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Abstract

We obtain and study new Φ-entropy inequalities for diffusion semigroups, with Poincaré or logarithmic
Sobolev inequalities as particular cases. From this study we derive the asymptotic behaviour of a large
class of linear Fokker-Plank type equations under simple conditions, widely extending previous results.
Nonlinear diffusion equations are also studied by means of these inequalities. The Γ2 criterion of D. Bakry
and M. Emery appears as a main tool in the analysis, in local or integral forms.

Résumé

Nous obtenons et étudions une nouvelle famille d’inégalités Φ-entropiques pour des semigroupes de diffu-
sion, incluant les inégalités de Poincaré et de Sobolev logarithmiques. Nous en déduisons le comportement
en temps grand des solutions d’une grande classe d’équations linéaires de type Fokker-Planck, sous de
simples conditions. Nous étudions également certaines équations de diffusion nonlinéaires à l’aide de ces
inégalités. Cette étude utilise de manière cruciale le critère Γ2 de D. Bakry et M. Emery, sous des formes
locales et intégrales.

Keywords: Logarithmic Sobolev inequality, Poincaré inequality, diffusion semigroups, Fokker-Planck
equation.

Introduction

Functional inequalities such as the Poincaré inequality and the logarithmic Sobolev inequality of L. Gross
have revealed adapted to obtain estimates in the asymptotic in time behaviour of diffusion Markov semi-
groups and of solutions to Fokker-Planck type equations for instance. These two inequalities respectively
imply an exponential decay in time of the (relative) variance and of the Boltzmann entropy of the solution.
A natural interpolation between the Poincaré and logarithmic Sobolev inequalities, via an interpolation
between the variance and the entropy, consists in the generalized Poincaré or Beckner inequalities, which
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translate into an exponential decay of the Lp-norms of the solutions for p between 1 and 2. These inter-
polating inequalities are part of the family of Φ-entropy inequalities, where Φ belongs to a class of convex
functions satisfying additional admissibility assumptions: they correspond to the instances of maps Φ given
by Φ(x) = xp with p between 1 and 2.

Derivations of such functional inequalities are to a large extent based on the so-called Γ2 criterion intro-
duced by D. Bakry and M. Emery. This criterion is a local condition on the coefficients of the infinitesimal
generator of the semigoup, or of the Fokker-Planck equation. It is a sufficient condition to Φ-entropy in-
equalities for the possible ergodic measure of the semigroup, which gives its long time behaviour; but it is
a necessary and sufficient condition to such inequalities for the associated Markov kernel of the semigroup
(at each time t). On the other hand, for the Poincaré and logarithmic Sobolev inequalities, it can be
replaced by a weaker nonlocal condition, called integral criterion, in the study of the sole ergodic measure.

In this work we consider a general diffusion semigroup on R
n. A first section is devoted to a general and

simplified presentation and derivation of Φ-entropy inequalities for general admissible Φ’s, both for the
Markov kernel and the possible ergodic measure of the semigroup. A general integral criterion is obtained,
which extends the Poincaré and logarithmic Sobolev inequality cases, and interpolates between them when
specified to the Beckner power law cases Φ(x) = xp with 1 < p < 2 (see Proposition 5). We finally study
the asymptotic in time behaviour of a large class of diffusion semigroups: rephrased in the Fokker-Planck
type equation setting, we show how to simply obtain the existence of a unique stationary state and the
convergence of all the solutions towards it, in Φ-entropy senses, and with a precise rate (see Theorem 8).
The method applies to a much wider class of linear equations than those previoulsy studied, in which the
arguments are strongly based on a deeper knowledge of the limit measure, and in particular on its explicit
expression.

In Section 2 we focus on power law entropies Φ(x) = xp with 1 < p < 2: we strenghten the Beckner
inequalities by deriving and studying certain power law Φ-entropy inequalities, introduced by A. Arnold and
J. Dolbeault, both for the Markov kernel and the possible ergodic measure (see Theorem 9). Inequalities for
the Markov kernel are shown to be equivalent to the local Γ2 criterion, and the corresponding inequalities
for the ergodic measure are implied by a weaker and adapted integral condition, thus improving on the
results by A. Arnold and J. Dolbeault. We study properties of these inequalities, proving that they
constitute a new monotone interpolation between the Poincaré and the logarithmic Sobolev inequalities
(see Proposition 11 and Remark 13).

In Section 3 we show that the Φ-entropy inequalities may not hold for nonadmissible functions Φ; however,
for Φ(x) = xp with p positive or Φ(x) = x ln x we obtain similar inequalities but with an extra term (see
Theorem 17).

As an application we show in a last section how the local functional inequalities for Markov semigroups
obtained so far can be extended to inhomogeneous semigroups (see Proposition 22) and imply analogous
properties on solutions of an instance of nonlinear Fokker-Planck evolution equation in a very simple way
(see Theorem 23).

1 Phi-entropies

We consider a Markov semigroup (Pt)t≥0 on R
n, acting on functions on R

n by

Ptf(x) =

∫

Rn

f(y) pt(x, dy)

2



for x in R
n. The kernels pt(x, dy) are probability measures on R

n for all x and t ≥ 0, called transition

kernels. Moreover we assume that the Markov infinitesimal generator L =
∂

∂t

∣

∣

∣

t=0+
Pt is given by

Lf(x) =
n
∑

i,j=1

Dij(x)
∂2f

∂xi∂xj
(x) −

n
∑

i=1

ai(x)
∂f

∂xi
(x)

where D(x) = (Dij(x))1≤i,j≤n is a symmetric n × n matrix, nonnegative in the sense of quadratic forms
on R

n and with smooth coefficients; also a(x) = (ai(x))1≤i≤n has smooth coefficients. Such a semigroup
or generator is called a diffusion, and we refer to [Bak94], [Led00] or [Bak06] for backgrounds on these
semigroups and forthcoming notions.

If µ is a Borel probability measure on R
n and f a µ-integrable Borelian function on R

n we let

µ(f) =

∫

Rn

f(x)µ(dx).

If moreover Φ is a convex function on an interval I of R and f an I-valued Borelian function such that f
and Φ(f) be µ-integrable, we let

EntΦ
µ (f) = µ(Φ(f)) − Φ(µ(f))

be the Φ-entropy of f under µ (see [Cha04] for instance). Two fundamental examples are Φ(x) = x2 on
R, for which we let Varµ(f) = EntΦ

µ (f) be the variance of f, and Φ(x) = x ln x on ]0,+∞[, for which we

let Entµ(f) = EntΦ
µ (f) be the Boltzmann entropy of a positive function f.

By Jensen’s inequality the Φ-entropy EntΦ
µ (f) is always a nonnegative quantity, and in this work we are

interested in deriving upper and lower bounds on EntΦ
µ (f) or EntΦ

Pt
(f)(x) = EntΦ

pt(x,dy)(f) = PtΦ(f)(x)−
Φ(Ptf)(x) under adequate assumptions on L. Applications of such bounds to inhomogeneous Markov
semigroups and to linear and nonlinear Fokker-Planck type equations will also be given, in one of which
the diffusion matrix D being nonnegative but not (strictly) positive.

1.1 The carré du champ and Γ2 operators

Bounds on EntΦ
Pt

(f) and assumptions on L will be given in terms of the carré du champ operator associated
to L, defined by

Γ(f, g) =
1

2

(

L(fg) − f Lg − g Lf
)

.

For simplicity we shall let Γ(f) = Γ(f, f). Assumptions on L will also be given in terms of the Γ2 operator
defined by

Γ2(f) =
1

2

(

LΓ(f) − 2Γ(f, Lf)
)

.

Definition 1 If ρ is a real number, we say that the semigroup (Pt)t≥0 (or the infinitesimal generator L)
satisfies the CD(ρ,∞) criterion if

Γ2(f) ≥ ρΓ(f)

for all functions f .
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This criterion is a special case of the curvature-dimension criterion CD(ρ,m) with ρ ∈ R and m ≥ 1
proposed by D. Bakry and M. Emery (see [BÉ85]).

Example 1 A fundamental example is the heat semigroup on R
n defined by

Ptf(x) =

∫

Rn

f(y)
e−

‖x−y‖2

4t

(4πt)n/2
dy.

Its generator is the Laplacian and it satisfies the CD(0,∞) criterion.

Example 2 Another fundamental example is the Ornstein-Uhlenbeck semigroup defined by

Ptf(x) =

∫

Rn

f(e−tx+
√

1 − e−2ty) γ(dy)

where γ(dy) = (2π)−n/2 exp(−‖y‖2/2) dy is the standard Gaussian measure on R
n. Its infinitesimal gener-

ator is given by
Lf(x) = ∆f(x)− < x,∇f(x) >

where ∆,∇ and < ·, · > respectively stand for the Laplacian and gradient operators and the scalar product
on R

n. Then the carré du champ and Γ2 operators are given by

Γ(f) = ‖∇f‖2

and
Γ2(f) = ‖Hessf‖2

2 + ‖∇f‖2

where Hessf is the Hessian matrix of f and ‖M‖2
2 =

n
∑

i,j=1

M2
ij if M is the matrix (Mij)1≤i,j≤n. In particular

the Ornstein-Uhlenbeck semigroup satisfies the CD(1,∞) criterion.

The carré du champ associated to a general infinitesimal generator

Lf(x) =

n
∑

i,j=1

Dij(x)
∂2f

∂xi∂xj
(x) −

n
∑

i=1

ai(x)
∂f

∂xi
(x)

is given by
Γ(f)(x) =< ∇f(x), D(x)∇f(x) > .

