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Stroke Fragmentation based on Geometry Features and Hidden
Markov Model

Guihuan Feng, Christian Viard-Gaudin, Technical &#adRCCyN Nantes/IVC

ABSTRACT

Stroke fragmentation is one of the key steps in-lpesed
interaction. In this letter, we present a unifieM-based
stroke fragmentation technique that can do segmeint
location and primitive type determination simultansly.
The geometry features included are used to evaloat
features, and the HMM model is utilized to meastire
global drawing context. Experiments prove that thedel
can efficiently represent smooth curves as welktaskes
made up of arbitrary lines and circular arcs.

Keywords
Pen-based interaction, stroke fragmentation, hiddarkov
model, hand-drawn sketch.

1. INTRODUCTION

Stroke fragmentation is a perceptual analysis kf lintries
to cluster stroke points into geometrically salipritnitives,
such as line segments and circular arcs [4]. Tlereo
doubt that it is one of the key steps in pen-basexiaction.
First, computation based on raw points will be a¢edi and
time consuming; second, comparatively, primitiveatain
more meaningful geometry information than points @b
last, experiments proved that robust stroke fradeiiem
shall improve the performance of sketch understandi
systems [5]. Whereas, due to the informality oftches
and users’ inadaptability to the input devices,olsr
fragmentation still remains to be a challenge.

Segment point location and primitive type deterriora
are the two main issues in stroke fragmentatiomniat
point location aims at figuring out how many segisesre
there and where are their starting and ending goemd
primitive type determination is used to label eadhthe
segments. Most existing works [1,5,8,11] are baead
curvatures and speeds, points whose those valedsow

applications, such as speech recognition [7], gestu
recognition [6] and handwritten document undersiand
[10]. However, relatively little work has focusedn o
applying HMM in sketch recognition. We believe tlitais
because temporal information of sketch is not &misbas
that of the handwritten characters. Henry and Wamd[8]
proposes to use chain-code like features to rezegni
isolated symbols. Corners here are detected sirbply
direction change, and it can only deal with lin@nives,
while our approach can recognize strokes of batbsliand
arcs. Sezgin and Davis [9] use HMM to do sketctsipar
Their method can group strokes and recognize elastec
into a distinct symbol through learning of usersawling
styles. Similarly, the method works on symbol lex&ihce
the drawing patterns vary between users, it isadilf to
extend to other applications and new symbols. Cates
Davis[2] present an early sketch processing teclanitpat
uses both Markov random field (MRF) and belief
propagation to do fragmentation. Their graphicalded
based approach can incorporate context. In his wemkh
stroke is represented separately as an MRF, buimouglel
can be used to represent all kinds of strokes.

Although different people may scribble the samepshia
different strokes and different orders, drawing siktch
itself is temporal related. And we believe the dregv
context can help to do fragmentation. In this papes
present an HMM model that can represent all kinfls o
strokes making up of lines and arcs. Stroke fradatiem is
done by finding out the optimal path of the inpuithw
respect to the model. The contributions of our kwor
include: 1). We introduce a model that can be uted
represent any arbitrary stroke composed of lined an
circular arcs; 2). The model is domain-independirdoes
not need any priori information about the consiitutof the
stroke. Therefore, it can be easily adapted to rothe

a given threshold are taken as segment points. Thepplications; 3). Segment point detection and pivei

differences lie only on the selection of the filbgr
techniques. Such methods are easy to be implemeanigdd
they perform well in many applications. But as tHiegus
only on local contexts, sometimes may be susceptibl
over- and under- segmentation of strokes. Furthegmio
cannot deal with smooth curves, such as “J” and, “S”
correctly. Although Hse combines the two issuestiogr
by Dynamic programming (DP) algorithm [4], as the
approach is based on symbol recognition, it's dliffi to
extend in both type of the stroke and type of syimbo

Hidden Markov Model was first introduced in 1960s. it
is especially good at modeling sequential and teaipo
phenomena, it has received many achievements

shape approximation are achieved simultaneouslyidBs,
as it uses both local and the global context, it da@al with
smooth strokes properly. In section Il, we introglute
states and the model definition. Features and pitifya
density functions (PDFs) are presented in sectilorifter
evaluating the effectiveness of the proposed methaxl
conclude the paper in section VI.

