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We extend the concept of classicality in quantum optics to spin states. We call a state �classical�
if its density matrix can be decomposed as a weighted sum of angular momentum coherent states
with positive weights. Classical spin states form a convex set C, which we fully characterize for a
spin�1/2 and a spin�1. For arbitrary spin, we provide �non-classicality witnesses�. For bipartite
systems, C forms a subset of all separable states. A state of two spins�1/2 belongs to C if and only
if it is separable, whereas for a spin�1/2 coupled to a spin�1, there are separable states which do
not belong to C. We show that in general the question whether a state is in C can be answered by
a linear programming algorithm.

PACS numbers: 02.40.Ft, 03.67.-a, 03.67.Mn

I. INTRODUCTION

The question of the classicality of quantum states has
regained interest with the rise of quantum information
theory [1]. Stronger�than�classical correlations between
di�erent systems are an important resource for quan-
tum communication protocols, and the existence of large
amounts of entanglement has been shown to be neces-
sary for a quantum computational speed-up [2, 3]. How-
ever, even for a single system the question of classical-
ity is important. Historically the question goes back to
two seminal papers in quantum optics by Sudarshan and
Glauber [4, 5], who introduced the Glauber�Sudarshan
P�representation for the states of a harmonic oscillator.
This representation allows to decompose the density ma-
trix in terms of coherent states of the harmonic oscilla-
tor. For a single coherent state, the weight function of
the P�representation (called P�function in the following
for short) reduces to a delta function on the phase space
point in which the coherent state is centered, and the dy-
namics of the P�function is exactly the one of the clas-
sical phase space distribution. It has therefore become
customary in quantum optics to consider states with a
positive P�function as classical. Several other criteria
can be derived from this requirement. Using Bochner's
theorem for the Fourier transform of a classical probabil-
ity distribution [6], Richter and Vogel derived a hierarchy
of observable criteria based on the characteristic function,
which are both necessary and su�cient for classicality [7].
This led to a recent demonstration of the negativity of
the P�function in a quantum optical experiment [8]. Ko-
rbicz et al. realized a connection of the positivity of the
P�function to Hilbert's 17th problem of the decomposi-
tion of a positive polynomial [9]. Since the P�function
for a continuous variable system can be highly singular, a
lot of attempts to de�ne classicality have been based on
other quasi-probability distributions [10] as well, notably
the Wigner function [11, 12].
These quasiprobability distributions for the harmonic

oscillator [10] have analogs for �nite�dimensional angular
momentum states [13]. The Wigner function for �nite�

dimensional systems has received a large amount of at-
tention, ranging from questions of its most appropriate
de�nition [13�17], over classicality criteria [18, 19], to
the importance of its negativity for quantum computa-
tional speed-up [20] (see also for further references con-
cerning the historical development of the Wigner func-
tion for �nite�dimensional systems). Surprisingly, the
P�function for �nite�dimensional systems has been much
less studied, in spite of its attractive mathematical prop-
erties. The P�function for a system with a �nite�
dimensional Hilbert space (i.e. formally a spin system)
allows to decompose the density matrix in terms of an-
gular momentum coherent states [21]. It can always be
chosen to be a smooth function, expandable in a �nite
set of spherical harmonic functions [13]. In contrast to
the case of the harmonic oscillator, questions concerning
the existence of the P�function (or its nature as a dis-
tribution or worse) do therefore not arise. This idyllic
situation is somewhat perturbed, however, by the fact,
already observed in [21], that for a spin system a large
amount of freedom exists in the choice of the P�function,
as it depends on two continuous variables on the Bloch
sphere, whereas the density matrix for a system with
d�dimensional Hilbert space is speci�ed by d2 − 1 real
independent entries.
In this paper we show that the existence of a P�

representation of the state of a spin system with a posi-
tive P�function is a meaningful concept which allows to
de�ne the classicality of states of �nite�dimensional sys-
tems in a natural fashion, completely analogous to the
classicality of the harmonic oscillator states of the elec-
tromagnetic �eld. We shall call the corresponding states
�P�representable�, or P�rep for short. The set C of P�
representable states form a convex domain in the space of
density operators, containing the completely mixed state
in its interior. We show that, surprisingly, all states of a
single spin�1/2 are P�rep, and obtain an analytical cri-
terion for P�representability in the case of a spin�1. For
bipartite systems, the set of P�rep states is a subset of
the set of separable states. For two spins�1/2 the two sets
coincide, whereas already for a spin�1/2 combined with
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a spin�1, there are separable states which are not P�rep.
We also show that the problem of deciding whether a
given state is P�rep can be solved numerically by linear
programming.
In the following we will �rst motivate and de�ne P�

representability, then study simple cases of small spins,
introduce a variational approach that gives rise to a lin-
ear programming algorithm, and �nally have a look at
composite systems. We also develop some necessary con-
ditions for P�representability based on measurable ob-
servables, which may thus serve as �non�classicality wit-
nesses�, an extension of the by now well-known concept
of entanglement witnesses [22].