Expressing Γ2 is more complex: For instance,
• if D is constant then

Γ2(f)(x) = trace
(

(DHessf(x))2
)

+ < ∇f(x), Ja(x)D∇f(x) >

where Ja =
( ∂ai

∂xj

)

i,j
is the Jacobian matrix of a; then L satisfies the CD(ρ,∞) criterion if and only if

1

2

(

Ja(x)D + (Ja(x)D)∗
)

≥ ρD (1)

for all x as quadratic forms on R
n, where M∗ is the transposed matrix of a matrix M ;
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• if D(x) = d(x)I is a scalar matrix then, letting ∂ig =
∂g

∂xi
and ∂2

ijg =
∂2g

∂xi∂xj
,

Γ2(f) =
n
∑

i=1

[d ∂2
iif + ∂id ∂if − 1

2

n
∑

k=1

∂kd ∂kf ]2 +
∑

i6=j

[d ∂2
ijf +

1

2
(∂id ∂jf + ∂jd ∂if)]2 +

n
∑

i,j=1

∂ifMij∂jf

where

M =
1

2
(d∆d− < a,∇d > −‖∇d‖2)I + (

1

2
− n

4
)∇d⊗∇d+ d2 Ja ;

then L, which is d(x)∆− < a,∇ > in this case, satisfies the CD(ρ,∞) criterion if and only if

1

2

(

M(x) +M(x)∗
)

≥ ρ d(x) I (2)

for all x, as quadratic forms on R
n. This condition can also be found in [AMTU01], as will be discussed

more in detail in Section 1.4.

The CD(ρ,∞) criterion for a general L with positive diffusion matrix D is discussed in [ACJ08].

1.2 Poincaré and logarithmic Sobolev inequalities

The CD(ρ,∞) criterion for a ρ ∈ R is well adapted to deriving upper and lower bounds on Φ-entropies.

Example 3 ([Bak94]) For Φ(x) = x2, the following four assertions are equivalent, with
1 − e−2ρt

ρ
and

e2ρt − 1

ρ
replaced by 2t if ρ = 0:

(i) the semigroup (Pt)t≥0 satisfies the CD(ρ,∞) criterion;

(ii) the semigroup (Pt)t≥0 satisfies the commutation relation

Γ(Ptf) ≤ e−2ρt Pt(Γ(f))

for all positive t and all functions f ;

(iii) the semigroup (Pt)t≥0 satisfies the local Poincaré inequality

VarPt
(f) ≤ 1 − e−2ρt

ρ
Pt(Γ(f)) (3)

for all positive t and all functions f ;

(iv) the semigroup (Pt)t≥0 satisfies the reverse local Poincaré inequality

VarPt
(f) ≥ e2ρt − 1

ρ
Γ(Ptf) (4)

for all positive t and all functions f .
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Let us note that (iii) and (iv) together imply (ii), and that in fact (i) for instance holds as soon as (iii) or
(iv) holds for all t in a neighbourhood of 0.

Example 4 ([Bak94]) For Φ(x) = x ln x, the following four assertions are equivalent, with the same
convention for ρ = 0:

(i) the semigroup (Pt)t≥0 satisfies the CD(ρ,∞) criterion;

(ii) the semigroup (Pt)t≥0 satisfies the commutation relation

Γ(Ptf) ≤ e−2ρtPt

(

√

Γ(f)
)2

for all positive t and all positive functions f ;

(iii) the semigroup (Pt)t≥0 satisfies the local logarithmic Sobolev inequality

EntPt
(f) ≤ 1 − e−2ρt

2ρ
Pt

(

Γ(f)

f

)

(5)

for all positive t and all positive functions f ;

(iv) the semigroup (Pt)t≥0 satisfies the reverse local logarithmic Sobolev inequality

EntPt
(f) ≥ e2ρt − 1

2ρ

Γ(Ptf)

Ptf

for all positive t and all positive functions f .

Let us note that, contrary to this second case, the equivalences in Example 3 when Φ(x) = x2 hold in a
more general setting, when the generator L is not a diffusion semigroup.

A Borel probability measure µ on R
n is called invariant for the semigroup (Pt)t≥0 if µ(Ptf) = µ(f) for

all t and f , or equivalently if µ(Lf) = 0 for all f. Then we say that the semigroup (Pt)t≥0 is µ-ergodic if
Ptf converges to µ(f) as t tends to infinity, in L2(µ) for all functions f . For instance, if µ is an invariant
probability measure for the semigroup (Pt)t≥0, then (Pt)t≥0 is µ-ergodic as soon as the carré du champ Γ
vanishes only on constant functions, that is, for such diffusion semigroups, as soon as the matrix D(x) is
positive for all x.
Then let µ be an ergodic probability measure for (Pt)t≥0; if the CD(ρ,∞) criterion holds with ρ > 0, it
follows from (3) and (5) respectively that the measure µ satisfies the Poincaré inequality

Varµ(f) ≤ 1

ρ
µ(Γ(f)) (6)

for all functions f and the logarithmic Sobolev inequality

Entµ(f) ≤ 1

2ρ
µ

(

Γ(f)

f

)

(7)

for all positive functions f . The logarithmic Sobolev inequality (7) with constant 1/2ρ, introduced by L.
Gross in [Gro75] (see also [Gro93]), is known to imply the Poincaré inequality (6) with constant 1/ρ.
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In fact (6) and (7) hold under a condition on the generator L weaker than the CD(ρ,∞) criterion (see
[BÉ85, Led92, ABC+00] for instance): First of all, if (Pt)t≥0 is µ-ergodic and ρ is a positive number then µ
satisfies the Poincaré inequality (6) if it satisfies the averaged CD(ρ,∞) condition called integral criterion

µ(Γ2(f)) ≥ ρ µ(Γ(f)) (8)

for all f . If moreover µ is reversible with respect to the semigroup (Pt)t≥0, that is, if µ(fPtg) = µ(gPtf)
for all functions f and g, then the integral criterion (8) is equivalent to the Poincaré inequality (6).
On the other hand, the logarithmic Sobolev inequality (7) is implied by the integral criterion

µ(ef Γ2(f)) ≥ ρ µ(ef Γ(f)) (9)

for all f. This result is often stated under the reversibility condition, which is useless for diffusion semi-
groups, as we shall see in Proposition 5. As pointed out by B. Helffer (see [Hel02, p. 114] or [ABC+00,
p. 91]), the converse does not hold, even under the reversibility condition.

1.3 Φ-entropy inequalities

(Local) Poincaré and logarithmic Sobolev inequalities for the semigroup (Pt)t≥0 are part of a large family

of functional inequalities introduced in [BÉ85] and developed in [Cha04] and [Bak06]:

Theorem 2 Let ρ be a real number and Φ be a C4 strictly convex function on an interval I of R such that

−1/Φ′′ be convex. Then the following three assertions are equivalent, with
1 − e−2ρt

2ρ
and

e2ρt − 1

2ρ
replaced

by t if ρ = 0:

(i) the semigroup (Pt)t≥0 satisfies the CD(ρ,∞) criterion;

(ii) the semigroup (Pt)t≥0 satisfies the local Φ-entropy inequality

EntΦ
Pt

(f) ≤ 1 − e−2ρt

2 ρ
Pt(Φ

′′(f)Γ(f)) (10)

for all positive t and all I-valued functions f ;

(iii) the semigroup (Pt)t≥0 satisfies the reverse local Φ-entropy inequality

EntΦ
Pt

(f) ≥ e2ρt − 1

2 ρ
Φ′′(Ptf) Γ(Ptf) (11)

for all positive t and all I-valued functions f .

If moreover the probability measure µ is ergodic for the semigroup (Pt)t≥0, and ρ > 0, then µ satisfies the
Φ-entropy inequality

EntΦ
µ (f) ≤ 1

2ρ
µ(Φ′′(f) Γ(f)) (12)

for all I-valued functions f .
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For future use, we shall give a proof of Theorem 2 slightly different from the one given in [Cha04] and
[Bak06]. Before doing so we make some comments on this result.

A function Φ satisfying the conditions of Theorem 2 will be called an admissible function. The functions
Φ : x 7→ x2 or more generally ax2 + bx+ c on R and x 7→ x ln x or more generally (x+ a) ln(x+ a) + bx+ c
on ] − a,+∞[ are the solutions to (1/Φ′′)′′ = 0 and thus are admissible. They respectively lead to the
(local) Poincaré and logarithmic Sobolev inequalities of Section 1.2. More generally, for any 1 ≤ p ≤ 2 the
function

Φp(x) =







xp − x

p(p− 1)
, x > 0 if p ∈]1, 2]

x ln x, x > 0 if p = 1
(13)

is admissible. For this entropy Φp with p in ]1, 2] the Φ-entropy inequality (12) writes

µ(f p) − µ(f)p

p(p− 1)
≤ 1

2ρ
µ(f p−2 Γ(f)) (14)

for all positive functions f , or equivalently

µ(g2) − µ(g2/p)p

p− 1
≤ 2

pρ
µ(Γ(g)) (15)

for all positive functions g, with g = f p/2. These Φ-entropy inequalities have been studied in [Bec89] for
the uniform measure on the sphere and the Gaussian measure, and are called generalized Poincaré or
Beckner’s inequalities. For given g > 0 the map p 7→ µ(g2/p)p is convex on ]0,+∞[, so that the quotient
µ(g2) − µ(g2/p)p

p− 1
is nonincreasing with respect to p, p 6= 1 (see [LO00]). Moreover its limit for p tending

to 1 is Entµ(g2), so that

µ(g2) − µ(g2/p)p

p− 1
≤ Varµ(g) ≤ µ(g2) − µ(g2/q)q

q − 1
≤ Entµ

(

g2
)

≤ µ(g2) − µ(g2/r)r

r − 1

for all positive functions g and all p, q, r such that in 0 < r < 1 < q < 2 < p: in this sense the Beckner
inequalities (15) for p in ]1, 2] give a natural interpolation between the weaker Poincaré inequality (6) for
positive functions, and then for all functions, and the stronger logarithmic Sobolev inequality (7), with (15)
being (6) for p = 2 and giving (7) in the limit p→ 1 (see [Led00] for instance).