2. DEFINITION OF HMM MODEL AND STATES

2.1 Hidden State Definition
For most pen-based application areas, we beliees land
circular arcs are enough to describe a shape. Heos,

innclude either open or closed circles. In our apphy lines



are grouped into 8 clusters according to theirdtiioas; for

arcs, they can be divided into arcs on clockwiseleiand
anticlockwise circle, based on their orientatioas,shown
in Figure 1. We call all these stateS-¢7°) basic states.
They allow to model the basic primitives used tsige a
sketch. These different states will produce eadiffarent

primitive, while some are quite similar, as fortarsce §

and 18, which will differ only by the curvaturelwa. To

use these generative models to carry out the segtien

we will have to define what are the local obsevagi They
should be linked of course to local directional andvature
features. Some other state&*{g™ will be introduced later;
they will be useful to model the switching betwethe

basic models.

Figure 1. Definition of primitives and states

2.2 Model Definition and Parameter Selection

In order to construct a model that can represemkes
constituted of arbitrary lines and arcs, we have
concatenate all the states listed above. Figurs@ays an
intuitive solution. With this ergodic model, it possible to
switch from one state to any others. Here all tlages are
treated equal, not only probabilities of each statestart
from, but also probabilities of transition from ostate to

be assigned to any of the basic states. Up to tatesare
allowed, due to the irregularity of sketches ane émrors
imported in resampling.

Model of clockwise arc (A)

q Model of anti-clockwise arc (B)

Model of lines in diff. dir. (C)

<

Figure 3. A sketch map of our model.

Model of anticlockwise circle (model B) is given igure
4. As for model defined in Figure 2, it can startlastop at
any state; but the difference is that there arecifipe
transitions connecting adjacent states, which a®d uo
ensure the continuity of the drawing of arc. Modiel
clockwise order is analogous.

Figure4. Moded of anticlockwisecircle.

Figure 5 displays the connectivity of the line miogeodel
C). In addition to the 8 basic line states (q163)qhere are
some special states (g26- q32) used to model thrspon

another. Notice that'@nd (ﬁare visual states. They can not the corner when two distinct lines intersect wisttle other,

emit any observation but are used for concatenatin

purpose. Implementation of this model is easy, iamén
represent strokes made up of arbitrary primitivébe
problem lies in that it denies the consistency leetwstates

g%]or instance 26 models the connection between an

orizontal line (q16) and a 45° line (q17), (fomsiicity,
states between other line states are omitted, lcthare is
a total of 8x 7 additional states). Curvature measurements

of the same primitive. Since when drawing an arc infor these connection states will be relatively high

anticlockwise order, 'twill always follow d. It implies that
the transition cost from°qo g should be smaller than the

(computation of curvature can be found in sectid, |
almost equal to that of an arc, although the cpoeding

others. In addition, hand drawings are informal and POint are actually on a line segment. These adtitistates

ambiguous in nature. Model in Figure 2 seems tkite of
noise sensitive.

Figure2. Generic ergodic model.

We propose the model shown in Figure 3. It is cosepoof
3 parts, i.e. model of clockwise circle (top), mbaddé
anticlockwise circle (middle) and model of lines &
different directions (bottom). Similarly,®ds non-emitting
state, whereas’jand §° can emit all the observations with
the same likelihood. State 24 and 25 are used &ateffing
connecting points between two distinct primitiv8$hese
points usually have particular geometry featured @annot

will be more specific than states 24 and 25 in Figa,
which can emit all the observations without anyfgmence,
whereas these additional states are defined tosfocua
specific situation, they will give a higher probiilyi for

points on the corner compared with states 24 and@%s
to provide a better performance.

Fiaure5. Modé of linesin different orientations.

In most cases, parameters of the HMM model areirudda
through training. Here, all the parameters we wwedased



on either prior knowledge or strict mathematicadwtion.
For simplicity, we make the following assumptiofiigst,
probabilities of each basic staté-f°) being the first state
are all the same; second, self-transitions have stirae
value than transition to the following state (ata@tas only);
third, transition probabilities from each basictst#o the
corner state-4, are identical.

Apart from the transition probabilities, we havesalto
define the observation probabilities. From everinfsyp; of
the sketch, we will derive an observatiorbased on a set
of 4 featureqfy, f,, f3, f4). They are presented in the next
section, which will allow the computation of th&diihood

of the observatiom; emitted by the HMM. As we assume
the independence of features, the global pdf vélldiefined

by :

pdf (g IqJ)=H pdf (f, [q') (1)

3. FEATURE COMPUTATION

3.1 Feature Selection

(b) llustration of the features.

Figure 6. Expression of feature computation and their
physical meanings.

Size of window should balance between lines and.arc
Ordinarily, the bigger the window is, the more insiéive it
will be to the noise. Yet at the same time, it magult in
over-smoothing due to the inappropriate use ofednbn
the other side, a smaller window will be less rapasd
less discriminative, but more precise. In our systere use

Two main features have been considered, namelyl locaa window of size 5 points after resampling, whehne t

direction and local curvature. They will allow
distinguishing the different states of the moddisrections
are easy to be computed. As for lines, directiop, & that

of line p.pi+1; and for arcs, it can be proved that after
resampling direction of the tangent line ¢figpthe same as
that of line pipPi+1.