II. DEFINITION OF P�REPRESENTABILITY

A. Coherent states

We �rst set some notations following the lines of [13].
Angular momentum coherent states are de�ned as eigen-
states of J2 and n.J with eigenvalues j(j + 1) and j,
respectively, where n is a unit column vector which spec-
i�es the quantization axis with polar angle θ and azimuth
ϕ, and J is the familiar angular momentum operator with
components Jx, Jy and Jz. The transpose of the column
vector n reads

n (θ, ϕ)
t
=(sin θ cos ϕ, sin θ sin ϕ, cos θ) .

An angular momentum coherent state can be expanded
in terms of the states |jm〉 quantized on the z axis as

|θϕ〉 =

j∑

m=−j

√(
2j

j + m

)

×
(

sin
θ

2

)j−m (
cos

θ

2

)j+m

e−i(j+m)ϕ |jm〉 .

The coherent states form a complete, although not or-
thogonal, basis set of normalized states within the space
of the eigenfunctions of J2 with given j, and

2j + 1

4π

∫
sin θdθdφ |θϕ〉 〈θϕ| = 12j+1, (1)

where 12j+1 is the (2j + 1)�dimensional identity matrix.
We shall use the shorthand α = (θ, ϕ) and denote dα =
sin θdθdφ. The coherent state |θϕ〉 associated with the
vector n will be denoted |n〉 or |α〉.

B. P�representation

The P�representation of a density operator ρ is an ex-
pansion over the overcomplete basis of coherent states.
This expansion reads

ρ =

∫
dαP (α) |α〉 〈α| , (2)

where the P�function P (α) is real and normalized by the
condition

trρ =

∫
dαP (α) = 1 . (3)

If P (α) is non-negative then ρ is a classical mixture of
pure coherent states with probability density P (α), and
can therefore be considered as classical. In this case we
shall say that ρ is P�representable, or �P�rep� for short.
This de�nition has to be made more precise consider-

ing that P (α) is not uniquely determined by the density
operator. To show this, consider the multipole expansion
of ρ,

ρ =

2j∑

K=0

K∑

Q=−K

ρKQT̂KQ, ρKQ = trρT̂ †
KQ, (4)

T̂KQ =

j∑

m1,m2

(−1)j−m+QCKQ
jm1jm2

|jm1〉 〈jm2| (5)

where CKQ
jm1jm2

are the Clebsch-Gordan coe�cients as
[23]. Expanding the P�function as a sum of spherical
harmonics,

P (α) =

∞∑

K=0

K∑

Q=−K

PKQYKQ(α),

one obtains a one-to-one relation between the coe�cients
of the two expansions for 0 ≤ K ≤ 2j,

ρKQ = PKQ

√
4π

(2j)!√
Γ(2j − K + 1)Γ(2j + K + 2)

. (6)

If K > 2j the Euler Gamma functions in the denomina-
tor become in�nite; consequently regardless of PKQ the
respective ρKQ will be zero. It means that the choice of
such PKQ is totally arbitrary. However, non-negativity
of a P (α) for one choice of PKQ with K > 2j may be
absent for another choice. Here is a simple example.
Let the density operator be a projector on a coherent
state, ρ = |α0〉 〈α0|. An obvious P -function in this case
is δ(α − α0); it can be considered non-negative since it
can be approached by a sequence of non-negative func-
tions, like Gaussians with decreasing width. An alter-
native choice however would be to drop all non-physical
terms in P with K > 2j, replacing the δ-function by a
�nite linear combination

P (α) =

2j∑

K=0

K∑

Q=−K

Y ∗
KQ(α0)YKQ(α)

which is not non-negative for all �nite j (its tail away
from the maximum at α = α0 oscillates around zero).
In view of the non-uniqueness of P (α) we reformulate

the de�nition of P�representability demanding that the
condition P ≥ 0 must be ful�lled at least for one partic-
ular P (α). Under this de�nition the pure coherent state
ρ = |α0〉 〈α0| will be P�rep, which is intuitively reason-
able. We are thus led to the following de�nition:
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De�nition 1 A density matrix ρ is called P�rep if it can
be written as a convex sum of coherent states, i.e. as in
Eq. (2) with a non-negative function P (α).

