
HAL Id: hal-00344151
https://hal.science/hal-00344151

Preprint submitted on 3 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stroke Fragmentation based on Geometry Features and
HMM

Guihuan Feng, Christian Viard-Gaudin

To cite this version:
Guihuan Feng, Christian Viard-Gaudin. Stroke Fragmentation based on Geometry Features and
HMM. 2007. �hal-00344151�

https://hal.science/hal-00344151
https://hal.archives-ouvertes.fr

 1

Stroke Fragmentation based on Geometry Features and Hidden
Markov Model

Guihuan Feng, Christian Viard-Gaudin, Technical Report, IRCCyN Nantes/IVC

ABSTRACT
Stroke fragmentation is one of the key steps in pen-based
interaction. In this letter, we present a unified HMM-based
stroke fragmentation technique that can do segment point
location and primitive type determination simultaneously.
The geometry features included are used to evaluate local
features, and the HMM model is utilized to measure the
global drawing context. Experiments prove that the model
can efficiently represent smooth curves as well as strokes
made up of arbitrary lines and circular arcs.

Keywords
Pen-based interaction, stroke fragmentation, hidden markov
model, hand-drawn sketch.

1. INTRODUCTION
Stroke fragmentation is a perceptual analysis of ink. It tries
to cluster stroke points into geometrically salient primitives,
such as line segments and circular arcs [4]. There is no
doubt that it is one of the key steps in pen-based interaction.
First, computation based on raw points will be tedious and
time consuming; second, comparatively, primitives contain
more meaningful geometry information than points do; at
last, experiments proved that robust stroke fragmentation
shall improve the performance of sketch understanding
systems [5]. Whereas, due to the informality of sketches
and users’ inadaptability to the input devices, stroke
fragmentation still remains to be a challenge.

Segment point location and primitive type determination
are the two main issues in stroke fragmentation. Segment
point location aims at figuring out how many segments are
there and where are their starting and ending points; and
primitive type determination is used to label each of the
segments. Most existing works [1,5,8,11] are based on
curvatures and speeds, points whose those values are below
a given threshold are taken as segment points. The
differences lie only on the selection of the filtering
techniques. Such methods are easy to be implemented and
they perform well in many applications. But as they focus
only on local contexts, sometimes may be susceptible to
over- and under- segmentation of strokes. Furthermore, it
cannot deal with smooth curves, such as “J” and “S”,
correctly. Although Hse combines the two issues together
by Dynamic programming (DP) algorithm [4], as the
approach is based on symbol recognition, it’s difficult to
extend in both type of the stroke and type of symbol.

Hidden Markov Model was first introduced in 1960s. As it
is especially good at modeling sequential and temporal
phenomena, it has received many achievements in

applications, such as speech recognition [7], gesture
recognition [6] and handwritten document understanding
[10]. However, relatively little work has focused on
applying HMM in sketch recognition. We believe that it is
because temporal information of sketch is not as robust as
that of the handwritten characters. Henry and Wardhani [3]
proposes to use chain-code like features to recognize
isolated symbols. Corners here are detected simply by
direction change, and it can only deal with line primitives,
while our approach can recognize strokes of both lines and
arcs. Sezgin and Davis [9] use HMM to do sketch parsing.
Their method can group strokes and recognize each cluster
into a distinct symbol through learning of users’ drawing
styles. Similarly, the method works on symbol level. Since
the drawing patterns vary between users, it is difficult to
extend to other applications and new symbols. Cates and
Davis[2] present an early sketch processing technique that
uses both Markov random field (MRF) and belief
propagation to do fragmentation. Their graphical model
based approach can incorporate context. In his work, each
stroke is represented separately as an MRF, but our model
can be used to represent all kinds of strokes.