Cosine and sine value of the slant angle of lingp can
be described with the coordinates of these twotppimhile
definition and computation of curvature is much elor
intricate. When dealing with discrete data, curveguare
always computed according to the distribution ofnf®
falling into a given area. Here, we denote cunatas the
distance of the point to the chord of its neighlomyir
window. For points on a line, the distance will mall,
nearly zero; while for points on an arc, the vaié be
relatively bigger. Figure 6 illustrates the expressand
their physical meanings.. Moreover, curvature ¢gesd. It
can be either positive- when drawn in clockwiseeoyrar
negative- when in anticlockwise order.

. — )§+1_)§—1
f, =cosp =
' \/()ﬁ+1_)§—1)2+(yi+1_yi—1)2
f,2sing = Y~ Vi

\/()ﬁu - )9—1)2 + (yi+1_ yi—1)2
f, = curvature(p,) = h = distance(p,, p._, p.,,)
f,=¢=m-angle(p_,p, PP.1)

(a) Expression of feature computation.

resampling step is chosen to be adapted to thelskself
after an analysis of the stroke lengths histogram.

Besides direction and curvature, we import another
measurement, namely direction change. It can as@aken

as an evaluation of the curvature. As the compriatif f,
takes into account of only the two neighboring p&imwe
believe it can help to balance the influence of tooch
context raised by curvature.

3.2 PDF definition

Definitions of pdfs are based on the most widelgdis
Gaussian distribution. Takie of q'° for example, its slant
angle ranges betweenn/8, n/8]. When being in Y the
likelihood of f,is maximum when the angle is zero; as it
extends to both sides, the likelihood decreasedugithy.
The smaller the deviation is, the bigger the pdfai,
since function |sin(x) — sin(0)| is symmetric in/8, /8],
hence the pdff, of q'° is like Figure 7(a): it achieves the
maximum value in sin0, and is symmetric to bottesjdAs
for f, of g, the angle starts from'8 to 3u/8, withn/4 being
the center. Because |cos(x)-cd4]| is asymmetric on the
two sides oft/4, so the pdff, of g is a combination of
two gaussian curves (shown in Figure 7(b)). It eebs the
peak value in cos(4) and decrease to both sides.
Moreover, value of cos(8) and cos(®/8) are identical.
Pdfs of the other states, and pdfs of directiomgkecan all
be defined in the same way.



pdf_16_f2

(a) pdf_sine of statel6. (b) pdf_nesif state

curvature(x)

(c) pdf_curvature definition.

Figure 7. Examples of pdf definition.

Concerning the pdfs of curvature featfyethere are three
different functions according to which state is cemed.
Funcl is for arc states with positive curvatureueal (§-
q™), Func2 is for arc states with negative curvat(eds)’),
and Func3 is for all the line states%q?®). Since the bigger
the radius is, the less the curvature will be. Haaveif the
radius is big enough, it will be difficult to distjuish lines
from arcs with only the curvature. Therefore, wastaaint
the radius of circle range from 10 to 50 resamméts
respectively, and we believe it is enough for mafsthe
applications. Through experiment, we notice thavatures
of lines remains in the range [-d/8,d/8], and frggometric
constraints due to how h is computed, it is bounioed[-
2d, 2d], with d being the resampling distance. Fégu(c)
gives the definition of pdff;. Here, we show only funcl
and func3. Func2 is symmetric with funcl with resp®
the y-axis. From Figure 7(c), the bigger the cumat the
smaller func3 will be. But as when two lines ingsiswith
each other, points on the corner will have a bivature,
which means for line states it should also emitig b
curvature. So during computation, when curvature
beyond a threshold, func3 will
comparatively bigger value.

4. STROKE FRAGMENTATION

Pen-based devices are usually based on
sampling. Computation on the original data will &i¢gher

time consuming or noisy. Hence, we introduce rediaigp
to separate strokes into equally distributed segenerhe
resampling distance will be critical for fragmeitat As

be assigned with a

for lines, the distance is the smaller the be&erce under a
tiny distance, a small fluctuation will not influesm much
for the curvature. But for arcs, points fall intsmall area
will look like those on lines. Besides, it will euch easy
to preserve consistency of an arc if the resamplistance
is bigger. At this stage it is important to defimesampling
distance which will be related to the scale of sketch and
not to the parameter of the device.

