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Stroke Fragmentation based on Geometry Features and Hidden 
Markov Model  

Guihuan Feng, Christian Viard-Gaudin, Technical Report, IRCCyN Nantes/IVC 
 

ABSTRACT 
Stroke fragmentation is one of the key steps in pen-based 
interaction. In this letter, we present a unified HMM-based 
stroke fragmentation technique that can do segment point 
location and primitive type determination simultaneously. 
The geometry features included are used to evaluate local 
features, and the HMM model is utilized to measure the 
global drawing context. Experiments prove that the model 
can efficiently represent smooth curves as well as strokes 
made up of arbitrary lines and circular arcs. 

Keywords 
Pen-based interaction, stroke fragmentation, hidden markov 
model, hand-drawn sketch. 

1. INTRODUCTION 
Stroke fragmentation is a perceptual analysis of ink. It tries 
to cluster stroke points into geometrically salient primitives, 
such as line segments and circular arcs [4]. There is no 
doubt that it is one of the key steps in pen-based interaction. 
First, computation based on raw points will be tedious and 
time consuming; second, comparatively, primitives contain 
more meaningful geometry information than points do; at 
last, experiments proved that robust stroke fragmentation 
shall improve the performance of sketch understanding 
systems [5]. Whereas, due to the informality of sketches 
and users’ inadaptability to the input devices, stroke 
fragmentation still remains to be a challenge.                                                                                                                                                                                                                 

Segment point location and primitive type determination 
are the two main issues in stroke fragmentation. Segment 
point location aims at figuring out how many segments are 
there and where are their starting and ending points; and 
primitive type determination is used to label each of the 
segments. Most existing works [1,5,8,11] are based on 
curvatures and speeds, points whose those values are below 
a given threshold are taken as segment points. The 
differences lie only on the selection of the filtering 
techniques. Such methods are easy to be implemented and 
they perform well in many applications. But as they focus 
only on local contexts, sometimes may be susceptible to 
over- and under- segmentation of strokes. Furthermore, it 
cannot deal with smooth curves, such as “J” and “S”, 
correctly. Although Hse combines the two issues together 
by Dynamic programming (DP) algorithm [4], as the 
approach is based on symbol recognition, it’s difficult to 
extend in both type of the stroke and type of symbol. 

Hidden Markov Model was first introduced in 1960s. As it 
is especially good at modeling sequential and temporal 
phenomena, it has received many achievements in 

applications, such as speech recognition [7], gesture 
recognition [6] and handwritten document understanding 
[10]. However, relatively little work has focused on 
applying HMM in sketch recognition. We believe that it is 
because temporal information of sketch is not as robust as 
that of the handwritten characters. Henry and Wardhani [3] 
proposes to use chain-code like features to recognize 
isolated symbols. Corners here are detected simply by 
direction change, and it can only deal with line primitives, 
while our approach can recognize strokes of both lines and 
arcs. Sezgin and Davis [9] use HMM to do sketch parsing. 
Their method can group strokes and recognize each cluster 
into a distinct symbol through learning of users’ drawing 
styles. Similarly, the method works on symbol level. Since 
the drawing patterns vary between users, it is difficult to 
extend to other applications and new symbols. Cates and 
Davis[2] present an early sketch processing technique that 
uses both Markov random field (MRF) and belief 
propagation to do fragmentation.  Their graphical model 
based approach can incorporate context. In his work, each 
stroke is represented separately as an MRF, but our model 
can be used to represent all kinds of strokes. 

Although different people may scribble the same shape in 
different strokes and different orders, drawing of sketch 
itself is temporal related. And we believe the drawing 
context can help to do fragmentation. In this paper, we 
present an HMM model that can represent all kinds of 
strokes making up of lines and arcs. Stroke fragmentation is 
done by finding out the optimal path of the input with 
respect to the model.  The contributions of our work 
include: 1). We introduce a model that can be used to 
represent any arbitrary stroke composed of lines and 
circular arcs; 2). The model is domain-independent. It does 
not need any priori information about the constitution of the 
stroke. Therefore, it can be easily adapted to other 
applications; 3). Segment point detection and primitive 
shape approximation are achieved simultaneously. Besides, 
as it uses both local and the global context, it can deal with 
smooth strokes properly. In section II, we introduce the 
states and the model definition. Features and probability 
density functions (PDFs) are presented in section III. After 
evaluating the effectiveness of the proposed method, we 
conclude the paper in section VI. 