Although different people may scribble the same shape in
different strokes and different orders, drawing of sketch
itself is temporal related. And we believe the drawing
context can help to do fragmentation. In this paper, we
present an HMM model that can represent all kinds of
strokes making up of lines and arcs. Stroke fragmentation is
done by finding out the optimal path of the input with
respect to the model. The contributions of our work
include: 1). We introduce a model that can be used to
represent any arbitrary stroke composed of lines and
circular arcs; 2). The model is domain-independent. It does
not need any priori information about the constitution of the
stroke. Therefore, it can be easily adapted to other
applications; 3). Segment point detection and primitive
shape approximation are achieved simultaneously. Besides,
as it uses both local and the global context, it can deal with
smooth strokes properly. In section II, we introduce the
states and the model definition. Features and probability
density functions (PDFs) are presented in section III. After
evaluating the effectiveness of the proposed method, we
conclude the paper in section VI.

2. DEFINITION OF HMM MODEL AND STATES

2.1 Hidden State Definition
For most pen-based application areas, we believe lines and
circular arcs are enough to describe a shape. Here, arcs
include either open or closed circles. In our approach, lines

are grouped into 8 clusters according to their directions; for
arcs, they can be divided into arcs on clockwise circle and
anticlockwise circle, based on their orientations, as shown
in Figure 1. We call all these states (q0-q23) basic states.
They allow to model the basic primitives used to design a
sketch. These different states will produce each a different
primitive, while some are quite similar, as for instance q0
and q18, which will differ only by the curvature value. To
use these generative models to carry out the segmentation,
we will have to define what are the local observations. They
should be linked of course to local directional and curvature
features. Some other states (q24-q32) will be introduced later;
they will be useful to model the switching between the
basic models.

q21

q22
q23

q16

q17
q18

q19

q20 q0

q6
q5

q1 q2

q3

q7

q14
q13

q9 q10

q11

q12

q15

q8 q4

 Figure 1. Definition of primitives and states

2.2 Model Definition and Parameter Selection
In order to construct a model that can represent strokes
constituted of arbitrary lines and arcs, we have to
concatenate all the states listed above. Figure 2 displays an
intuitive solution. With this ergodic model, it is possible to
switch from one state to any others. Here all the states are
treated equal, not only probabilities of each state to start
from, but also probabilities of transition from one state to
another. Notice that qs and qf are visual states. They can not
emit any observation but are used for concatenating
purpose. Implementation of this model is easy, and it can
represent strokes made up of arbitrary primitives. The
problem lies in that it denies the consistency between states
of the same primitive. Since when drawing an arc in
anticlockwise order, q1 will always follow q0. It implies that
the transition cost from q0 to q1 should be smaller than the
others. In addition, hand drawings are informal and
ambiguous in nature. Model in Figure 2 seems to be kind of
noise sensitive.

¡ - 0qs qf
q0 q1 q2 q22 q23 q3

Figure 2. Generic ergodic model.

We propose the model shown in Figure 3. It is composed of
3 parts, i.e. model of clockwise circle (top), model of
anticlockwise circle (middle) and model of lines in 8
different directions (bottom). Similarly, qs is non-emitting
state, whereas q24 and q25 can emit all the observations with
the same likelihood. State 24 and 25 are used for modelling
connecting points between two distinct primitives. These
points usually have particular geometry features and cannot

be assigned to any of the basic states. Up to two states are
allowed, due to the irregularity of sketches and the errors
imported in resampling.

Model of clockwise arc (A)

Model of anti-clockwise arc (B)

Model of lines in diff. dir. (C)

q24 q25 qs

Figure 3. A sketch map of our model.

Model of anticlockwise circle (model B) is given in Figure
4. As for model defined in Figure 2, it can start and stop at
any state; but the difference is that there are specific
transitions connecting adjacent states, which are used to
ensure the continuity of the drawing of arc. Model in
clockwise order is analogous.

¡ - q0 q1 q2 q7 q3 q6

Figure 4. Model of anticlockwise circle.