Since for HMM, each pattern should have at leash %
observations, we finally define the resampling atise to
obtain these number of points for the smallest iries
based on an estimation of their length..

The process of HMM-based stroke fragmentation ae a
follows. First, resampling is introduced to get tiea
points; then points are transferred into model gaczable
observations through feature computation. The ¥Witer
algorithm is employed to output the optimal staguence.
Take an “L” like stroke for example, based on owdel,
the output of the segmentation will be somethiikg 22,

., 22, 68, 16, ..., 16". The last stage of this segtation
method is a post-processing, which aims at finéatuthe
localization of the segmentation points, and anioojd
color label can be assign to visually assess thdtseof the
segmentation. First, in the previous example, p6&will
be taken as the candidate segment point, and kieepdint
having the maximum curvature nearby is selectdoketthe
final result. We do not take the point correspogdim 68
to be the exact segment point, because we canachmfee
that after resampling points will cover all the Ireagment
points. But we can be sure that the real segmentyare
in the neighborhood of the feature points. At labie
different types of primitives are displayed in difént color.

5. SYSTEM EVALUATION

We selected several examples from the existingkstro
fragmentation researches to evaluate the perforenahour
approach. During selection, we try to avoid thdsa ttan
have different segmentation results. Besides weeddd
example 9-12, to test the usability of our method
segmenting handwritten digitals and charactersureigd
lists all the examples. Small circles indicate thal desired
segment points. As the start point and the endtpaie
treated as segment points automatically, they ave n
included in our evaluation.

K@Wﬁ%@iiw
o => AU B

isochronal ®) a @@

Figure8. Samples used in our experiment

We asked 6 people to draw the examples. Before
experiment, we first introduced them the input deyiand



then ask each of them to sketch freely for aboutO5-
minutes to learn how to use it as naturally as ma paey
are told the purpose of our experiment and priragithe
system can recognize, in order they will not drao t
casually. People are asked to draw each of the grath
times discontinuously. There is no constraint abthd
direction and the size. But as some of the drawargsfar
from the objective, in order to guarantee the \ieyaaf the
evaluation, they are unused. At last, we got 588dva
samples, which are all used for testing.

Model shown in Figure 2 is implemented to serveaas
baseline approach. Experiment results are givétigare 9.
The two measurements are false-negative rate ded-fa
positive rate. The definitions are given below.

false_positive= no# _accepted _ false _segment _p.OI nt x100%
no#_all _accepted _segment _point
false_negative= no# _regected _true _segment _point x100%

no#_all _true _segment _point

From the experiment it can be seen that for aluers, our

False_Positive

gative

False_Ne:

userl user2 user3 user4 users user6

approach has achieved a better performance than the

baseline method. The false negative rate in ourcauh is
very low, less than 1%. It means our system ca@atéoc
almost all the real segment poin®hile the false positive
rates vary between useie found that most of the false
positive occurs when an arc is over segmented, hwisic
also the cause of low recognition rate of arcs.HA$M-
based recognition tries to find out the optimal chatg

(b) recognition result of false negative.

Figure 9. Recognition results.

We found that the performance on 1-8 is a littladrethan
on 9-12. This is due to the fact that most usetsdraw a
shape according to the template, but the drawingjgifals

with model based on dynamic programming. So if userand characters will be influenced by more subjectiv

draws a long and flat segment when sketching anthec
probability of recognizing it as a line is far mobégger

than that of an arc. This argues that users’ drgwray
deviate from their exact intention. Some otherdaissitive
happens if there is a big direction change whemvithg a

straight line. Further, our method has a poor perémce
on user2, this is because most arcs he drew haexdad
our predefined scope. False negative arises whalinde
with sample 5. Since when user draw the brokerslioe

small, it will make curvatures of points on the roer be
comparatively bigger, and results it to be recoeghias arc.
We argue that these kinds of mistakes can be asadidee

explain to users the range we can handle beforerimpnt.

Figure 10 shows some examples of the correctly satgd
strokes and some failed examples (Small roundesrele
the segment points, and primitives are displayediffierent

color).

factors. Again, the symbols themselves are not nugdef
regular arcs, which is another cause of over-setmtion.
However from the experiment we realize that dudhi®
management of context, our method can achieve rbette
results for smooth strokes.

As for processing time, HMM-based methods has a
computation complexity of O@). N is the number of
states and T is the length of the observationsinguour
experiment, the average processing time of eadkestis
247.0833 milliseconds. Compared with their drawing
interval 2391.917 milliseconds, we believe it caeemthe
requirements of real-time processing.



may deviate from users’ exact purpose, SO some more
reasonable measurements are urgently needed toasval
the performance of a stroke fragmentation system.
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