Spin�j coherent states are the states with the smallest
quantum uncertainty and are in this sense the most clas-
sical pure states. Their relative uncertainty ∆Ji/j scales
like 1/

√
j. In the classical limit ~ → 0 (or equivalently,

j → ∞), the phase space volume occupied by these states
shrinks to a single point [24]. P�rep states are classi-
cal mixtures of these most classical states. In analogy
to quantum optics, we therefore call P�rep states �clas-
sical states�. Alternative aspects of �classicality� have
been introduced in di�erent contexts, such as quantum
computation [18], or quantum non�locality [25]. In the
former case, classicality is related to the e�ciency of clas-
sical simulability. In the latter case classicality is related
to the absence of stronger�than�classical correlations be-
tween observables of di�erent subsystems. However, the
latter de�nition can only be applied to systems where dif-
ferent subsystems can be distinguished, and even in the
absence of such correlations, quantum �uctuations might
still be very large. We will come back to relation between
these di�erent notions of classicality below.
Let us now derive some simple consequences of our

de�nition.

C. Consequences

Let V be the vector space of (2j+1)×(2j+1) hermitian
matrices. The scalar product 〈X,Y 〉 = trX†Y de�nes an
operator norm ||X|| =

√
trX†X on V. We denote by

N the subset of non-negative density matrices, and by
C the subset of P�rep states. The boundaries of these
sets are respectively denoted ∂N and ∂C. The following
statements follow immediately from the above de�nition:

1. The totally mixed state ρ0 ≡ 1
2j+112j+1 is P�rep,

which is readily seen from Eq. (1) taking P (α) =
1/4π.

2. The set C of P�rep states is the convex hull of the
set of coherent states. In particular, it is a convex
set.

3. Since all P�rep states are non-negative (but not
vice versa) we have C ⊆ N ⊆ V.

4. According to Carathéodory's theorem on convex
sets applied to the (2j + 1)2�dimensional vector
space V, any non-negative Hermitian matrix can be
represented as a convex sum of at most (2j+1)2+1
projectors onto coherent states. In the case of
density matrices subject to the condition trρ = 1
this number is decreased by 1. Finding a P�
representation for a state ρ is thus equivalent to

�nding real non-negative coe�cients λi and coher-
ent states |αi〉 such that

ρ =

(2j+1)2∑

i=1

λi|αi〉〈αi|. (7)

5. A pure state is P�rep if and only if it is a coherent
state.
Proof. The �if� part is trivial. For the �only if�
part, assume that a state ρ is P�rep, i.e. that there
exists a decomposition such as in (7). We have
trρ2 =

∑
i,j λiλj |〈αi|αj〉|2 ≤ (

∑
i λi)

2
= 1, where

equality occurs only for |〈αi|αj〉| = 1 for all i, j.
The latter condition can only be ful�lled if there is
a single term in the sum. Thus a pure P�rep state,
for which trρ2 = 1, has to be a coherent state.

6. Any density matrix can be decomposed as a sum
of the totally mixed state ρ0 and a traceless hermi-
tian operator ρ̂ with trace norm one multiplied by
a positive real parameter κ,

ρκ = ρ0 + κρ̂. (8)

Since C is convex, there is, for any given direction
ρ̂, an extremal value κe of κ such that ρκ ∈ C if
0 ≤ κ < κe and ρκ /∈ C if κ > κe. The states
ρ = ρ0+κeρ̂ form the boundary ∂C of P�rep states.
They belong to C provided we accept states ρ as P�
rep if they can be approximated in the trace norm
by a convex sum of coherent states, that is for all
ε > 0 there exists a positive function P (α) such that∣∣∣∣ρ −

∫
dαP (α) |α〉 〈α|

∣∣∣∣ < ε. With this extended
de�nition the set of P�rep states becomes compact.
In some directions the boundary ∂C may touch ∂N ,
e.g. when ρ = |α〉 〈α| is a pure coherent state.