Figure 5 displays the connectivity of the line model (model
C). In addition to the 8 basic line states (q16- q23), there are
some special states (q26- q32) used to model the points on
the corner when two distinct lines intersect with each other,
for instance q26 models the connection between an
horizontal line (q16) and a 45° line (q17), (for simplicity,
states between other line states are omitted, actually there is
a total of 8 × 7 additional states). Curvature measurements
for these connection states will be relatively high
(computation of curvature can be found in section III),
almost equal to that of an arc, although the corresponding
point are actually on a line segment. These additional states
will be more specific than states 24 and 25 in Figure 3,
which can emit all the observations without any preference,
whereas these additional states are defined to focus on a
specific situation, they will give a higher probability for
points on the corner compared with states 24 and 25, so as
to provide a better performance.

¡ - q16

¡ -

q17 q18

q26 q27 q28
q31 q32

q19 q22 q23

Figure 5. Model of lines in different orientations.
In most cases, parameters of the HMM model are obtained
through training. Here, all the parameters we used are based

 3

on either prior knowledge or strict mathematical deduction.
For simplicity, we make the following assumptions: first,
probabilities of each basic state (q0-q23) being the first state
are all the same; second, self-transitions have the same
value than transition to the following state (arc states only);
third, transition probabilities from each basic state to the
corner state- q24, are identical.

Apart from the transition probabilities, we have also to
define the observation probabilities. From every points pi of
the sketch, we will derive an observation oi based on a set
of 4 features (f1, f2, f3, f4). They are presented in the next
section, which will allow the computation of the likelihood
of the observation oi emitted by the HMM. As we assume
the independence of features, the global pdf will be defined
by :

4

1

(|) (|)j j
i k

k

pdf o pdf fq q
=

= ∏ (1)

3. FEATURE COMPUTATION

3.1 Feature Selection
Two main features have been considered, namely local
direction and local curvature. They will allow
distinguishing the different states of the models. Directions
are easy to be computed. As for lines, direction of pi is that
of line pi-1pi+1; and for arcs, it can be proved that after
resampling direction of the tangent line of pi is the same as
that of line pi-1pi+1.

Cosine and sine value of the slant angle of line pi-1pi+1 can
be described with the coordinates of these two points; while
definition and computation of curvature is much more
intricate. When dealing with discrete data, curvatures are
always computed according to the distribution of points
falling into a given area. Here, we denote curvature as the
distance of the point to the chord of its neighbouring
window. For points on a line, the distance will be small,
nearly zero; while for points on an arc, the value will be
relatively bigger. Figure 6 illustrates the expression and
their physical meanings.. Moreover, curvature is signed. It
can be either positive- when drawn in clockwise order; or
negative- when in anticlockwise order.

1 1
1 2 2

1 1 1 1

1 1
2 2 2

1 1 1 1

3 2 2

4 1

cos
() ()

sin
() ()

() (,)

(,)

i i

i i i i

i i

i i i i

i i i i

i-1 i

x x
f

x x y y

y y
f

x x y y

f curvature p h distance p p p

f angle p p pp

ϕ

ϕ

ψ π

+ −

+ − + −

− +

+ − + −

− +

+

−=
− + −

−=
− + −
= =

= −

≐

≐

≐

≐

(a) Expression of feature computation.

Figure 6. Expression of feature computation and their

physical meanings.

pi-1

O

pi
pi+2

pi-2

φ h

pi+1

l

ψ

(b) Illustration of the features.

Size of window should balance between lines and arcs.
Ordinarily, the bigger the window is, the more insensitive it
will be to the noise. Yet at the same time, it may result in
over-smoothing due to the inappropriate use of context; on
the other side, a smaller window will be less robust, and
less discriminative, but more precise. In our system, we use
a window of size 5 points after resampling, where the
resampling step is chosen to be adapted to the sketch itself
after an analysis of the stroke lengths histogram.