Remark 3 A general study of admissible functions is performed in [AMTU01], [Cha04, Cha06] and
[EVO09]: for instance a C4 strictly convex function Φ on an interval I of R is admissible if and only
if Φ(4)(x) Φ′′(x) ≥ 2 Φ′′′(x) for all x, and if and only if the map (x, y) 7→ Φ′′(x) y2 is convex on I × R.
In fact one can note that a C4 function Φ on I is admissible if and only if 1/Φ′′ is a C2 positive concave
function on I.
First of all, this leads to other examples of admissible functions, such as:

• if α ∈ [1, 2[ and β ∈ R then one can find a ≥ 1 such that the map Φ defined by

Φ(x) = (x+ a)α(ln(x+ a))β

is admissible on [0,+∞[, thus extending the family of Beckner’s entropies;
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• if a is a positive real number, then a primitive of the function x 7→ ln(eax − 1) is also an admissible
function on ]0,+∞[.

Then it enables to recover the fact that the set of admissible functions on a given interval I is a convex
vector cone, as pointed out in [Cha04, Remark 5]).
Indeed, let Φ1 and Φ2 be two admissible functions and λ ∈ [0, 1]. Then λΦ1 + (1 − λ)Φ2 is convex and
1/(λΦ′′

1 + (1 − λ)Φ′′
2) is concave since

(

( 1

θ1
+

1

θ2

)−1
)′′

= θ6
1θ

6
2

−2(θ1θ
′
2 − θ′1θ2)2 + θ3

1θ
′′
2 + θ′′1θ

3
2 + θ1θ

′′
1θ

2
2 + θ2

1θ2θ
′′
2

(θ1 + θ2)3

where θ1 = 1/(λΦ′′
1) and θ2 = 1/((1 − λ)Φ′′

2) are positive concave functions. Hence λΦ1 + (1 − λ)Φ2 is an
admissible function.

Proof of Theorem 2

⊳ We first assume (i) and prove (ii) and (iii). We let t > 0 be fixed and we consider the function

ψ(s) = Ps(Φ(Pt−sf)) (16)

so that

EntΦ
Pt

(f) = Pt(Φ(f)) − Φ(Ptf) = ψ(t) − ψ(0).

Let us first admit the following

Lemma 4 For any C4 function Φ with nonvanishing second derivative the function ψ(s) = Ps(Φ(Pt−sf))
is twice differentiable on [0, t], with

ψ′(s) = Ps(Φ
′′(Pt−sf)Γ(Pt−sf)) = Ps

(

Γ(Φ′(Pt−sf))

Φ′′(Pt−sf)

)

and

ψ′′(s) = 2 Ps

(

Γ2(Φ
′(Pt−sf))

Φ′′(Pt−sf)

)

+ Ps

(

(

Γ(Φ′(Pt−sf))

Φ′′(Pt−sf)

)2(−1

Φ′′

)′′

(Pt−sf)

)

. (17)

By assumption on Φ the second term on the right hand side of (17) is nonnegative, so

ψ′′(s) ≥ 2ρψ′(s), s ∈ [0, t]

by the CD(ρ,∞) criterion. Now for 0 ≤ u ≤ v ≤ t we integrate over [u, v] to obtain

ψ′(u) ≤ ψ′(v)e2ρ(u−v).

For u = s and v = t, integrating in s over the set [0, t] yields

ψ(t) − ψ(0) ≤ ψ′(t)
1 − e−2ρt

ρ
,

which is (ii).

9



For u = 0 and v = s, integrating in s over the set [0, t] yields

ψ(t) − ψ(0) ≥ ψ′(0)
e2ρt − 1

ρ
,

which is (iii).

Let us conversely assume that (ii) or (iii) holds. For f = 1 + εg the left hand side in (10) and (11) is

EntΦ
Pt

(f) =
ε2

2
Φ′′(1) VarPt

(g) + o(ε2)

and the right hand side is given by

Pt(Φ
′′(f)Γ(f))) = ε2 Φ′′(1)Pt(Γ(g)) + o(ε2).

Hence, in the limit ε → 0, (ii) implies the local Poincaré inequality (3) and (iii) implies the reverse
local Poincaré inequality (4) which are equivalent to the CD(ρ,∞) criterion. This concludes the proof of
Theorem 2. ⊲

We now turn to the proof of Lemma 4.
⊳ The first derivative of ψ is given by

ψ′(s) = Ps(LΦ(Pt−sf) − Φ′(Pt−sf)LPt−sf).

But L is a diffusion so satisfies the identities

LΦ(g) = Φ′(g)Lg + Φ′′(g)Γ(g) and Γ(Φ′(g)) = Φ′′2(g)Γ(g) (18)

(see for instance [BÉ85, Lemme 1] or [ABC+00, p. 31]) Hence

ψ′(s) = Ps(Φ
′′(Pt−sf)Γ(Pt−sf)) = Ps

(

Γ(Φ′(Pt−sf))

Φ′′(Pt−sf)

)

.

Then the derivative of ψ′ is

ψ′′(s) = Ps{L(Φ′′(g)Γ(g)) − Φ′′′(g)Lg Γ(g) − 2Φ′′(g)Γ(g, Lg)}

where g = Pt−sf . Then the definition

L(f1f2) = 2Γ(f1, f2) + f1Lf2 + f2Lf1

of Γ, the identities (18) and the definition of Γ2 yield

ψ′′(s) = Ps

{

1

Φ′′(g)

[

2Φ′′′(g)Φ′′(g)Γ(g,Γ(g)) + 2Φ′′2(g)Γ2(g) + Φ(4)(g)Φ′′(g)Γ(g)2
]

}

.

But again L is a diffusion operator, so satisfies the identity

Γ2(Φ
′(g)) = (Φ′′(g))2Γ2(g) + Φ′′(g)Φ′′′(g)Γ(g,Γ(g)) + Φ′′′2(g)Γ(g)2,

for all functions g (see for example [BÉ85, Lemme 3] or [ABC+00, Lemme 5.1.3]), which gives the expression
of the second derivative of ψ. ⊲

As for the Poincaré and logarithmic Sobolev inequalities of Section 1.2, the pointwise CD(ρ,∞) criterion
can be replaced by an integral criterion to get the Φ-entropy inequality (12):

10



Proposition 5 Let ρ be a positive number and Φ be an admissible function on an interval I. If the
probability measure µ is ergodic for the diffusion semigroup (Pt)t≥0 and satisfies

µ

(

Γ2(Φ′(g))

Φ′′(g)

)

≥ ρ µ

(

Γ(Φ′(g))

Φ′′(g)

)

(19)

for all I-valued functions g, then µ satisfies the Φ-entropy inequality (12) for all I-valued functions f .

Let us first note that any admissible function Φ is stricly convex, so that its derivative Φ′ is increasing and
has an inverse Φ′−1 : then the integral criterion (19) writes

µ

(

Γ2(h)

Φ′′ ◦ Φ′−1(h)

)

≥ ρ µ

(

Γ(h)

Φ′′ ◦ Φ′−1(h)

)

for all I-valued functions h with values in the image of Φ′. This integral criterion appears in [Hel02, proof
of Theorem 7.2.2] in the case when L = ∆− < ∇V,∇ > and µ is the reversible ergodic measure e−V . It
extends the criteria (8) for the Poincaré inequality, with Φ(x) = x2 and Φ′′ ◦ Φ′−1(x) = 2, and (9) for the
logarithmic Sobolev inequality, with Φ(x) = x ln x and Φ′′ ◦ Φ′−1(x) = e1−x. Let us point out that in this
diffusion setting the measure µ need not be assumed to be reversible, as it is usually the case in the previous
works (see [ABC+00, Proposition 5.5.6] for instance).
For the Φp maps with p in ]1, 2[ it writes

µ
(

g
2−p

p−1 Γ2(g)
)

≥ ρ µ
(

g
2−p

p−1 Γ(g)
)

(20)

for all positive functions g.

Let us note that this family of Beckner’s inequalities for p in ]1, 2[ has been obtained in [DNS08] under a
different integral condition, which does not seem to be comparable to our condition (20) for p in ]1, 2[.

Remark 6 At least for p close to 1 the integral criterion (20) is not equivalent to (14)-(15) (hence strictly
stronger), thus extending the case of the logarithmic Sobolev inequality when p = 1 :
Following B. Helffer (see [Hel02, p. 114] or [ABC+00, p. 91]) we build a probability measure µ on R such
that (15) holds while (20) does not hold. We consider the generator Lf = f ′′ − Ψ′f ′ on R, with Ψ(x) =
x4−bx2, and its reversible ergodic measure µ(dx) = exp(−Ψ(x))dx/Z where Z is a normalization constant.
For any b the measure µ satisfies a logarithmic Sobolev inequality, hence the Beckner inequality (15). But,
letting g(x) = exp(−x2) and b = 1 + p/(p− 1), we obtain

µ
(

g
2−p

p−1 Γ2(g)
)

=

∫

(

(

4x2 − 2
)2

+ 48x4
)ex2−x4

Z
dx− 8

(

1 +
p

p− 1

)
∫

x2 e
x2−x4

Z
dx

which is negative for p in ]1, 2[ close to 1. Hence (20) cannot hold since the right hand side in nonnegative,
so that, for these p, the integral criterion (20) is not a necessary condition to the Φp-entropy inequality (14)-
(15).

Proof of Proposition 5

⊳ The argument follows the argument of Theorem 2. If f is a given positive function we let

H(u) = µ(Φ(Puf)), u ≥ 0.