2. DEFINITION OF HMM MODEL AND STATES 

2.1 Hidden State Definition 
For most pen-based application areas, we believe lines and 
circular arcs are enough to describe a shape. Here, arcs 
include either open or closed circles. In our approach, lines 



 

 

are grouped into 8 clusters according to their directions; for 
arcs, they can be divided into arcs on clockwise circle and 
anticlockwise circle, based on their orientations, as shown 
in Figure 1. We call all these states (q0-q23) basic states. 
They allow to model the basic primitives used to design a 
sketch. These different states will produce each a different 
primitive, while some are quite similar, as for instance q0 
and q18, which will differ only by the curvature value. To 
use these generative models to carry out the segmentation, 
we will have to define what are the local observations. They 
should be linked of course to local directional and curvature 
features. Some other states (q24-q32) will be introduced later; 
they will be useful to model the switching between the 
basic models.  
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   Figure 1. Definition of primitives and states  

2.2 Model Definition and Parameter Selection 
In order to construct a model that can represent strokes 
constituted of arbitrary lines and arcs, we have to 
concatenate all the states listed above. Figure 2 displays an 
intuitive solution. With this ergodic model, it is possible to 
switch from one state to any others. Here all the states are 
treated equal, not only probabilities of each state to start 
from, but also probabilities of transition from one state to 
another. Notice that qs and qf are visual states. They can not 
emit any observation but are used for concatenating 
purpose.  Implementation of this model is easy, and it can 
represent strokes made up of arbitrary primitives. The 
problem lies in that it denies the consistency between states 
of the same primitive. Since when drawing an arc in 
anticlockwise order, q1 will always follow q0. It implies that 
the transition cost from q0 to q1 should be smaller than the 
others. In addition, hand drawings are informal and 
ambiguous in nature. Model in Figure 2 seems to be kind of 
noise sensitive. 

¡ - 0qs qf 
q0 q1 q2 q22 q23 q3 

Figure 2.  Generic ergodic model. 

We propose the model shown in Figure 3. It is composed of 
3 parts, i.e. model of clockwise circle (top), model of 
anticlockwise circle (middle) and model of lines in 8 
different directions (bottom). Similarly, qs is non-emitting 
state, whereas q24 and q25 can emit all the observations with 
the same likelihood. State 24 and 25 are used for modelling 
connecting points between two distinct primitives. These 
points usually have particular geometry features and cannot 

be assigned to any of the basic states. Up to two states are 
allowed, due to the irregularity of sketches and the errors 
imported in resampling. 

Model of clockwise arc (A) 

Model of anti-clockwise arc (B) 

Model of lines in diff. dir. (C) 

q24 q25 qs 

Figure 3. A sketch map of our model. 

Model of anticlockwise circle (model B) is given in Figure 
4. As for model defined in Figure 2, it can start and stop at 
any state; but the difference is that there are specific 
transitions connecting adjacent states, which are used to 
ensure the continuity of the drawing of arc. Model in 
clockwise order is analogous. 

 

¡ -  q0 q1 q2 q7 q3 q6 

Figure 4.  Model of anticlockwise circle. 

Figure 5 displays the connectivity of the line model (model 
C). In addition to the 8 basic line states (q16- q23), there are 
some special states (q26- q32) used to model the points on 
the corner when two distinct lines intersect with each other, 
for instance q26 models the connection between an 
horizontal line (q16) and a 45° line (q17), (for simplicity, 
states between other line states are omitted, actually there is 
a total of 8 × 7 additional states). Curvature measurements 
for these connection states will be relatively high 
(computation of curvature can be found in section III), 
almost equal to that of an arc, although the corresponding 
point are actually on a line segment. These additional states 
will be more specific than states 24 and 25 in Figure 3, 
which can emit all the observations without any preference, 
whereas these additional states are defined to focus on a 
specific situation, they will give a higher probability for 
points on the corner compared with states 24 and 25, so as 
to provide a better performance. 
 