Besides direction and curvature, we import another
measurement, namely direction change. It can also be taken
as an evaluation of the curvature. As the computation of f4

takes into account of only the two neighboring points, we
believe it can help to balance the influence of too much
context raised by curvature.

3.2 PDF definition
Definitions of pdfs are based on the most widely used
Gaussian distribution. Take f2 of q16 for example, its slant
angle ranges between [-π/8, π/8]. When being in q16 the
likelihood of f2is maximum when the angle is zero; as it
extends to both sides, the likelihood decreases gradually.
The smaller the deviation is, the bigger the pdf. Again,
since function |sin(x) – sin(0)| is symmetric in [-π/8, π/8],
hence the pdf_ f2 of q16 is like Figure 7(a): it achieves the
maximum value in sin0, and is symmetric to both sides; As
for f1 of q17, the angle starts from π/8 to 3π/8, with π/4 being
the center. Because |cos(x)-cos(π/4)| is asymmetric on the
two sides of π/4, so the pdf_ f1 of q17 is a combination of
two gaussian curves (shown in Figure 7(b)). It achieves the
peak value in cos(π/4) and decrease to both sides.
Moreover, value of cos(π/8) and cos(3π/8) are identical.
Pdfs of the other states, and pdfs of direction change can all
be defined in the same way.

Figure 7. Examples of pdf definition.

(c) pdf_curvature definition.

 (a) pdf_sine of state16. (b) pdf_cosine of state

0

0. 4

0. 8

1. 2

1. 6

2

-1 0 1

cos(x)
pd

f_
17

_f
1

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2

-1 0 1

si n(x)

pd
f_

16
_f

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -2 0 2 4 6 8 10 12

curvature(x)

pd
f_

f3

Func1

Func3

Concerning the pdfs of curvature feature f3, there are three
different functions according to which state is concerned.
Func1 is for arc states with positive curvature values (q8-
q15), Func2 is for arc states with negative curvatures (q0-q7),
and Func3 is for all the line states (q16-q23). Since the bigger
the radius is, the less the curvature will be. However, if the
radius is big enough, it will be difficult to distinguish lines
from arcs with only the curvature. Therefore, we constraint
the radius of circle range from 10 to 50 resample points
respectively, and we believe it is enough for most of the
applications. Through experiment, we notice that curvatures
of lines remains in the range [-d/8,d/8], and from geometric
constraints due to how h is computed, it is bounded by [-
2d, 2d], with d being the resampling distance. Figure 7(c)
gives the definition of pdf_ f3. Here, we show only func1
and func3. Func2 is symmetric with func1 with respect to
the y-axis. From Figure 7(c), the bigger the curvature, the
smaller func3 will be. But as when two lines intersect with
each other, points on the corner will have a big curvature,
which means for line states it should also emit a big
curvature. So during computation, when curvature is
beyond a threshold, func3 will be assigned with a
comparatively bigger value.

4. STROKE FRAGMENTATION
Pen-based devices are usually based on isochronal
sampling. Computation on the original data will be either
time consuming or noisy. Hence, we introduce resampling
to separate strokes into equally distributed segments. The
resampling distance will be critical for fragmentation. As

for lines, the distance is the smaller the better. Since under a
tiny distance, a small fluctuation will not influence much
for the curvature. But for arcs, points fall into a small area
will look like those on lines. Besides, it will be much easy
to preserve consistency of an arc if the resampling distance
is bigger. At this stage it is important to define a sampling
distance which will be related to the scale of the sketch and
not to the parameter of the device.

Since for HMM, each pattern should have at least 4 to 5
observations, we finally define the resampling distance to
obtain these number of points for the smallest primitives
based on an estimation of their length..