11



For t > u fixed we let again ψ(s) = Ps(Φ(Pt−sf)), so that

H(u) = µ
(

Pt−u(Φ(Puf))
)

= µ(ψ(t− u))

since the ergodic measure µ is necessarily invariant. In particular Lemma 4 ensures that

H ′(u) = −µ(ψ′(t− u)) = −µ
(

Φ′′(Puf)Γ(Puf)
)

= −µ
(

Γ(Φ′(Puf))

Φ′′(Puf)

)

(21)

and

H ′′(u) = 2µ

(

Γ2(Φ
′(Puf))

Φ′′(Ptuf)

)

+ µ

(

(

Γ(Φ′(Puf))

Φ′′(Puf)

)2(−1

Φ′′

)′′

(Puf)

)

(22)

again by the invariance property of µ.
The second term on the right hand side of (22) is nonnegative by assumption on Φ, so that

H ′′(u) ≥ −2 ρH ′(u), u ≥ 0

by the integral criterion (19). Integrating between 0 and t gives

−H ′(t) ≤ −H ′(0) e−2ρt

and integrating again between 0 and +∞ concludes the argument by ergodicity of (Pt)t≥0. ⊲

1.4 Large time behaviour of the Markov semigroup and the linear Fokker-
Planck equation

We now turn to the long time behaviour of the diffusion Markov semigroup and of the solutions to an
associated linear Fokker-Planck equation.

The argument for the Markov semigroup is simpler: Let (Pt)t≥0 be a diffusion semigroup, ergodic for the
probability measure µ. If Φ is a C2 strictly convex function on an interval I, then (21) above writes

d

dt
EntΦ

µ (Ptf) = −µ
(

Γ(Φ′(Ptf))

Φ′′(Ptf)

)

(23)

for all t ≥ 0 and all I-valued functions f. If C is a positive number, then there is equivalence between:

(i) the measure µ satisfies the Φ-entropy inequality

EntΦ
µ (f) ≤ Cµ

(

Γ(Φ′(f))

Φ′′(f)

)

(24)

for all I-valued functions f ;

(ii) the semigroup converges in Φ-entropy with exponential rate:

EntΦ
µ (Ptf) ≤ e−

t
C EntΦ

µ (f) (25)

for all t ≥ 0 and all I-valued functions f.

12



Indeed (ii) follows from (i) by (23) and (i) follows from (ii) by differentiation at t = 0.

We now turn to the study of the linear Fokker-Planck equation

∂ut

∂t
= div[D(x)(∇ut + ut(∇V (x) + F (x)))], t ≥ 0, x ∈ R

n (26)

where div stands for the divergence, D(x) is a positive symmetric matrix R
n and the vector field F satisfies

the condition
div
(

e−VDF
)

= 0. (27)

It is one of the purposes of [AMTU01] and [ACJ08] to rigorously study the asymptotic behaviour of
solutions to (26)-(27). Let us formally rephrase the argument in our semigroup terminology.
We let L be the Markov diffusion generator defined by

Lf = div(D∇f)− < D(∇V − F ),∇f > . (28)

Let us assume that L satisfies the CD(ρ,∞) criterion with ρ > 0, that is, for instance in the case when
D(x) = d(x)I is a scalar matrix and F = 0,

(1

2
− n

4

)1

d
∇d⊗∇d+

1

2
(∆d− < ∇d,∇V >)I + dHessV +

1

2
(∇V ⊗∇d+∇d⊗∇V )−Hess d ≥ ρ I. (29)

Then the semigroup (Pt)t≥0 associated to L is ergodic and the ergodic probability measure is explicitely
given by dµ = e−V /Zdx where Z is a normalization constant. If moreover Φ is an admissible function
on an interval I, then the Φ-entropy inequality (24) holds with C = 1/(2ρ) by Theorem 2, so that the
semigroup converges to µ according to (25).
But, under the condition (27), the solution to the Fokker-Planck equation (26) for the initial datum u0 is
given by ut = e−V Pt(e

V u0). Then we can deduce the convergence of the solution ut towards the stationary
state e−V (up to a multiplicative constant) from the convergence estimate (25) for the Markov semigroup,
in the form

EntΦ
µ

( ut

e−V

)

≤ e−2ρtEntΦ
µ

( u0

e−V

)

, t ≥ 0

for all initial data u0 such that the map eV u0 be I-valued.

In fact one can obtain estimates on the long time behaviour of solutions to (26) without the condition (27).
Let us indeed consider the linear Fokker-Planck equation

∂ut

∂t
= div[D(x)(∇ut + uta(x))], t ≥ 0, x ∈ R

n (30)

where again D(x) is a positive symmetric matrix R
n and a(x) ∈ R

n. Its generator is the dual L∗ (with
respect to the Lebesgue measure) of the generator

Lf = div(D∇f)− < Da,∇f > . (31)

Assume that the semigroup associated to L is ergodic and that its invariant probability measure µ satisfies
a Φ-entropy inequality (24) with a constant C ≥ 0: this holds for instance if L satisfies the CD(1/(2C),∞)
criterion, that is, if

DJa(x)D + (DJa(x)D)∗ ≥ 1

C
D

13



for all x ∈ R
n if D is constant (by (1)), or if (2) holds if D(x) is a scalar matrix, and so on.

In this more general setting when a(x) is not the gradient of a potential, the invariant measure is not
explicit. Moreover the explicit relation between the solution ut of the linear Fokker-Planck and the as-
sociated semigroup Pt does not hold anymore, which lead above from the asymptotic behaviour of the
semigroup to that of the solutions of the Fokker-Planck equation.
This can be replaced by the following argument, for which we only assume that the ergodic measure has
a positive density u∞ with respect to the Lebesgue measure:
Let u be a solution of (30) for the initial datum u0. Then

d

dt
EntΦ

µ

(

ut

u∞

)

=

∫

Φ′

(

ut

u∞

)

L∗ut dx =

∫

L
[

Φ′

(

ut

u∞

)

] ut

u∞
dµ = −

∫

Φ′′

(

ut

u∞

)

Γ

(

ut

u∞

)

dµ

by Lemma 7 with f = ut

u∞
and ϕ = Φ′. Then the Φ-Entropy inequality (24) for µ implies the exponential

convergence

EntΦ
µ

(

ut

u∞

)

≤ e−
t
C EntΦ

µ

(

u0

u∞

)

, t ≥ 0.

Lemma 7 Let L be a diffusion generator with invariant measure µ. Then
∫

Lϕ(f) fdµ =

∫

Lf ϕ(f)dµ = −
∫

Γ(f, ϕ(f)) dµ

for all functions f and all one-to-one functions ϕ.

Proof

⊳ Let g = ϕ(f), so that
∫

Lϕ(f) fdµ =

∫

Lg ψ(g)dµ,

where ψ = ϕ−1. Then if Ψ is an antiderivative of ψ we get
∫

Lg ψ(g)dµ =

∫

(Lg ψ(g) − LΨ(g))dµ = −
∫

Ψ′′(g)Γ(g)dµ = −
∫

Γ(f, g)dµ,

by invariance of µ and the diffusion properties (18). This concludes the argument by the identity
ψ′(ϕ(x))ϕ′(x) = 1. ⊲

Hence (for instance) we have formally obtained:

Theorem 8 In the above notation, let Φ an admissible function and assume that the generator L of (31)
satisfies the integral criterion (19) to a Φ-entropy inequality and has an ergodic measure with smooth
positive density u∞. Then all solutions u = (ut)t≥0 to the Fokker-Planck equation (30) converge to u∞ in
Φ-entropy, with

EntΦ
µ

(

ut

u∞

)

≤ e−2ρtEntΦ
µ

(

u0

u∞

)

, t ≥ 0.

The three sections below are devoted to improvements and extensions of the Φ-entropy inequalities con-
sidered in this section. First of all, in Sections 2 and 3, we improve Theorem 2 for Φp-entropies which are
the main examples of such Φ-entropies. In Section 3 we also derive upper and lower bounds on EntΦ

Pt
(f),

analogous to (10) and (11) and still equivalent to the CD(ρ,∞) criterion, for other maps Φ that do not
satisfy the admissibility hypotheses of Theorem 2. In a last section we shall see how these results extend
to the setting of inhomogeneous Markov semigroups and to a instance of nonlinear evolution problem.
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2 Refined Φ-entropy inequalities in the admissible case

In this section we give and study improvements of Theorem 2 for the main family of admissible Φ, namely
the Φp functions given by (13), for p ∈]1, 2[.

Theorem 9 Let ρ be a real number and p in ]1, 2[. Then the following assertions are equivalent, with
1 − e−2ρt

ρ
and

e2ρt − 1

ρ
replaced by 2t if ρ = 0:

(i) the semigroup (Pt)t≥0 satisfies the CD(ρ,∞) criterion;

(ii) the semigroup (Pt)t≥0 satisfies the refined local Φp-entropy inequality

1

(p− 1)2

[

Pt(f
p) −Pt(f)p

(

Pt(f
p)

Pt(f)p

)
2

p
−1
]

≤ 1 − e−2ρt

ρ
Pt

(

f p−2 Γ(f)
)

(32)

for all positive t and all positive functions f ;

(iii) the semigroup (Pt)t≥0 satisfies the reverse local Φ-entropy inequality

1

(p− 1)2

[

Pt(f
p) −Pt(f)p

(

Pt(f
p)

Pt(f)p

)
2

p
−1
]

≥ e2ρt − 1

ρ

(

(Ptf)p

Pt(f p)

)
2

p
−1

(Ptf)p−2 Γ(Ptf)

for all positive t and all positive functions f .

Proof

⊳ We first assume that (i) holds and prove (ii) and (iii). As in the proof of Theorem 2 we let ψ(s) =
Ps(Φp(Pt−sf)), where in this proof and in the proofs of Proposition 14 only Φp(x) = xp/(p(p − 1)); then
Lemma 4 specifies as

ψ′′(s) = 2 Ps

(

Γ2(Φ′
p(Pt−sf))

Φ′′
p(Pt−sf)

)

+ (2 − p)(p− 1) Ps

(

(

Γ(Φ′
p(Pt−sf))

Φ′′
p(Pt−sf)

)2
1

(Pt−sf)p

)

.

The second term on the right hand side is nonnegative for p in ]1, 2[. By the Cauchy-Schwarz inequality
it is even bounded by below by

(

Ps

(

Γ(Φ′
p(Pt−sf))

Φ′′
p(Pt−sf)

))2
1

Ps((Pt−sf)p)
=

1

p(p− 1)

ψ′(s)2

ψ(s)
.