7. ∂C is separated by a �nite distance from the state
ρ0. In other words, all density operators in some
�nite neighborhood of ρ0 are P�rep. To show it
let us choose P (α) containing only the mandatory
components with K ≤ 2j,

P (α) =
1

4π
+ P̂ (α) ,

P̂ (α) =

2j∑

K=1

K∑

Q=−K

PKQYKQ(α). (9)

The PKQ are bounded since they are related to the
coordinates ρKQ of ρ by (6) and trρ2 ≤ 1. As the
spherical harmonics are bounded on the sphere and
(9) is a �nite sum, there is an upper bound P̂e to
the non-trivial part P̂ (α) when ρ and α are varied.
Thus, all matrices ρ0 + κρ̂ with κ < 1/(4πP̂e) will
be P�rep.
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III. P�REP FOR SYSTEMS OF SMALL SPIN

In the case of a spin�1/2 or a spin�1, it is possible to
obtain a complete characterization of P�rep states.

A. Spin�1/2

We denote by σ =(σx, σy, σz) the vector formed by
the Pauli matrices. Together with the identity matrix 12

they form a basis of the space of 2 × 2 matrices. Any
2× 2 Hermitian matrix with unit trace can be written as

ρ =
1

2
(12 + u.σ) , (10)

and u is given by u = tr(ρσ). The matrix ρ is non-
negative if and only if |u| ≤ 1. A physical density ma-
trix ρ can thus be represented by a point inside the unit
sphere (the Bloch sphere). Matrices corresponding to
points on the unit sphere are pure states. Since for spin�
1/2 any pure state is a coherent state, the convex hull of
coherent states is the convex hull of pure states, which is
the set of all density matrices. Thus all states are P�rep.
It is straightforward to �nd an explicit decomposition

in terms of angular momentum coherent states by simply
diagonalizing ρ, which leads to the sum of two projectors
with two positive eigenvalues. Nevertheless, there is a
large freedom in choosing the coherent states. Accord-
ing to (7), �nding a P�representation for ρ amounts to
�nding positive real coe�cients λi and projectors on co-
herent states |αi〉〈αi| = 1

2

(
12 + n(i).σ

)
with |n(i)| = 1

such that ρ =
∑

i λi|αi〉〈αi|. Since the σi form a basis of
the 2×2 density matrices, this is equivalent to �nding λi

and norm-1 vectors n(i) such that

u =
∑

i

λin
(i). (11)

This can be trivially achieved e.g. by taking any pair of
points on the Bloch sphere such that the line joining these
two points contains the point representing u inside the
sphere.

B. Spin�1

Let us now consider a spin�1 density matrix. We shall
use the representation

ρ =
1

3
13+

1

2
u.J+

1

2

∑

a,b=x,y,z

(
Wab −

1

3
δab

)
JaJb + JbJa

2
,

(12)
where Ja are matrices of the angular momentum with
j = 1. The Ja and the (JaJb + JbJa)/2, together with
the identity matrix 13, form a basis of the vector space
V of 3× 3 hermitian matrices. Inverting relation (12) we
obtain

ua = tr (ρJa) , Wab = Tr ρ (JaJb + JbJa) − δab, (13)

which shows that u ∈R
3 while W is a 3×3 real symmetric

tensor with trace 1. The projector on a coherent state
|n〉, written in the form (12), reads

|n〉〈n| =
1

3
13+

1

2
n.J+

1

2

∑

a,b=x,y,z

(
nanb −

1

3
δab

)
JaJb + JbJa

2
.

(14)
According to (7), ρ is P�rep if and only if there exist
λi > 0 with

∑
i λi = 1 and coherent states corresponding

to vectors n(i) ∈ R
3 of length 1 such that

∑

i

λin
(i)
a = ua, (15)

∑

i

λin
(i)
a n

(i)
b = Wab,

(with a, b running over x, y, z). It turns out that these
equations admit a solution � and hence ρ is P�rep � if
and only if the real symmetric 3×3 matrix Z with matrix
elements

Zab = Wab − uaub (16)

is non-negative.
Proof. First let us assume that the Eqs. (15) do have a
solution. Then Z can be written

Zab =
∑

i,j

(λiδij − λiλj)n(i)
a n

(j)
b , (17)

and for any vector y ∈ R
3 we have

ytZy =
∑

i

λi

(
y.n(i)

)2

−
(

∑

i

λiy.n(i)

)2

≥ 0 (18)

since the weights λi > 0 sum to 1 and f(x) = x2 is a
convex function. Therefore Z is indeed non-negative for
all P�rep operators ρ.
Conversely, if Z ≥ 0, then it is possible to exhibit

a decomposition of ρ by �nding an explicit solution to
Eqs. (15). Let A be such that Z = AAt. If we denote by
t(i) the eight column vectors (±1,±1,±1) obtained from
all combinations of the ± signs, and de�ne