The process of HMM-based stroke fragmentation are as
follows. First, resampling is introduced to get feature
points; then points are transferred into model recognizable
observations through feature computation. The Viterbi
algorithm is employed to output the optimal state sequence.
Take an “L” like stroke for example, based on our model,
the output of the segmentation will be something like “22,
…, 22, 68, 16, …, 16”. The last stage of this segmentation
method is a post-processing, which aims at fine-tuning the
localization of the segmentation points, and an optional
color label can be assign to visually assess the results of the
segmentation. First, in the previous example, point 68 will
be taken as the candidate segment point, and then the point
having the maximum curvature nearby is selected to be the
final result. We do not take the point corresponding to q68
to be the exact segment point, because we cannot guarantee
that after resampling points will cover all the real segment
points. But we can be sure that the real segment points are
in the neighborhood of the feature points. At last, the
different types of primitives are displayed in different color.

5. SYSTEM EVALUATION
We selected several examples from the existing stroke
fragmentation researches to evaluate the performance of our
approach. During selection, we try to avoid those that can
have different segmentation results. Besides we added
example 9-12, to test the usability of our method in
segmenting handwritten digitals and characters. Figure 8
lists all the examples. Small circles indicate the real desired
segment points. As the start point and the end point are
treated as segment points automatically, they are not
included in our evaluation.

 (1) (2) (3) (4) (9) (10)

 (5) (6) (7) (8) (11) (12)

Figure 8. Samples used in our experiment

We asked 6 people to draw the examples. Before
experiment, we first introduced them the input device, and

 5

then ask each of them to sketch freely for about 5-10
minutes to learn how to use it as naturally as a pen. They
are told the purpose of our experiment and primitives the
system can recognize, in order they will not draw too
casually. People are asked to draw each of the example 8
times discontinuously. There is no constraint about the
direction and the size. But as some of the drawings are far
from the objective, in order to guarantee the veracity of the
evaluation, they are unused. At last, we got 588 valid
samples, which are all used for testing.

Model shown in Figure 2 is implemented to serve as a
baseline approach. Experiment results are given in Figure 9.
The two measurements are false-negative rate and false-
positive rate. The definitions are given below.

_ _ _ _

_ 100%
#_ _ _ _

no# accepted false segment point
false positive

no all accepted segment point
= ×

_ _ _ _
_ 100%

#_ _ _ _

no# rejected true segment point
false negative

no all true segment point
= ×

From the experiment it can be seen that for all the users, our
approach has achieved a better performance than the
baseline method. The false negative rate in our approach is
very low, less than 1%. It means our system can locate
almost all the real segment points. While the false positive
rates vary between users. We found that most of the false
positive occurs when an arc is over segmented, which is
also the cause of low recognition rate of arcs. As HMM-
based recognition tries to find out the optimal matching
with model based on dynamic programming. So if user
draws a long and flat segment when sketching an arc, the
probability of recognizing it as a line is far more bigger
than that of an arc. This argues that users’ drawing may
deviate from their exact intention. Some other false positive
happens if there is a big direction change when drawing a
straight line. Further, our method has a poor performance
on user2, this is because most arcs he drew have exceeded
our predefined scope. False negative arises when dealing
with sample 5. Since when user draw the broken lines too
small, it will make curvatures of points on the corner be
comparatively bigger, and results it to be recognized as arc.
We argue that these kinds of mistakes can be avoided if we
explain to users the range we can handle before experiment.
Figure 10 shows some examples of the correctly segmented
strokes and some failed examples (Small round circles are
the segment points, and primitives are displayed in different
color).

(a) recognition result of false positive.

(b) recognition result of false negative.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

user1 user2 user3 user4 user5 user6

F
al

se
_P

os
iti

ve

baseline method

our approach

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

user1 user2 user3 user4 user5 user6
F

al
se

_N
eg

at
iv

e

baseline method

our approach

Figure 9. Recognition results.

We found that the performance on 1-8 is a little better than
on 9-12. This is due to the fact that most users will draw a
shape according to the template, but the drawing of digitals
and characters will be influenced by more subjective
factors. Again, the symbols themselves are not made up of
regular arcs, which is another cause of over-segmentation.
However from the experiment we realize that due to the
management of context, our method can achieve better
results for smooth strokes.