¡ - q16 

 

¡ - 

q17 q18 

q26 q27 q28 
q31 q32 

q19 q22 q23 

Figure 5. Model of lines in different orientations. 
In most cases, parameters of the HMM model are obtained 
through training. Here, all the parameters we used are based 
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on either prior knowledge or strict mathematical deduction. 
For simplicity, we make the following assumptions: first, 
probabilities of each basic state (q0-q23) being the first state 
are all the same; second, self-transitions have the same 
value than transition to the following state (arc states only); 
third, transition probabilities from each basic state to the 
corner state- q24, are identical.  

Apart from the transition probabilities, we have also to 
define the observation probabilities. From every points pi of 
the sketch, we will derive an observation oi based on a set 
of 4 features (f1, f2, f3, f4). They are presented in the next 
section, which will allow the computation of the likelihood 
of the observation oi emitted by the HMM. As we assume 
the independence of features, the global pdf will be defined 
by : 
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3. FEATURE COMPUTATION  

3.1 Feature Selection 
Two main features have been considered, namely local 
direction and local curvature. They will allow 
distinguishing the different states of the models.  Directions 
are easy to be computed. As for lines, direction of pi is that 
of line pi-1pi+1; and for arcs, it can be proved that after 
resampling direction of the tangent line of pi is the same as 
that of line pi-1pi+1. 

Cosine and sine value of the slant angle of line pi-1pi+1 can 
be described with the coordinates of these two points; while 
definition and computation of curvature is much more 
intricate. When dealing with discrete data, curvatures are 
always computed according to the distribution of points 
falling into a given area. Here, we denote curvature as the 
distance of the point to the chord of its neighbouring 
window. For points on a line, the distance will be small, 
nearly zero; while for points on an arc, the value will be 
relatively bigger. Figure 6 illustrates the expression and 
their physical meanings.. Moreover, curvature is signed. It 
can be either positive- when drawn in clockwise order; or 
negative- when in anticlockwise order. 
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(a) Expression of feature computation. 

 

Figure 6. Expression of feature computation and their 

physical meanings. 
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(b) Illustration of the features. 

Size of window should balance between lines and arcs. 
Ordinarily, the bigger the window is, the more insensitive it 
will be to the noise. Yet at the same time, it may result in 
over-smoothing due to the inappropriate use of context; on 
the other side, a smaller window will be less robust, and 
less discriminative, but more precise. In our system, we use 
a window of size 5 points after resampling, where the 
resampling step is chosen to be adapted to the sketch itself 
after an analysis of the stroke lengths histogram.  

Besides direction and curvature, we import another 
measurement, namely direction change. It can also be taken 
as an evaluation of the curvature. As the computation of f4 

takes into account of only the two neighboring points, we 
believe it can help to balance the influence of too much 
context raised by curvature. 

3.2 PDF definition 
Definitions of pdfs are based on the most widely used 
Gaussian distribution. Take f2 of q16 for example, its slant 
angle ranges between [-π/8, π/8]. When being in q16 the 
likelihood of f2is maximum when the angle is zero; as it 
extends to both sides, the likelihood decreases gradually. 
The smaller the deviation is, the bigger the pdf. Again, 
since function |sin(x) – sin(0)| is symmetric in [-π/8, π/8], 
hence the pdf_ f2 of q16 is like Figure 7(a): it achieves the 
maximum value in sin0, and is symmetric to both sides; As 
for f1 of q17, the angle starts from π/8 to 3π/8, with π/4 being 
the center. Because |cos(x)-cos(π/4)| is asymmetric on the 
two sides of π/4, so the pdf_ f1 of q17 is a combination of 
two gaussian curves (shown in Figure 7(b)). It achieves the 
peak value in cos(π/4) and decrease to both sides. 
Moreover, value of cos(π/8) and cos(3π/8) are identical. 
Pdfs of the other states, and pdfs of direction change can all 
be defined in the same way. 



 

 

Figure 7. Examples of pdf definition. 

(c) pdf_curvature definition. 