τ i = − utAt(i)

1 − |u|2 +

√

1 +

(
utAt(i)

1 − |u|2
)2

, (19)

then one can check that a solution to Eqs. (15) is given
by

n(i) = u + τ iAt(i) (20)

λi =
1

4

1

1 + τ2
i

, (21)

which proves that ρ is P�rep.
The necessary and su�cient condition Z ≥ 0 in the

case of spin�1 allows to characterize the boundary ∂C of
P�rep states. Indeed, let us consider a one-parameter
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family of states as in (8). If u and W are the vector and
matrix corresponding to the expansion (12) of the state
ρ0 + ρ̂, then the vector and the matrix associated with
ρκ = ρ0 + κρ̂ are given by

uκ = κu (22)

Wκ = κW +

(
1 − κ

3

)
13,

and thus the 3 × 3 matrix Zκ associated with ρκ reads

Zκ = κW +

(
1 − κ

3

)
13 − κ2uut. (23)

The value κ = κe at which the scaled operator ρκ ceases
to be P�rep corresponds to the smallest κ for which Zκ

has a zero eigenvalue. Thus κe is the smallest solution of
the equation detZκ = 0, and the equation of ∂C in the
vector space V is

κ2
eu

t

(
κeW +

1 − κe

3
13

)−1

u = 1. (24)

This equation gives implicitly the value κe for each di-
rection ρ̂ in the vector space V. As the examples of spin�
1/2 and spin�1 show, the proportion of P�rep matrices
among all density operators depends on j.
It is easy to �nd states of spin�1 which are not P�rep.

As mentioned in Sec.II C, all pure states which are not co-
herent states are not P�rep. For instance the state |1, 0〉
(in |jm〉 notation) can be visualized as a ring around the
equator on the Bloch sphere, which entails large �uctua-
tions of Jx and Jy well beyond the minimal uncertainty
imposed by Heisenberg's uncertainty relation [13].

C. Necessary conditions for higher spins

It is possible to derive more general necessary condi-
tions for P�representability of spin�j states, as follows.
Let us denote by Jt = t.J the spin operator in direction
t. For a coherent state |n〉 corresponding to a vector n,
the mean values of Jt and J2

t
are given by

〈n|Jt|n〉 = j t.n (25)

〈n|J2
t
|n〉 =

j

2
+ j

(
j − 1

2

)
(t.n)

2
. (26)

Any P�rep state ρ can be written as ρ =∑
i λi|n(i)〉〈n(i)|, which implies for the mean values of

Jt and J2
t
in the state ρ

〈Jt〉 = j
∑

i

λi t.n(i) (27)

〈J2
t
〉 =

j

2
+ j

(
j − 1

2

) ∑

i

λi

(
t.n(i)

)2

. (28)

Convexity of f(x) = x2 applied to the sums over i leads
to the inequality

2j〈J2
t
〉 − (2j − 1)〈Jt〉2 − j2 ≥ 0 ∀t, |t| = 1, (29)

with equality if and only if ρ is itself a coherent state.
This is a necessary condition for P�rep, valid for any j.
In the particular case of spin�1/2 this inequality becomes
〈J2

t
〉 ≥ 1/4, which is obviously true for all states ρ and

all directions t. In the case of spin�1 the inequality (29)
can be rewritten as
∑

a,b

(2〈JaJb〉 − 〈Ja〉〈Jb〉 − δab) tatb ≥ 0 ∀t = (tx, ty, tz), |t| = 1.

(30)
As can be seen from Eqs. (13) and (16), this inequality
exactly corresponds to the condition Z ≥ 0 derived in
the previous section.
For higher spins, one can similarly derive other neces-

sary conditions. For instance for a P�rep state of spin�
3/2, one has

〈J3
t
〉 =

21

8

∑

i

λi

(
t.n(i)

)
+

3

4

∑

i

λi

(
t.n(i)

)3

, (31)

and a necessary condition imposed by the fact that
|∑i λix

3
i | ≤

∑
i λix

2
i for any xi ∈ [−1, 1] reads

∀t, 2

∣∣∣∣〈J3
t
〉 − 7

4
〈Jt〉

∣∣∣∣ ≤
∣∣∣∣〈J2

t
〉 − 3

4

∣∣∣∣ . (32)

These necessary conditions can be considered as �non-
classicality witnesses�, as a state ρ is not in C if at least
one of these conditions is not ful�lled.