As for processing time, HMM-based methods has a
computation complexity of O(N2T). N is the number of
states and T is the length of the observations. During our
experiment, the average processing time of each stroke is
247.0833 milliseconds. Compared with their drawing
interval 2391.917 milliseconds, we believe it can meet the
requirements of real-time processing.

(a) Successfully fragmented examples

(b) Fail to segment examples.

Figure 10. Recognition examples.

6. CONCLUSION
In this paper, we propose an HMM-based stroke
fragmentation paradigm. This is the first attemp at trying to
build a model on stroke level. Our model can represent an
arbitrary stroke composed of lines and circular arcs. As no
priori knowledge is needed, it can be easily adapted to other
applications. Besides, our approach can do segment point
location and primitive type determination simutaneously.
Since it utilize both the local and global contexts, it can
efficiently deal with smooth strokes that can not be handled
properly by other approaches. The preliminary experiments
verify that it cannot only be used to compress data, but also
at the same time preserving its geometry characteristics.

We believe context is good to do stroke fragmentation. But
on the other hand it sometimes may bring problems. Due to
the inconsistency between the continuity in computation of
curvature and the discontinuity of curvature between
primitives, some short segments in the broken line will be
recognized as arcs, which causes the recognition rate of
lines to be decreased. Hence, further research can focus on
utilizing context information more rationally. Moreover, as
sketches are ambiguous in nature, the hand drawn pictures

may deviate from users’ exact purpose, so some more
reasonable measurements are urgently needed to evaluate
the performance of a stroke fragmentation system.

ACKNOWLEDGMENTS
We thank Pierre-Michel Lallican and Sylvain Togni of
VisionObjects Company for their helpful suggestions.

REFERENCES
1. Calhoun C., Stahovich T.F., Kurtoglu T. and Kara L.B.

Recognizing multi-stroke symbols. In Proc. AAAI
Spring Symposium 2002, Sketch Understanding, AAAI
Press, 15-23.

2. Cates S. and Davis R. A new approach to early sketch
processing. In Proc. of Making Pen-based Interaction
Intelligent and Natural, AAAI Press(2004), 29-34.

3. Henry D. and Wardhani A. Diagram recognition using
hidden markov models. Technical Report, Faculty of
Information Technology, Queensland University of
Technology, 2003.

4. Hse H., Shilman M. and Newton A.R. Robust sketched
symbol fragmentation using templates. In Proc. IUI
2004, ACM Press(2004), 156-160.

5. Kim D.H. and Kim M. A curvature estimation for pen
input segmentation in sketch-based modeling.
Computer-Aided Design 38, 3(2006), 238-248.

6. Marcel, S., Bernier O., Viallet J.E. and Collobert, D.
Hand gesture recognition using input-output hidden
markov models. In Proc. of the 4th IEEE International
Conference on Automatic Face and Gesture
Recognition, IEEE Press(2000), 456 – 461.

7. Rabiner L.R. A tutorial on hmm and selected
applications in speech recognition. Proceedings of the
IEEE 77, 2(1989), 257-286.

8. Sezgin T.M. Feature point detection and curve
approximation for early processing of free-hand
sketches. Master Thesis of MIT, 2001.

9. Sezgin T.M. and Davis R. Sketch interpretation using
multiscale models of temporal patterns. IEEE Computer
Graphics and Applications 27, 1(2007), 28-37.

10. Tay Y.H., Lallican P.M., Khalid M., Viard-Gaudin C.
and Kneer S. An offline cursive handwritten word
recognition system. In Proc.of 10th IEEE Region
International Conference on Electrical and Electronic
Technology, IEEE Press(2001), 519-524.

11. Yu B. Recognition of freehandn sketches using mean
shift. In Proc .of IUI 2003, ACM Press(2003), 204-210.