Then the CD(ρ,∞) criterion implies

ψ′′(s) ≥ 2ρψ′(s) +
2 − p

p

ψ′(s)2

ψ(s)
, s ∈ [0, t],

that is,
(

ψ′(s)

ψ(s)(2−p)/p
e−2ρs

)′

≥ 0, s ∈ [0, t].

For 0 ≤ u ≤ v ≤ t we integrate over the interval [u, v] to obtain

ψ′(v)

ψ(v)(2−p)/p
e−2ρv ≥ ψ′(u)

ψ(u)(2−p)/p
e−2ρu.
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For u = s and v = t, integrating in s over the set [0, t] yields

p

p− 1

[

ψ(t)2(p−1)/p − ψ(0)2(p−1)/p
]

≤ ψ′(t)

ψ(t)(2−p)/p

1 − e−2ρt

ρ
,

which leads to (ii).
For u = 0 and v = s, integrating over the set [0, t] yields

p

p− 1

[

ψ(t)2(p−1)/p − ψ(0)2(p−1)/p
]

≥ ψ′(0)

ψ(0)(2−p)/p

e2ρt − 1

ρ
,

which leads to (iii).

Let us conversely assume that (ii) or (iii) holds. For f = 1 + εg, the left hand side in (ii) and (iii) is

ε2 VarPt
(g) + o(ε2)

and the right hand side is

ε2 1 − e−2ρt

ρ
Pt(Γ(g)) + o(ε2) and ε2 e

2ρt − 1

ρ
Pt(Γ(g)) + o(ε2)

respectively. Hence, as ε goes to 0, (ii) implies the local Poincaré inequality (3) whereas (iii) implies the
reverse local Poincaré inequality (4), which are both equivalent to the CD(ρ,∞) criterion. This concludes
the proof of the theorem. ⊲

The heat equation on R
n satisfies the CD(0,∞) criterion and is linked with the standard Gaussian measure

γ by the identity P1/2 g(0) = γ(g). Hence, applying (32) with ρ = 0 to this semigroup at t = 1/2 and
x = 0 leads to the following bound for the Gaussian measure:

1

(p− 1)2

[

γ(f p) − γ(f)p

(

γ(f p)

γ(f)p

)
2

p
−1
]

≤ γ
(

f p−2 Γ(f)
)

.

The Gaussian measure is also the ergodic measure of the Ornstein-Uhlenbeck semigroup, and for ergodic
measures we obtain the more general result:

Corollary 10 In the above notation, if the semigroup (Pt)t≥0 is µ-ergodic and satisfies the CD(ρ,∞)
criterion with ρ > 0, then the measure µ satisfies

1

(p− 1)2

[

µ(f p) − µ(f)p

(

µ(f p)

µ(f)p

)
2

p
−1
]

≤ 1

ρ
µ
(

f p−2 Γ(f)
)

(33)

for all positive functions f or equivalently

p2

(p− 1)2

[

µ(g2) − µ(g2/p)p

(

µ(g2)

µ(g2/p)p

)
2

p
−1
]

≤ 4

ρ
µ(Γ(g)) (34)

for all positive functions g.
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The refined Φp-entropy inequality (33) has been obtained by A. Arnold and J. Dolbeault in [AD05] for the
generator L defined in (28) with D(x) a scalar matrix and F = 0 and for the ergodic measure µ = e−V ,
and under the corresponding CD(ρ,∞) condition (29).

As pointed out in [AD05], the bound given by Corollary 10 improves on the Beckner inequality

µ(g2) − µ(g2/p)p

p− 1
≤ 2

pρ
µ(Γ(g))

given by Theorem 9 since

µ(g2) − µ(g2/p)p

p− 1
≤ p

2(p− 1)2

[

µ(g2) − µ(g2/p)p
( µ(g2)

µ(g2/p)p

)
2

p
−1]

(35)

for all positive functions g.

In the first section we have noticed that for all g the map

p 7→







µ(g2) − µ(g2/p)p

p− 1
if p 6= 1

Entµ

(

g2
)

if p = 1

is continuous and nonincreasing on ]0,+∞[ and takes the value Varµ(g) at p = 2.
In the next proposition we show similar properties for the functional introduced in (35):

Proposition 11 For any Borel probability measure µ on R
n and any positive g on R

n the map

p 7→ p

2(p− 1)2

[

µ(g2) − µ(g2/p)p
( µ(g2)

µ(g2/p)p

)
2

p
−1]

is nonincreasing on ]1,+∞[. Moreover it takes the value Varµ(g) at p = 2 and admits the limit Entµ(g2)
as p tends to 1.

Remark 12 The map is also continuous on the left hand side of 1, but not necessarily monotone on ]0, 1[:

for instance, if µ is the standard Gaussian measure on R and f the map defined in R by f(x) =
√

2e−x2/2,
then the map takes the approximate values 0, 061 at p = 0, 1, then 0, 134 at p = 0, 5 and 0, 103 at p = 0, 9.

Remark 13 If a measure µ satisfies the logarithmic Sobolev inequality with constant C

Entµ

(

g2
)

≤ C µ(Γ(g))

for all functions g, then it follows from Proposition 11 that for all p in ]1, 2[ it satisfies the refined Φp-
entropy inequality (34) with the constant 2pC instead of 4/ρ.
For instance, if the CD(ρ,∞) criterion with ρ > 0 holds for an µ-ergodic semigroup (Pt)t≥0 then we can
take C = 2/ρ and we recover that for all p > 1 the measure µ satisfies (34), but with a constant 4p/ρ
instead of the finer constant 4/ρ given by Corollary 10.
In the same way, assume that the measure µ satisfies the refined Φp-entropy inequality (34) for a p ]1, 2]
and a constant 4/ρ, and let q in [p, 2]. Then, by Proposition 11, the measure µ satisfies (34) with q instead
of p and a constant 4q/pρ, instead of the finer constant 4/ρ given by Corollary 10 under the CD(ρ,∞)
criterion.
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Proof of Proposition 11

⊳ We first prove that the map is nonincreasing in p. By homogeneity we may assume that µ(g2) = 1,
and in the notation h = ln g2 and t = 1/p we prove that for any function h such that µ(eh) = 1 the map

t 7→ t

(t− 1)2

[

1 − µ(eth)2(1/t−1)
]

is nondecreasing on ]0, 1[.
For this purpose we let fixed such an h and we prove that the map a defined on ]0, 1[ by

a(t) =
t

(1 − t)2
(1 − eb(t))

where b(t) = 2
t
(1 − t) lnµ(eth).

Its derivative is

a′(t) =
t + 1

(1 − t)3
eb(t)

[

e−b(t) −
(

1 +
t(1 − t)

1 + t
b′(t)

)

]

so it is sufficient to prove that

e−b(t) ≥ 1 +
t(1 − t)

1 + t
b′(t).

But ex ≥ 1 +x+x2/2 for all x ≥ 0 and −b(t) ≥ 0 since lnµ(eth) ≤ ln(µ(eh)t) = 0 by the Hölder inequality,
so it is sufficient to prove that

−b(t) +
b(t)2

2
≥ t(1 − t)

1 + t
b′(t)

or equivalently that

c(t) = − lnµ(eth) +
1 − t2

t2
µ(eth)2 − (1 − t)

µ(heth)

µ(eth)

is nonnegative.
For those t (if any) such that d(t) = µ(h eth) is nonpositive, then c(t) is nonnegative as the sum of
nonnegative terms.
Morever d is nondecreasing since d′(t) = µ(h2 eth) ≥ 0. Hence, if there exists t0 ∈]0, 1[ such that d(t0) > 0,
then d(t) > 0 on an interval ]t1, 1[: on ]0, t1] we have d(t) ≤ 0 so that c(t) ≥ 0 and remains to be proven
that c(t) ≥ 0 on ]t1, 1[ on which d(t) > 0.
Now

c′(t) = − 2

t3
ln2 µ(eth) + 2

1 − t2

t2
lnµ(eth)

µ(h eth)

µ(eth)
+ (1 − t)

µ(h eth)2 − µ(h2 eth)µ(eth)

µ(eth)2

where the first term on the right hand side is nonpositive for all t, the second term nonpositive for all t in
]t1, 1[ and the third term nonpositive for all t by the Cauchy-Schwarz inequality. Hence c is a nonincreasing
function on ]t1, 1[, and c(t) ≥ lims→1 c(s) = 0 for all t in ]t1, 1[.
As a consequence c is nonegative on ]0, 1[ and a is indeed nonincreasing on ]0, 1[.

Then we prove that the functional admits the limit Entµ(g2) as p tends to 1. By homogeneity we may
again assume that µ(g2) = 1, and we let t = 1/p and h = ln g2, so that µ(eh) = 1. Then we have to prove
that

t

2(t− 1)2

[

1 − µ(eth)2(1/t−1)
]

tends to µ(h eh) as t tends to 1, which can be checked by letting t = 1+ε and performing Taylor expansions
around ε = 0. ⊲
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We conclude this section by proving that the integral criterion (20) for the Φp-entropy inequality (14)-(15)
of Section 1.3 is also a sufficient condition for the stronger inequality (33)-(34):

Proposition 14 Let ρ be a positive number and p in ]1, 2[. If the probability measure µ is ergodic for the
diffusion semigroup (Pt)t≥0 and satisfies

µ
(

g
2−p

p−1 Γ2(g)
)

≥ ρ µ
(

g
2−p

p−1 Γ(g)
)

for all positive functions g, then µ satisfies the refined Φp-entropy inequality (33) for all positive functions
f .

Remark 15 As pointed out in Remark 6, the integral criterion (20) of Proposition 14 is not equivalent
(hence strictly stronger) to the Beckner inequality (14)-(15) at least for p close to 1. It is not either
equivalent to the stronger inequality (33)-(34): for the counter-example of Remark 6, the criterion does
not hold, although the considered measure µ satisfies a logarithmic Sobolev inequality, hence (33)-(34) by
Remark 13.