IV. NUMERICAL IMPLEMENTATION

A. Variational approach to P�representability

Suppose we are given a density operator and want to
establish whether it is P�representable. Let us use the
multipole expansion (4). The coe�cients PKQ with 0 ≤
K ≤ 2j will be de�ned by Eq. (6). Orthogonality of the
spherical harmonics implies that the hypothetical P (α) ≥
0 satis�es the integral equations

∫
P (α)Y ∗

KQ(α)dα = PKQ, 0 < K ≤ 2j, |Q| ≤ K,

(33)
together with

∫
P (α)dα = trρ = 1.

If we �nd any P (α) ≥ 0 satisfying these equations the
state in question is P�representable.
We can ask for more and try to �nd the representability

boundary for all matrices of the form ρκ = ρ0 + κρ̂ ob-
tained by scaling a given traceless normalized hermitian
matrix ρ̂. To that end, we consider the set of matrices
ρ0/κ + ρ̂, κ > 0. These states all have the same traceless
part ρ̂, thus they are represented by P�functions P (α)
that satisfy Eqs. (33) with PKQ corresponding to ρ̂, but
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with
∫

P (α)dα = 1
κ
. We look at the minimum of the

functional F [P ] ≡
∫

P (α)dα over these states. Suppose
that the minimum is realized by some function Pe(α) and
introduce κe through

min

∫
P (α)dα =

∫
Pe(α)dα =

1

κe

. (34)

The corresponding density operator ρκe
= ρ0 + κeρ̂ is

represented by the function κePe(α). As we pointed out
it means that all operators ρκ with 0 ≤ κ < κe are P�
representable and that ρe belongs to the boundary ∂C.

B. Concavity of 1/κe

The parameter κe corresponding to the border of P�
rep depends on the matrix ρ, such that κe = κe(ρ). Let us
take two matrices, ρI and ρII and calculate the respective
κe(ρ

I), κe(ρ
II). Consider now a convex combination

ρ(c) = cρI + (1 − c)ρII , 0 < c < 1.

Then
1

κe(ρ(c))
≤ c

κe(ρI)
+

1 − c

κe(ρII)
,

i.e., 1/κe is a concave function of ρ. The proof is based
on Eq. (34). Let P I

e , P II
e be the functions minimizing∫

Pdα under constraints corresponding to the operators
ρI and ρII respectively. Then the function P (c) = cP I

e +
(1− c)P II

e will obey the constraints corresponding to the
operator ρ(c). Therefore we must have

1

κe(ρ(c))
= min

∫
P (α) dα ≤

∫
P (c)(α) dα

= c

∫
P I

e (α) dα + (1 − c)

∫
P II

e (α) dα

=
c

κe(ρI)
+

1 − c

κe(ρII)
,

which implies concavity of 1/κe. Thus the knowledge
of κe for two density matrices gives a lower bound for
a whole family of convex combinations of these density
matrices.

C. Linear programming

In order to numerically implement the variational ap-
proach described here, let us choose the trial P�function
in the form of a linear combination of δ-peaks

P (α) =

n∑

i=1

wiδ (α − αi) (35)

where the points αi = (θi, φi) are more or less uni-
formly distributed on the unit sphere, and wi ≥ 0 are

non-negative variational parameters; the delta-functions
are assumed to be normalized on the unit sphere,
δ (α − αi) = δ (cos θ − cos θi) δ (φ − φi). Inserting this
P (α) in (33) we come to the optimization problem: �nd
w = {w1, . . . , wn} with all wi ≥ 0, i = 1 . . . n, minimiz-
ing the sum

F (w) =

n∑

i=1

wi, (36)

and subject to M = (2j + 1)2 − 1 linear constraints
n∑

i=1

YKQ(αi) wi = PKQ, 0 < K ≤ 2j, |Q| ≤ K.

This is a problem of linear programming [26]. Its well-
known theorem states that whatever the number of un-
knowns n the minimum of F is realized on a solution
containing no more than M non-zero components. This
number is one less than predicted by Caratheodory's the-
orem because the solution is a boundary, not an internal,
point of the set of the density matrices P -representable
by (35). The minimum found numerically for a given
n yields an upper bound on the exact value of 1/κe

(Eq. (34)), i.e., the lower bound on the value of the scal-
ing parameter κ at the border of P�rep in ρκ = ρ0 + κρ̂.
The linear programming approach was numerically

tested and found e�cient for moderate values of j. For
a given ρ, the minimal value of κ−1 diminished fast with
the increase of n and was stable. On the other hand,
the solution w changed erratically with the change of n.
That was to be expected considering the freedom in the
choice of P (α).

