit are available in the system.
Finally, any process p that initially holds some resource tokens eventually releases them because either is

is not a requester or it eventually satisfies its request by Lemma 12. Hence, eventually p sets RSet to ∅ and
then |RSet| ≤ Need forever because each time p receives a resource token while |RSet| ≥ Need, it directly
retransmits it (see Lines 10 to 19 in Algorithm 1 and Lines 9 to 15 in Algorithm 2). Now, Need is always less
or equal to k. Hence, every process eventually only uses at most k resource tokens (units) simultaneously. 2

Lemma 14 Starting from any configuration, the efficiency property of the k-out-of-ℓ exclusion specification
is eventually satisfied.

Proof. We will use the definition of efficiency given in [3].
To show this lemma, we now prove that starting from any configuration, (k, ℓ)-liveness is eventually

satisfied.
To see this, consider the configuration γ from which: (1) there are ℓ resource tokens, one priority to-

ken, and one pusher token; and (2) the safety properties of the k-out-of-ℓ exclusion are satisfied (such a
configuration exists by Lemmas 6, 7, 8, and 13).

Assume that from γ the system reaches a configuration γ′ after which there is a subset I of processes
such that every process in I executes its critical section forever (in this case they hold some resource units
forever). Let α be the total number of resource units hold forever by the processes in I.
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Assume then that there are some processes not in I that request some resource units and each of these
processes requests at most ℓ − α resource units.

The priority token follows DFS order. Also, as every process in I executes the critical section forever,
none of these processes keeps the priority token forever (see Lines 92 in Algorithm 1 and 73 in Algorithm
2). Finally, every non-requester directly retransmits the priority token when it receives it (see Line 92 in
Algorithm 1 and Line 73 in Algorithm 2). Hence, there is a requesting process p which is not in I that
eventually receives the priority token. From that point, p will release it only after its request is satisfied
(see Line 92 in Algorithm 1 and Line 73 in Algorithm 2). As a consequence, p will keep every resource
token it receives even if it receives the pusher token. Now, by checking the proof of Lemma 9, we can see
that Lemma 9 still holds even if some processes execute the critical section forever. So, by Lemma 9 every
processes that is not in I ∪ {p} receives the pusher token infinitely often and so cannot hold resource tokens
forever. Finally, every process in I directly retransmits the resource tokens it receives when it is executing
the critical section because they satisfy |RSet| ≥ Need by Lemma 13 (see Lines 10 to 19 in Algorithm 1 and
Lines 9 to 15 in Algorithm 2). So, p eventually receives the resource tokens it needs to perform the critical
section (remember that p requests at most ℓ − α resource units) and we are done. 2

By Lemmas 13, 12, and 14, we obtain:

Theorem 1 The distributed protocol proposed in Algorithms 1 and 2 is a k-out-of-ℓ exclusion protocol for
tree networks.

Waiting Time.

Theorem 2 Once the protocol proposed in Algorithms 1 and 2 is stabilized, the waiting time is ℓ× (2n−3)2

in the worst case.

Proof. We first show that the waiting time of a requesting process that holds the priority token is
ℓ× (2n− 3) in the worst case. Consider a process p that requests some resource units and holds the priority
token. In the worst case, p appears only once in the virtual ring defined by the DFS order (if p is a leaf).
Also in the worst case, the ℓ resource tokens may traverse the entire virtual ring before p receives the tokens
it needs. The virtual ring can contain up to (2n − 3) processes in addition to p. Any resource token may
satisfy one request each time it traverses a process (in the worst case, the processes always requests one
token). Hence, the ℓ resource tokens may satisfy up to ℓ × (2n − 3) requests before p satisfies its request.

Using similar reasoning, we can see that a requesting process may wait until the priority token traverses
the whole virtual ring (up to 2(n−2) nodes) before it satisfy its request; during that time, up to ℓ×(2n−3)2

requests can be satisfied, and we are done. 2

5 Conclusion and Perspectives

In this paper, we propose the first (deterministic) self-stabilizing distributed k-out-of-ℓ exclusion protocol
for asynchronous oriented tree networks. The proposed protocol uses a realistic model of computation, the
message-passing model. The only restriction we make is to assume that the channels initially contain a
bounded known number of arbitrary messages. We make this assumption to obtain a solution that uses
bounded memory per process (see the results in [7]). However, if we assume unbounded process memory, our
solution can be easily adapted to work without assumptions on channels (following the method presented
in [9]).

The main interest in dealing with an oriented tree is that solutions on the oriented tree can be di-
rectly mapped to solutions for arbitrary rooted networks by composing the protocol with a spanning tree
construction (e.g, [1, 4]).

There are several possible extensions of our work. On the theoretical side, one can investigate whether
the waiting time of our solution (ℓ × (2n − 3)2) can be improved. Possible extension to networks where
processes are subject to other failure patterns, such as process crashes, remains open. On the practical
side, our solution is designed in a realistic model and can be extended to arbitrary rooted networks. Hence,
implementing our solution in a real network is a future challenge.
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