Proof of Proposition 14

⊳ The argument follows the argument of Proposition 5 by taking advantage of elements of the proof of
Theorem 9. If f is a given positive function, the function

H(u) = µ(Φp(Puf)), u ≥ 0,

where again Φ(p) = xp/(p(p− 1)), has a second derivative given by

H ′′(u) = 2µ

(

Γ2(Φ′
p(Puf))

Φ′′
p(Puf)

)

+ (2 − p)(p− 1)µ

(

1

(Puf)p

(

Γ(Φ′
p(Puf))

Φ′′
p(Puf)

)2
)

.

Hence it satisfies the inequality

H ′′(u) ≥ −2 ρH ′(u) − p− 2

p

H ′(u)2

H(u)
, u ≥ 0 (36)

by the integral criterion and the Cauchy-Schwarz inequality. For all t ≥ 0, integrating over the set [0, t]
gives

H ′(t)H(t)(p−2)/p ≥ H ′(0)H(0)(p−2)/p e−2ρt.

Integrating between 0 and +∞ conclude the argument by ergodicity of (Pt)t≥0. ⊲

Remark 16 For ρ = 0, and following [AD05], the convergence of Ptf towards µ(f) can be measured as

|H ′(t)| ≤ |H ′(0)|
1 + αt

, t ≥ 0

where α = 2−p
p
|H ′(0)|/EntΦp

µ (f). This is an illustration of the improvement given by using the second term

on the right hand side in (36). However it does not give a rate of convergence to 0 on EntΦp

µ (Ptf), as in

Section 1.4 for ρ > 0. Indeed, for ρ = 0, equation (36) is equivalent to H2−2/p being convex: hence (36) is
solved by positive maps decaying to 0 at infinity as slowly as we like.
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3 The case of a non-admissible function

We now turn to the issue of deriving Φ-entropy inequalities for maps Φ which do not satisfy the admissibility
assumptions of Theorem 2.
As shown in Section 1, for a given probability measure µ and a positive function g, the map

p 7→







µ(g2) − µ(g2/p)p

p− 1
if p 6= 1

Entµ

(

g2
)

if p = 1

is nonincreasing on ]0,+∞[. Hence, if a measure µ satisfies the logarithmic Sobolev inequality with
constant C

Entµ

(

g2
)

≤ C µ(Γ(g))

for all functions g, then for all p > 1 it satisfies the Beckner inequality

µ(g2) − µ(g2/p)p

p− 1
≤ Cµ(Γ(g))

for all positive functions g with the same constant C, or equivalently

µ(f p) − µ(f)p

p− 1
≤ C

p2

4
µ(f p−2Γ(f)) (37)

for all positive functions f.
For instance, if the CD(ρ,∞) criterion with ρ > 0 holds for an µ-ergodic semigroup (Pt)t≥0 then we can
take C = 2/ρ and for all p > 1 the measure µ satisfies (37) with Cp2/4 = p2/(2ρ).

For 1 < p ≤ 2, and under the CD(ρ,∞) criterion, Theorem 2 ensures that inequality (37) even holds for
the semigroup (Pt)t≥0 in the local form

Ps(f
p) − Ps(f)p

p− 1
≤ p

1 − e−2ρs

2ρ
Ps(f

p−2Γ(f)), s ≥ 0 (38)

(note the finer constant p/(2ρ) instead of p2/(2ρ) in the right hand side).

For p > 2 this may not hold. Indeed, for f = Pt−sg with t fixed, (38) writes

ψ(s) − ψ(0) ≤ ψ′(s)
1 − e−2ρs

2ρ

in the notation ψ(s) = Ps(Φp(Pt−sf)) of (16). A Taylor expansion at 0 yields

2ρψ′(0) ≤ ψ′′(0),

that is,

ρΓ(h)(x) ≤ Γ2(h)(x) +
2 − p

2(p− 1)

(

Γ(h)

h

)2

(x)

with h = (Ptf)p−1. Then, for instance for t = 0, L being the Laplacian, so that ρ = 0, and f(x) =
(x2 + 1)1/2, this writes

0 ≤ 1 +
2 − p

2(p− 1)
x4
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for all x, which leads to a contradiction since (2 − p)/(p− 1) < 0.

In Theorem 17 below we shall give local Φp entropy inequalities for p > 2 which are equivalent to the
CD(ρ,∞) criterion.

For p in ]0, 1[, the bound (37) may not hold for any constant C even if the measure µ satisfies a logarithmic
Sobolev inequality. For instance, for the standard Gaussian measure on R and f(x) = eλx for λ ∈ R, (37)
writes

e
pλ2

2
(1−p) − 1 ≤ (1 − p)Cλ2p

2

4

which leads to a contradiction for λ going to +∞.

In the following theorem we shall also give local Φp-entropy inequalities for p in ]0, 1[.

Theorem 17 For p > 0, p 6= 1 let us consider the function

Φp(x) =
xp − x

p(p− 1)
, x > 0.

For β 6= 1, 2 we let

ξ(x) =
1 − β

2 − β

(1 + x)
2−β

1−β − 1

x
, x ≥ 0 (39)

and ∆ be the set of (p, α, β) such that
• α ∈]0, p] and β ∈ [0, 1[ if p ∈]0, 1[,
• α = 1 and β ≥ 4−p

2−p
if p ∈]1, 2[,

• α = 1 and β ∈
[

max
{

p−4
p−2

, 0
}

, 1
[

if p > 2.

If L is a diffusion generator and ρ a real number, the following propositions are equivalent, with
1 − e−2ρt

2ρ
replaced by t if ρ = 0:

(i) the semigroup (Pt)t≥0 satisfies the CD(ρ,∞) criterion,

(ii) the semigroup (Pt)t≥0 satisfies the local Φp-entropy inequality

Ent
Φp

Pt
(f) ≤ 1 − e−2ρt

2ρ
Pt

(

f p−2Γ(f)
)

ξ

(

1 − e−2ρt

2ρ
κ1

)

, (40)

for all t ≥ 0, all positive functions f and all (p, β, α) in ∆, where

κ1 = cp(β − 1)





Pt

(

f
p−b

α Γ(f)
b

2α

)α

Pt(f p−2Γ(f))





1−β

,

b = 2β−2
β−1

and cp = (2 − p)(p− 1).

(iii) the semigroup (Pt)t≥0 satisfies the reverse local Φp-entropy inequality

Ent
Φp

Pt
(f) ≥ e2ρt − 1

2ρ
(Ptf)p−2Γ(Ptf)ξ

(

e2ρt − 1

2ρ
κ2

)

, (41)
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for all positive functions f , all (p, β, α) in ∆ and all t in [0, tf ], where

κ2 = cp(1 − β)e−2ρ(2−β)t

(

Pt(f
p−b
α Γ(f)

b
2α )α

(Ptf)p−2 Γ(Ptf)

)1−β

,

b = 2β−2
β−1

, cp = (2 − p)(p− 1) and tf > 0 depends on p, β, α and f.

Note that for all (p, β, α) ∈ ∆ we have cp(1 − β) ≤ 0.

Corollary 18 If the semigroup (Pt)t≥0 is µ-ergodic and satisfies the CD(ρ,∞) criterion with ρ > 0 then
the measure µ satisfies

EntΦp

µ (f) ≤ 1

2ρ
µ(f p−2Γ(f)) ξ

(

1

2ρ
κ∞1

)

, (42)

for all (p, β, α) ∈ ∆ and positive functions f , where ξ has been defined in (39) and

κ∞1 = cp(β − 1)

[

µ(f
p−b

α Γ(f)
b

2α )α

µ(f p−2Γ(f))

]1−β

.

For admissible functions the bound (33) on the ergodic measure is implied by a weaker averaged criterion
as in Propositions 5 and 14. This does not seem to be the case for the inequality (42), for which our proof
is strongly based on the local CD(ρ,∞) criterion via the equivalent commutation relation (44).

Remark 19 Let us make a few comments on the results of Theorem 17 and Corollary 18 depending on
the value of p.

• If p ∈]1, 2[, then all admissible β are larger than 2, so that the map x 7→ (1+x)
2−β

1−β is strictly concave
on R

+. In particular

ξ(x) =
1 − β

2 − β

(1 + x)
2−β

1−β − 1

x
< 1

for all x > 0, which proves that the inequality (40) is strictly stronger than the local Φp-inequality
(10) of Section 1.3 with Φ = Φp. In fact lim

β→+∞
ξ(x) = 1 for all x > 0, so that (10) is the limit case

of (40) as β goes to +∞.

Theorem 9 improved on Theorem 2 by bounding a larger entropy functional by the same energy; here
we improve on Theorem 2 by bounding the same entropy functional by a smaller energy. Note also
that the method used here does not seem to give the bound (33) of Theorem 9.

• If p > 2 then all admissible β are smaller than 1, so that the map x 7→ (1 + x)
2−β

1−β is convex on R
+.

In particular

ξ(x) =
1 − β

2 − β

(1 + x)
2−β

1−β − 1

x
≤ (1 + x)

1

1−β

for all x > 0, and (40) implies the bound

Ent
Φp

Pt
(f) ≤ 1 − e−2ρt

2ρ
Pt

(

f p−2Γ(f)
)

(

1 +
1 − e−2ρt

2ρ
κ1

)
1

1−β

,
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where

κ1 = cp(β − 1)





Pt

(

f p−bΓ(f)
b
2

)

Pt(f p−2Γ(f))





1−β

.

In particular if p ∈ [2, 4] then we can let β = 0 to obtain the local inequality

Ent
Φp

Pt
(f) ≤ 1 − e−2ρt

2ρ
Pt

(

f p−2Γ(f)
)

+ |cp|
(

1 − e−2ρt

2ρ

)2

Pt

(

f p−4Γ(f)2
)

,

and analogously for the possible ergodic measure.