     (a)  pdf_sine of state16.         (b) pdf_cosine of state 
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Concerning the pdfs of curvature feature f3, there are three 
different functions according to which state is concerned. 
Func1 is for arc states with positive curvature values (q8-
q15), Func2 is for arc states with negative curvatures (q0-q7), 
and Func3 is for all the line states (q16-q23). Since the bigger 
the radius is, the less the curvature will be. However, if the 
radius is big enough, it will be difficult to distinguish lines 
from arcs with only the curvature. Therefore, we constraint 
the radius of circle range from 10 to 50 resample points 
respectively, and we believe it is  enough for most of the 
applications. Through experiment, we notice that curvatures 
of lines remains in the range [-d/8,d/8], and from geometric 
constraints due to how h is computed, it is bounded by  [-
2d, 2d], with d being the resampling distance. Figure 7(c) 
gives the definition of pdf_ f3. Here, we show only func1 
and func3. Func2 is symmetric with func1 with respect to 
the y-axis. From Figure 7(c), the bigger the curvature, the 
smaller func3 will be. But as when two lines intersect with 
each other, points on the corner will have a big curvature, 
which means for line states it should also emit a big 
curvature. So during computation, when curvature is 
beyond a threshold, func3 will be assigned with a 
comparatively bigger value. 

4. STROKE FRAGMENTATION 
Pen-based devices are usually based on isochronal 
sampling. Computation on the original data will be either 
time consuming or noisy. Hence, we introduce resampling 
to separate strokes into equally distributed segments. The 
resampling distance will be critical for fragmentation. As 

for lines, the distance is the smaller the better. Since under a 
tiny distance, a small fluctuation will not influence much 
for the curvature. But for arcs, points fall into a small area 
will look like those on lines. Besides, it will be much easy 
to preserve consistency of an arc if the resampling distance 
is bigger. At this stage it is important to define a sampling 
distance which will be related to the scale of the sketch and 
not to the parameter of the device.  

Since for HMM, each pattern should have at least 4 to 5 
observations, we finally define the resampling distance to 
obtain these number of points for the smallest primitives 
based on an estimation of their length.. 

The process of HMM-based stroke fragmentation are as 
follows. First, resampling is introduced to get feature 
points; then points are transferred into model recognizable 
observations through feature computation. The Viterbi 
algorithm is employed to output the optimal state sequence. 
Take an “L” like stroke for example, based on our model, 
the output of the segmentation will be something like “22,  
…, 22,  68, 16, …, 16”. The last stage of this segmentation 
method is a post-processing, which aims at fine-tuning the 
localization of the segmentation points, and an optional 
color label can be assign to visually assess the results of the 
segmentation. First, in the previous example, point 68 will 
be taken as the candidate segment point, and then the point 
having the maximum curvature nearby is selected to be the 
final result. We do not take the point corresponding to q68 
to be the exact segment point, because we cannot guarantee 
that after resampling points will cover all the real segment 
points. But we can be sure that the real segment points are 
in the neighborhood of the feature points. At last, the 
different types of primitives are displayed in different color.  

5. SYSTEM EVALUATION 
We selected several examples from the existing stroke 
fragmentation researches to evaluate the performance of our 
approach. During selection, we try to avoid those that can 
have different segmentation results. Besides we added 
example 9-12, to test  the usability of our method in 
segmenting handwritten digitals and characters. Figure 8 
lists all the examples. Small circles indicate the real desired 
segment points. As the start point and the end point are 
treated as segment points automatically, they are not 
included in our evaluation. 

  

               (1)                                    (2)                              (3)                            (4)                     (9)                 (10)

                (5)                                    (6)                             (7)                             (8)                    (11)               (12)  

Figure 8. Samples used in our experiment 

We asked 6 people to draw the examples. Before 
experiment, we first introduced them the input device, and 
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then ask each of them to sketch freely for about 5-10 
minutes to learn how to use it as naturally as a pen. They 
are told the purpose of our experiment and primitives the 
system can recognize, in order they will not draw too 
casually. People are asked to draw each of the example 8 
times discontinuously. There is no constraint about the 
direction and the size. But as some of the drawings are far 
from the objective, in order to guarantee the veracity of the 
evaluation, they are unused. At last, we got 588 valid 
samples, which are all used for testing. 