V. COMPOSITE SYSTEMS

The de�nition of classicality can be extended to sys-
tems of more than one particle in a natural way. In the
present section we shall consider the case of two particles,
but the formalism generalizes to an arbitrary number of
particles.

A. Classicality for two particles

The P�representation of a density operator in the case
of two spins jAand jB ,

ρ =

∫
d2αAd2αBP (αA, αB) |αA〉 |αB〉 〈αA| 〈αB | (37)

with P ≥ 0 is possible for separable states only; con-
sequently P�rep is a su�cient criterion of separability.
The partially transposed matrices ρTA and ρTB are de-
�ned in a �xed computational basis |ij〉 ≡ |i〉A ⊗ |j〉B as
ρTA

ij,kl = ρkj,il and ρTB

ij,kl = ρil,kj . They are P�rep if and
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only if ρ is P�rep, and the corresponding P�functions
PTA and PTB are simply related to the P�function of
ρ by PTA(αA, αB) = P (α̃A, αB), α̃A = (θA,−ϕA), and
correspondingly for PTB . All previously considered equa-

tions are reformulated for two spins in a straightforward
manner; we shall list them without commenting.
The representation of ρ in terms of products of spher-

ical multipole operators reads

ρ =

2jA∑

KA=0

KA∑

QA=−KA

2jB∑

KB=0

KB∑

QB=−KB

ρKAQA,KBQB
T̂A

KAQA
T̂B

KBQB
, (38)

and we have the P�function expanded into products of spherical harmonics,

P (α) =

∞∑

KA=0

KA∑

QA=−KA

∞∑

KB=0

KB∑

QB=−KB

PKAQA,KBQB
YKAQA

(αA)YKBQB
(αB).

The relation between the coe�cients of ρ and P is given by
ρKAQA,KBQB

= PKAQA,KBQB

×4π
(2jA)! (2jB)!√

(2jA − KA)!(2jA + KA + 1)!(2jB − KB)!(2jB + KB + 1)!
,

and the density operator with a scaled non-trivial part by
ρκ = ρ0 + κρ̂,

ρ0 =
1(2jA+1)×(2jB+1)

(2jA + 1)(2jB + 1)
.

The following variational problem needs to be solved when the boundary of P�representability is to be found:
minimize the functional

F [P ] =

∫
d2αAd2αBP (αA, αB)

with P (αA, αB) ≥ 0 satisfying the integral equations
∫

d2αAd2αBP (αA, αB)Y ∗
KAQA

(αA)Y ∗
KBQB

(αB) = PKAQA,KBQB
, (39)

where KA,KB run from 0 to 2j excluding KA = KB = 0, and |QA| ≤ KA, |QB | ≤ KB . If the minimum of F is equal
to

Fe = min F =

∫
d2αAd2αBPe(αA, αB) ≡ 1

κe

,

then the density operator lying on the boundary of P�representability will be ρκe
.

For the numerical implementation, the integrals are now taken over a product of two unit spheres of Alice and Bob.
Let us choose the trial P�function as

P (αA, αB) =

nA∑

iA=1

nB∑

iB=1

wiAiB
δ
(
αA − αA

iA

)
δ
(
αB − αB

iB

)
(40)

where nA points αA
iA

and nB points αB
iB

are uniformly scattered over the spheres of Alice and Bob, respectively, and
wiAiB

≥ 0 are nAnB variational parameters. We now solve the linear programming task: minimize

F (w) =

nA∑

iA=1

nB∑

iB=1

wiA iB

with wiA iB
≥ 0 satisfying M = (2j1 + 1)2(2j2 + 1)2 − 1 linear constraints,

nA∑

iA=1

nB∑

iB=1

Y ∗
KAQA

(αA
iA

)Y ∗
KBQB

(αB
iB

) wiAiB
= PKAQA,KBQB

.

Here KA, QA,KB , QB take all possible values excluding KA = KB = 0. Again, the optimal solution contains no more
than M non-zero elements wiAiB

.
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FIG. 1: (Color online) Example of a set of classical states C for a bipartite system of two spins 1/2 and 1 parametrized by two
parameters, ρ = ρ

0
+ κ1ρ̂1

+ κ2ρ̂2
with some traceless ρ̂

1
, ρ̂

2
. Boundaries are shown of non-negativity of ρ (bold black line),

non-negativity of its partial transpose ρTA (dashed line), and of P�representability of ρ, ρTA (inner red line).