• If p ∈]0, 1[, then for α = p and β = 0 we obtain the local inequality

Ent
Φp

Pt
(f) ≤ 1 − e−2ρt

2ρ
Pt(f

p−2Γ(f)) + |cp|
(

1 − e−2ρt

2ρ

)2

Pt(f
1− 4

p Γ(f)
2

p )p (43)

and analogously for the possible ergodic measure.

Let us now consider the map Φ̃p defined by Φ̃p(x) = xp−1
p(p−1)

for x > 0, for which the statements of Theorem 17

and Corollary 18 also hold. Since Φ̃p(x) tends to − log x as p goes to 0, then for instance (43) for the
ergodic measure leads to the following Φ0-entropy inequality as p tends to 0:

Corollary 20 If the semigroup (Pt)t≥0 is µ-ergodic and satisfies the CD(ρ,∞) criterion with ρ > 0 then
the measure µ satisfies the inequality

log

∫

fdµ−
∫

log fdµ ≤ 1

2ρ

∫

Γ(f)

f 2
dµ+

1

2ρ2

∥

∥

∥

∥

Γ(f)2

f 4

∥

∥

∥

∥

L∞(µ)

for all positive functions f .

Proof of Theorem 17.
⊳ We first show that (i) implies (ii) and (iii). As in the proof of Theorem 9 we let

ψ(s) = Ps(Φp(Pt−sf)),

so that

ψ′′(s) = 2 Ps

(

Γ2(Φ
′
p(Pt−sf))

Φ′′
p(Pt−sf)

)

+ cp Ps

(

(Pt−sf)p−4Γ(Pt−sf)2)

≥ 2 ρψ′(s) + cp Ps

(

(Pt−sf)p−4Γ(Pt−sf)2)

by the CD(ρ,∞) criterion.
Then the map (x, y) 7→ cp x

βy1−β is convex for all (p, β, α) in ∆, so the second term on the right hand
side, which is

cp Ps

(

(

(Pt−sf)p−2Γ(Pt−sf)
)β
(

(Pt−sf)p−bΓ(Pt−sf)b/2
)1−β

)

,
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is bounded by below by

cp ψ
′(s)β Ps

(

(Pt−sf)p−bΓ(Pt−sf)b/2
)1−β

.

by the Jensen inequality.
Now, as recalled in Section 1.2, the CD(ρ,∞) criterion is equivalent to the relation

Γ(Puf) ≤ e−2ρu
(

Pu(
√

Γ(f))
)2

(44)

for all u ≥ 0 and all positive functions f . Hence

cp Ps

(

(Pt−sf)p−bΓ(Pt−sf)b/2
)1−β

≥ cp e
−2ρ(2−β)(t−s)Ps

(

(Pt−sf)p−bPt−s(
√

Γ(f))b
)1−β

≥ cp e
−2ρ(2−β)(t−s)Ps

(

(Pt−sf)
p−b

α

(

Pt−s

√

Γ(f)
) b

α

)α(1−β)

by the Hölder inequality. Now (x, y) 7→ x
p−b

α y
b
α is convex for all (p, β, α) in ∆, so that

(Pt−sf)
p−b

α

(

Pt−s

√

Γ(f)
)

b
α ≤ Pt−s

(

f
p−b

α Γ(f)
b

2α

)

by the Jensen inequality, and then

cp Ps

(

(Pt−sf)
p−b

α

(

Pt−s

√

Γ(f)
)

b
α

)α(1−β)

≥ cp Pt

(

f
p−b
α Γ(f)

b
2α

)α(1−β)

since cp(1 − β) ≤ 0 in all cases.
Collecting all terms we finally obtain the differential inequality

ψ′′(s) ≥ 2ρψ′(s) + cpe
−2ρ(2−β)(t−s)ψ′(s)βPt

(

f
p−b

α Γ(f)
b

2α

)α(1−β)

,

which leads to (ii) by applying the upper bound in Lemma 21 below with A = cpPt

(

f
p−b

α Γ(f)
b

2α

)α(1−β)

.

Moreover, for t small enough, then 1 + K2 ≥ 0 in the notation of Lemma 21, and the lower bound in the
lemma leads to (iii).

We now prove that that (ii) implies (i). For f = 1+εg with ε going to 0, then κ1 is a O(ε2) in the notation

of (ii), so that ξ

(

1 − e−2ρt

2ρ
κ1

)

tends to 1. Then (ii) leads to the local Poincaré inequality

VarPt
(g) ≤ 1 − e−2ρt

ρ
PtΓ(g)

in the limit ε going to 0, which is equivalent to the CD(ρ,∞) criterion of (i) as recalled in Section 1.2.
In the same way, (iii) implies the reverse local Poincaré inequality

VarPt
(g) ≥ e2ρt − 1

ρ
Γ(Ptg)

for all g and t, which is also equivalent to the CD(ρ,∞) criterion of (i); for that purpose we note that
t1+εg tends to +∞ as ε goes to 0 in the notation of (iii), so that the time limitation in (iii) does not bring
any further difficulty. ⊲

In this proof we have used the following
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Lemma 21 Let β ≥ 0 with β 6= 1, ρ ∈ R and t > 0. Let ψ be a positive, increasing and C2 function on
[0, t] such that

ψ′′(s) ≥ 2ρψ′(s) + Ae−2ρ(2−β)(t−s)ψ′(s)β (45)

for all s in [0, t], where A is a real number such that A(β − 1) ≥ 0. Then

ψ(t) − ψ(0) ≤ ψ′(t)
1 − e−2ρt

2ρ
ξ(K1) (46)

where ξ is defined in (39) and

K1 =
1 − e−2ρt

2ρ

A(β − 1)

ψ′(t)1−β
.

If moreover 1 +K2 ≥ 0 where

K2 =
e2ρt − 1

2ρ

A(1 − β)

ψ′(0)1−β
e−2ρ(2−β)t,

then

ψ(t) − ψ(0) ≥ ψ′(0)
e2ρt − 1

2ρ
ξ(K2). (47)

Proof

⊳ We divide equation (45) by ψ′β , so that

(

ψ′1−β

1 − β

)′

(s) ≥ 2ρψ′(s)1−β + Ae−2ρ(2−β)(t−s)

for all s in [0, t]. Then the integration on [u, v] with 0 ≤ u ≤ v ≤ t gives :

ψ′(v)1−β

1 − β
e−2ρ(1−β)v − ψ′(u)1−β

1 − β
e−2ρ(1−β)u ≥ A

2ρ
e−2ρ(2−β)t(e2ρv − e2ρu).

For u = s and v = t, integrating in s over the set [0, t] yields

ψ(t) − ψ(0) ≤
∫ t

0

e−2ρ(t−s)

(

ψ′(t)1−β − A(1 − β)

2ρ

(

1 − e−2ρ(t−s)
)

)
1

1−β

ds

whether 1 − β > 0 or 1 − β < 0, which leads to (46) by the change of variable x = e2ρ(s−t).
For u = 0 and v = s, we obtain

ψ′(s)1−β

1 − β
≥ e2ρ(1−β)(s−t)

1 − β

(

ψ′(0)1−βe2ρ(1−β)t +
A(1 − β)

2ρ
e−2ρt

(

e2ρs − 1
)

)

where

ψ′(0)1−βe2ρ(1−β)t +
A(1 − β)

2ρ
e−2ρt

(

e2ρs − 1
)

≥ 0,

for all s in [0, t] since 1 +K2 ≥ 0. Then integrating over the set [0, t] yields

ψ(t) − ψ(0) ≥
∫ t

0

e−2ρ(t−s)

(

ψ′(0)1−βe2ρ(1−β)t +
A(1 − β)

2ρ
e−2ρt

(

e2ρs − 1
)

) 1

1−β

ds,

which leads to (47) by the same change of variable. ⊲
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4 Applications to a nonlinear evolution equation

In this section we show how the Φ-entropy inequalities studied above for homogeneous Markov semigroups
extend to inhomogeneous semigroups and to the solutions of a nonlinear evolution equation in a very
simple way.

As an example we consider a solution u = (ut)t≥0 to the McKean-Vlasov equation

∂ut

∂t
= ∆ut + div

(

ut ∇(V +W ∗ ut)
)

, t > 0, x ∈ R
n (48)

where ut(dx) is a probability measure on R
n for all t ≥ 0. Here V and W are respectively exterior and

interaction potentials on R
n, whereas div and ∗ respectively stand for the divergence and convolution in

x. This Fokker-Planck type equation has been used in [BCCP98] in the modelling of one dimensional
granular media in kinetic theory with V (x) = x2/2 and W (x) = x3/3. Explicit rates of convergence to
equilibrium have been obtained in [CMV03] in a more general setting.
The convolution term ∇W ∗ut induces a nonlinearity in the equation, but nevertheless we shall see how to
deduce Φ-entropy inequalities for the solution ut at time t from those obtained above for diffusion Markov
semigroups.

As a first step we derive

4.1 Φ-entropy inequalities for inhomogeneous Markov semigroups

Let σ = (σij)1≤i,j≤n be an n × n matrix and a(x, y) = (ai(x, y))1≤i≤n have coefficients smooth in x in R
n

and y ≥ 0. For any nonnegative s and x in R
n we assume that the stochastic differential equation

dXt = σ dBt − a(Xt, t) dt, t ≥ s, (49)

where (Bt)t≥0 is a standard Brownian motion on R
n, has a unique global solution starting from x at time s:

let it be denoted by (Xs,x
t )t≥s. One can make the same study for a diffusion matrix σ depending on x and t,

but for simplicity we stick to this simple case, which will be sufficient to be applied to the McKean-Vlasov
equation (48).

Given a function f on R
n we let Ps,tf(x) = Ef(Xs,x

t ) for 0 ≤ s ≤ t, so that

∂

∂t
Ps,tf = Ps,t(L(t)f)

where

L(t)f(x) =

n
∑

i,j=1

Dij
∂2f

∂xi∂xj
(x) −

n
∑

i=1

ai(x, t)
∂f

∂xi
(x)

and D = (Dij)1≤i,j≤n is the matrix
1

2
σσ∗.