Model shown in Figure 2 is implemented to serve as a 
baseline approach. Experiment results are given in Figure 9. 
The two measurements are false-negative rate and false-
positive rate. The definitions are given below. 

 
_ _ _ _

_ 100%
#_ _ _ _

no# accepted false segment point
false positive

no all accepted segment point
= ×

_ _ _ _
_ 100%

#_ _ _ _

no# rejected true segment point
false negative

no all true segment point
= ×

 

From the experiment it can be seen that for all the users, our 
approach has achieved a better performance than the 
baseline method. The false negative rate in our approach is 
very low, less than 1%. It means our system can locate 
almost all the real segment points. While the false positive 
rates vary between users. We found that most of the false 
positive occurs when an arc is over segmented, which is 
also the cause of low recognition rate of arcs. As HMM-
based recognition tries to find out the optimal matching 
with model based on dynamic programming. So if user 
draws a long and flat segment when sketching an arc, the 
probability of recognizing it as a line is far more bigger 
than that of an arc. This argues that users’ drawing may 
deviate from their exact intention. Some other false positive 
happens if there is a big direction change when drawing a 
straight line. Further, our method has a poor performance 
on user2, this is because most arcs he drew have exceeded 
our predefined scope. False negative arises when dealing 
with sample 5. Since when user draw the broken lines too 
small, it will make curvatures of points on the corner be 
comparatively bigger, and results it to be recognized as arc. 
We argue that these kinds of mistakes can be avoided if we 
explain to users the range we can handle before experiment. 
Figure 10 shows some examples of the correctly segmented 
strokes and some failed examples (Small round circles are 
the segment points, and primitives are displayed in different 
color).  

 
 
 
 
 
 
 
 
 

(a) recognition result of false positive. 
 
 
 
 
 
 
 
 
 
 

(b) recognition result of false negative. 
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Figure 9. Recognition results. 

We found that the performance on 1-8 is a little better than 
on 9-12. This is due to the fact that most users will draw a 
shape according to the template, but the drawing of digitals 
and characters will be influenced by more subjective 
factors. Again, the symbols themselves are not made up of 
regular arcs, which is another cause of over-segmentation. 
However from the experiment we realize that due to the 
management of context, our method can achieve better 
results for smooth strokes. 

As for processing time, HMM-based methods has a 
computation complexity of O(N2T). N is the number of 
states and T is the length of the observations. During our 
experiment, the average processing time of each stroke is 
247.0833 milliseconds. Compared with their drawing 
interval 2391.917 milliseconds, we believe it can meet the 
requirements of real-time processing. 



 

 

 
 
 
 
 
 
 
 
 
 

(a) Successfully fragmented examples 
 
 
 
 
 
 
 
 
 
 
 

(b) Fail to segment examples. 

 

Figure 10. Recognition examples. 

6. CONCLUSION 
In this paper, we propose an HMM-based stroke 
fragmentation paradigm. This is the first attemp at trying to 
build a model on stroke level. Our model can represent an 
arbitrary stroke composed of lines and circular arcs. As no 
priori knowledge is needed, it can be easily adapted to other 
applications. Besides, our approach can do segment point 
location and primitive type determination simutaneously. 
Since it utilize both the local and global contexts, it can 
efficiently deal with smooth strokes that can not be handled 
properly by other approaches. The preliminary experiments 
verify that it cannot only be used to compress data, but also 
at the same time preserving its geometry characteristics. 

We believe context is good to do stroke fragmentation. But 
on the other hand it sometimes may bring problems. Due to 
the inconsistency between the continuity in computation of 
curvature and the discontinuity of curvature between 
primitives, some short segments in the broken line will be 
recognized as arcs, which causes the recognition rate of 
lines to be decreased. Hence, further research can focus on 
utilizing context information more rationally. Moreover, as 
sketches are ambiguous in nature, the hand drawn pictures 

may deviate from users’ exact purpose, so some more 
reasonable measurements are urgently needed to evaluate 
the performance of a stroke fragmentation system.  
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