B. Two spins 1/2

Considering that the density operator of a single spin�1/2 is always P�rep it is easy to see that the density operator
for a system of two spins is P - rep if and only if it is separable. Consequently, the necessary and su�cient condition
of P�rep is given by the Peres-Horodecki theorem [27, 28]. It means that the boundary of P�representability in the
family ρκ = ρ0 +κρ̂ is reached when either ρκ or its partial transpose ρTA

κ ceases to be non-negative. This was checked
numerically in the linear programming approach: the minima 1/κe of the functional F [P ] calculated with the matrix
ρ and its partial transpose ρTA in all cases coincided with each other and agreed with the scaling necessary to shift
the smallest eigenvalue of either ρ or ρTA to zero. The optimal P was obtained as a combination of M = 15 coherent
states, some of them with very small weights.

C. Spins 1/2 and 1

In this case the separability and P�rep conditions do not coincide. Indeed consider for instance the pure product
state (in |jm〉 notation) |ψ〉 = | 12 1

2 〉⊗|10〉. Then the mean value of the operator 12⊗J2
z in the state |ψ〉 is 〈10|J2

z |10〉 = 0,
while using Eq. (28) one should have for a P�rep state 〈12⊗J2

z 〉 ≥ 1/2. Thus, |ψ〉 is not P�rep. This is to be expected
as the state |1, 0〉 is not P�rep (see Sec.III B), and leads already by itself to large quantum �uctations. More generally,
it is easy to show numerically that ∂C is well inside the separability boundary. An example is shown in Fig.1, where
we display the two boundaries for a density matrix of the form ρ = ρ0 + κ1ρ̂1 + κ2ρ̂2 with two random but �xed
traceless parts ρ̂1 and ρ̂2.

D. Classicality witness

A simple necessary condition for P�rep can be formulated for the density operator ρ of the system of two particles
A and B. Let VA be any non-negative operator in the Hilbert space of A and take the partial trace of ρVA over the
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A−variables. Assuming that ρ is P�rep and using the coherent states |α′〉 for the calculation of the trace we obtain

TrA ρVA =
2j + 1

4π

∫
dα′ 〈α′|ρVA|α′〉 (41)

=
2j + 1

4π

∫
dβ |β〉 〈β|

∫
dαP (α, β)

∫
dα′ 〈α|VA|α′〉 〈α′|α〉 (42)

=

∫
dβP̄ (β) |β〉 〈β| (43)

where P̄ (β) =
∫

dαP (α, β) 〈α|VA|α〉 is manifestly non-negative. Consequently,

ρB = (TrA ρVA) / Tr ρVA (44)

can be considered as a density operator in the B−space which is P�representable by a function P̄ (β) / Tr ρVA.
Therefore ρ can be P�rep only if ρB is also P�rep (not vice versa). The P�rep of ρB is easy to check using our result
for j = 1. One can take, e.g., VA = 1A getting ρB = TrA ρ.

VI. CONCLUSION

The P�representable states are classical mixtures of
projectors on angular momentum coherent states, i.e. of
angular momentum states with minimal uncertainty.
The P�rep states have many interesting properties. They
can be seen as the �most classical� states, an �inner circle�
within the linear space of density operators which forms
a convex set C that contains the totally mixed state in its
interior. In the case of two spins, C is a subset of the set
of separable states. The study of the P�representation
provides thus important information on the structure of
space of density matrices.
We have studied conditions for P�representability, and

completely characterized the set of classical states for
small spins: for a spin�1/2 all states are P�rep, and for
a spin�1 we deduced a necessary and su�cient condition
for P�rep. In the case of two spins�1/2, P�rep is equiva-
lent to separability, but already for a spin�1/2 combined
with a spin�1, there are states which are separable but
not P�rep. In addition, we have shown that the question
whether a given state is P�rep or not can be solved with

a practical numerical method based on the linear pro-
gramming algorithm for �nding the border of P�rep. We
have also formulated necessary conditions based on mea-
surable observables for P�rep, which can be considered
�non-classicality witnesses� for spin systems.
Both analytical and computational methods have been

used so far on very modest values of j (up to j ∼ 2); for
large j the numerical methods become forbiddingly slow.
It would be important to investigate the limit of large
j and provide thus a bridge to the case of continuous
variables where the P�rep states were an object of intense
studies for many years and proved to be of great physical
importance.
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