To study Ps,t we introduce the following evolution process: we let σ̄ be the (n+ 1) × (n + 1) matrix with
coefficients

σ̄ij =

{

σij if 1 ≤ i, j ≤ n
0 otherwise

for 1 ≤ i, j ≤ n+ 1, and for x̄ = (x, y) in R
n × R

+ we let ā(x̄) be the vector (a(x), 1) in R
n+1.
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It follows from our assumptions that for all (x, y) in R
n × R

+ the stochastic differential equation

{

dXu = σ dBu − a(Xu, Yu) du
dYu = du

with the initial condition X0 = x, Y0 = y has a unique global solution on u ≥ 0, given by (Xu = Xy,x
y+u, Yu =

y + u) for u ≥ 0, up to a change of Brownian motion. In other words, for all x̄ in R
n × R

+ the stochastic
differential equation

dX̄u = σ̄ dB̄u − ā(X̄u) du

has a unique solution starting from x̄ at time 0: let it be denoted (X̄0,x̄
u )u≥0.

Then, for f̄ defined on R
n × R

+ and u ≥ 0 we let P̄uf̄(x̄) = Ef̄(X̄0,x̄
u ), so that the relation

Ps,tf(x) = P̄t−sf̄(x, s) (50)

holds for all functions f on R
n, 0 ≤ s ≤ t and x in R

n, where f̄ is defined on R
n × R

+ by f̄(x, y) = f(x).

By Itô’s formula, the generator associated to the semigroup (P̄u)u≥0 is given by

L̄f̄(x̄) =

n+1
∑

i,j=1

1

2
(σ̄σ̄∗)ij

∂2f̄

∂xi∂xj
(x̄) −

n+1
∑

i=1

āi(x̄)
∂f̄

∂xi
(x̄).

The diffusion matrix σ̄σ̄∗/2 is degenerate, but symmetric and nonnegative, so we are in the setting of
the previous sections. In particular, according to (1), the generator L̄ satisfies the CD(ρ,∞) criterion on
R

n × R
+ if and only if

1

2

(

Jā(x̄) · 1

2
σ̄σ̄∗ + (Jā(x̄) · 1

2
σ̄σ̄∗)∗

)

≥ ρ
1

2
σ̄σ̄∗

for all x̄ as quadratic forms on R
n+1, that is, if and only if

1

2

(

Ja(x, t)D + (Ja(x, t)D)∗
)

≥ ρD

for all t ≥ 0 and x in R
n as quadratic forms on R

n, hence, if and only if for all t ≥ 0 the generator L(t)

satisfies the CD(ρ,∞) criterion on R
n uniformly on t.

Under this assumption, the semigroup (P̄t)≥0 satisfies the Φ-entropy inequalities obtained in Sections 1,
2 and 3, for instance for the (simpler) Φ-entropies of Section 1 with an admissible function Φ (see the
definition in Section 1.3):

EntΦ
P̄u

(f̄) ≤ 1 − e−2ρu

2 ρ
P̄u(Φ′′(f̄)Γ̄(f̄)) (51)

for all positive u and all functions f̄ = f̄(x̄) on R
n × R

+, where

Γ̄(f̄) =
n
∑

i,j=1

∂f̄

∂xi
Dij

∂f̄

∂xj

in R
n×R

+ and with
1 − e−2ρu

2 ρ
replaced by u if ρ = 0. Also holds the commutation relation

Γ̄(P̄uf̄) ≤ e−2ρuP̄u

(

√

Γ̄(f̄)
)2

(52)
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in R
n × R

+.

Let now f be a given function on R
n, and let f̄ be defined on R

n ×R
+ by f̄(x̄) = f(x) if x̄ = (x, y). Then,

by (50), applying (51) and (52) to this function f̄ at the point x̄ = (x, s) and u = t− s respectively yield
the Φ-entropy inequality

EntΦ
Ps,t

(f)(x) ≤ 1 − e−2ρ(t−s)

2 ρ
Ps,t(Φ

′′(f)Γ(f))(x), 0 ≤ s ≤ t, x ∈ R
n (53)

and the commutation relation

Γ(Ps,tf)(x) ≤ e−2ρ(t−s)Ps,t

(

√

Γ(f)
)2

(x), 0 ≤ s ≤ t, x ∈ R
n (54)

for (Ps,t)t≥s≥0.

Conversely the Φ-entropy inequality (53) and the commutation relation (54) independently imply the
CD(ρ,∞) criterion for the generators L(s).

Hence we have obtained:

Proposition 22 Let Φ be an admissible function on an interval I. Then, in the above notation, the

following three assertions are equivalent, with
1 − e−2ρu

2ρ
replaced by u if ρ = 0:

(i) the generator L(t) satisfies the CD(ρ,∞) criterion for all nonnegative t;

(ii) the evolution process (Ps,t)0≤s≤t satisfies the commutation relation

Γ(Ps,tf) ≤ e−2ρ(t−s)Ps,t

(

√

Γ(f)
)2

(55)

for all 0 ≤ s ≤ t and all I-valued functions f on R
n;

(iii) the evolution process (Ps,t)0≤s≤t satisfies the local Φ-entropy inequality

EntΦ
Ps,t

(f) ≤ 1 − e−2ρ(t−s)

2 ρ
Ps,t(Φ

′′(f)Γ(f)) (56)

for all 0 ≤ s ≤ t and all I-valued functions f on R
n.

The implications (i) ⇒ (ii) ⇒ (iii) have been obtained in [CM08] for nonconstant diffusion matrices by
rewriting in the inhomogeneous setting the whole argument of Section 1 for homogeneous semigroups. Here
the equivalent assertions are obtained without any computation as a simple consequence of the equivalent
assertions of Section 1, written in a higher dimensional space.

Let us also note that the Φ-entropy inequalities derived in Sections 2 and 3 can also be transposed to this
inhomogeneous setting by the same argument.

In the following section we apply the local bounds of Proposition 22 to obtain Φ-entropy inequalities for
the solutions of the nonlinear McKean-Vlasov equation (48).
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4.2 Φ-entropy inequalities for the McKean-Vlasov equation

In this section we let (ut)t≥0 be a solution to (48) with the probability measure u0 as initial datum.
Then we let a(x, t) = ∇V (x) + ∇W ∗ ut(x) on R

n × R
+ and we assume that for all x in R

n and s ≥ 0 the
stochastic differential inequality (49) associated to this a has a unique solution starting from x at time s,
so that the evolution semigroup (Ps,t)t≥s≥0 is well defined.

Theorem 23 In the above notation and assumptions, let ρ be a real number, and let V and W be potentials
on R

n such that W is convex and HessV (x) ≥ ρ I for all x as quadratic forms on R
n.

If Φ is an admissible function on an interval I and c0 a real number, and if the initial datum u0 satisfies
the Φ-entropy inequality with constant c0,

u0(Φ(f)) − Φ(u0(f)) ≤ c0 u0(Φ
′′(f)‖∇f‖2)

for all I-valued functions f , then for all t the measure ut satisfies the Φ-entropy inequality

ut(Φ(f)) − Φ(ut(f)) ≤
(

c0e
−2ρt +

1 − e−2ρt

2ρ

)

ut(Φ
′′(f)‖∇f‖2)

for all I-valued functions f , with
1 − e−2ρt

2ρ
replaced by t if ρ = 0.

For ρ > 0, solutions ut to (48) have been shown to converge to a unique equilibrium u∞ as t goes to
infinity (see [CMV03] for instance). Choosing for instance u0 as a Dirac mass, which satisfies all Φ-entropy
inequalities with c0 = 0, and letting t go to infinity in Theorem 23 ensures that for all admissible Φ the
measure u∞ satisfies the Φ-entropy inequality

u∞(Φ(f)) − Φ(u∞((f)) ≤ 1

2ρ
u∞((Φ′′(f)‖∇f‖2)

for all maps f .
Proof

⊳ The vector field a(., t) = ∇V + ∇W ∗ ut for t ≥ 0 is such that

Ja(x, t) = Hess V (x) + HessW ∗ ut(x) ≥ ρI

for all x and t. In particular the generator L(t) = ∆− < a(x, t),∇ > satisfies the CD(ρ,∞) criterion for
all t ≥ 0, and by (ii) in Proposition 22 the local bound

P0,t(Φ(f)) − Φ(P0,tf) ≤ 1 − e−2ρt

2 ρ
P0,t(Φ

′′(f)‖∇f‖2)

holds for all f and t. We now adapt an argument used in [CM08] for the propagation of a logarithmic
Sobolev inequality by linear evolution equations. We integrate with respect to the measure u0 to obtain

ut(Φ(f)) = u0(P0,t(Φ(f))) ≤ u0(Φ(P0,tf)) +
1 − e−2ρt

2 ρ
u0

(

P0,t(Φ
′′(f)‖∇f‖2)

)

.

On one hand the measure u0 satisfies a Φ-entropy inequality with constant c0 so, letting g = P0,tf ,

u0(Φ(P0,tf)) = u0(Φ(g)) ≤ Φ(u0(g)) + c0 u0

(

Φ′′(g)‖∇g‖2
)

.
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First of all u0(g) = ut(f). Then ‖∇g‖2 ≤ e−2ρt
(

P0,t‖∇f‖
)2

by (iii) in Proposition 22 and the map
(x, y) 7→ Φ′′(x) y2 is convex by Remark 3, so by the Jensen inequality

Φ′′(g)‖∇g‖2 ≤ e−2ρt Φ′′(P0,tf)
(

P0,t‖∇f‖
)2 ≤ e−2ρt P0,t

(

Φ′′(f)‖∇f‖2
)

.

Collecting all terms concludes the argument. ⊲
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[Bec89] W. Beckner. A generalized Poincaré inequality for Gaussian measures. Proc. Amer. Math.
Soc., 105(2):397–400, 1989.
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