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We extend the concept of classicality in quantum optics to spin states. We call a state classical if its density matrix can be decomposed as a weighted sum of angular momentum coherent states with positive weights. Classical spin states form a convex set C, which we fully characterize for a spin1/2 and a spin1. For arbitrary spin, we provide non-classicality witnesses. For bipartite systems, C forms a subset of all separable states. A state of two spins1/2 belongs to C if and only if it is separable, whereas for a spin1/2 coupled to a spin1, there are separable states which do not belong to C. We show that in general the question whether a state is in C can be answered by a linear programming algorithm.

INTRODUCTION

The question of the classicality of quantum states has regained interest with the rise of quantum information theory [START_REF] Nielsen | Quantum Computation and Quantum Information[END_REF]. Strongerthanclassical correlations between dierent systems are an important resource for quantum communication protocols, and the existence of large amounts of entanglement has been shown to be necessary for a quantum computational speed-up [START_REF] Jozsa | Proc. R. Soc. Lond. A[END_REF][START_REF] Vidal | [END_REF]. However, even for a single system the question of classicality is important. Historically the question goes back to two seminal papers in quantum optics by Sudarshan and Glauber [4,5], who introduced the GlauberSudarshan P representation for the states of a harmonic oscillator. This representation allows to decompose the density matrix in terms of coherent states of the harmonic oscillator. For a single coherent state, the weight function of the P representation (called P function in the following for short) reduces to a delta function on the phase space point in which the coherent state is centered, and the dynamics of the P function is exactly the one of the classical phase space distribution. It has therefore become customary in quantum optics to consider states with a positive P function as classical. Several other criteria can be derived from this requirement. Using Bochner's theorem for the Fourier transform of a classical probability distribution [6], Richter and Vogel derived a hierarchy of observable criteria based on the characteristic function, which are both necessary and sucient for classicality [7].

This led to a recent demonstration of the negativity of the P function in a quantum optical experiment [8]. Korbicz et al. realized a connection of the positivity of the P function to Hilbert's 17th problem of the decomposition of a positive polynomial [9]. Since the P function for a continuous variable system can be highly singular, a lot of attempts to dene classicality have been based on other quasi-probability distributions [10] as well, notably the Wigner function [11,12]. These quasiprobability distributions for the harmonic oscillator [10] have analogs for nitedimensional angular momentum states [13]. The Wigner function for nite dimensional systems has received a large amount of attention, ranging from questions of its most appropriate denition [1317], over classicality criteria [18,19], to the importance of its negativity for quantum computational speed-up [20] (see also for further references concerning the historical development of the Wigner function for nitedimensional systems). Surprisingly, the P function for nitedimensional systems has been much less studied, in spite of its attractive mathematical properties.

The P function for a system with a nite dimensional Hilbert space (i.e. formally a spin system) allows to decompose the density matrix in terms of angular momentum coherent states [21]. It can always be chosen to be a smooth function, expandable in a nite set of spherical harmonic functions [13]. In contrast to the case of the harmonic oscillator, questions concerning the existence of the P function (or its nature as a distribution or worse) do therefore not arise. This idyllic situation is somewhat perturbed, however, by the fact, already observed in [21], that for a spin system a large amount of freedom exists in the choice of the P function, as it depends on two continuous variables on the Bloch sphere, whereas the density matrix for a system with ddimensional Hilbert space is specied by d 2 -1 real independent entries.

In this paper we show that the existence of a P representation of the state of a spin system with a positive P function is a meaningful concept which allows to dene the classicality of states of nitedimensional systems in a natural fashion, completely analogous to the classicality of the harmonic oscillator states of the electromagnetic eld. We shall call the corresponding states P representable, or P rep for short. The set C of P representable states form a convex domain in the space of density operators, containing the completely mixed state in its interior. We show that, surprisingly, all states of a single spin1/2 are P rep, and obtain an analytical criterion for P representability in the case of a spin1. For bipartite systems, the set of P rep states is a subset of the set of separable states. For two spins1/2 the two sets coincide, whereas already for a spin1/2 combined with a spin1, there are separable states which are not P rep.

We also show that the problem of deciding whether a given state is P rep can be solved numerically by linear programming.

In the following we will rst motivate and dene P representability, then study simple cases of small spins, introduce a variational approach that gives rise to a linear programming algorithm, and nally have a look at composite systems. We also develop some necessary conditions for P representability based on measurable observables, which may thus serve as nonclassicality witnesses, an extension of the by now well-known concept of entanglement witnesses [22].

II. DEFINITION OF P REPRESENTABILITY A. Coherent states

We rst set some notations following the lines of [13].

Angular momentum coherent states are dened as eigenstates of J 2 and n.J with eigenvalues j(j + 1) and j, respectively, where n is a unit column vector which species the quantization axis with polar angle θ and azimuth ϕ, and J is the familiar angular momentum operator with components J x , J y and J z . The transpose of the column vector n reads n (θ, ϕ) t = (sin θ cos ϕ, sin θ sin ϕ, cos θ) .

An angular momentum coherent state can be expanded in terms of the states |jm quantized on the z axis as

|θϕ = j m=-j 2j j + m × sin θ 2 j-m cos θ 2 j+m e -i(j+m)ϕ |jm .
The coherent states form a complete, although not orthogonal, basis set of normalized states within the space of the eigenfunctions of J 2 with given j, and

2j + 1 4π sin θdθdφ |θϕ θϕ| = 1 2j+1 , (1) 
where 1 2j+1 is the (2j + 1)dimensional identity matrix. We shall use the shorthand α = (θ, ϕ) and denote dα = sin θdθdφ. The coherent state |θϕ associated with the vector n will be denoted |n or |α .

B. P representation

The P representation of a density operator ρ is an expansion over the overcomplete basis of coherent states.

This expansion reads

ρ = dαP (α) |α α| , (2) 
where the P function P (α) is real and normalized by the condition trρ = dαP (α) = 1 .

(

If P (α) is non-negative then ρ is a classical mixture of pure coherent states with probability density P (α), and can therefore be considered as classical. In this case we shall say that ρ is P representable, or P rep for short.

This denition has to be made more precise considering that P (α) is not uniquely determined by the density operator. To show this, consider the multipole expansion of ρ,

ρ = 2j K=0 K Q=-K ρ KQ T KQ , ρ KQ = trρ T † KQ , (4) 
TKQ = j m1,m2 (-1) j-m+Q C KQ jm1jm2 |jm 1 jm 2 | (5)
where C KQ jm1jm2 are the Clebsch-Gordan coecients as [START_REF]Handbook of Mathematical Functions[END_REF]. Expanding the P function as a sum of spherical harmonics,

P (α) = ∞ K=0 K Q=-K P KQ Y KQ (α),
one obtains a one-to-one relation between the coecients of the two expansions for 0 ≤ K ≤ 2j,

ρ KQ = P KQ √ 4π (2j)! Γ(2j -K + 1)Γ(2j + K + 2) . (6) 
If K > 2j the Euler Gamma functions in the denominator become innite; consequently regardless of P KQ the respective ρ KQ will be zero. It means that the choice of such P KQ is totally arbitrary. However, non-negativity of a P (α) for one choice of P KQ with K > 2j may be absent for another choice. Here is a simple example.

Let the density operator be a projector on a coherent state, ρ = |α 0 α 0 |. 

P (α) = 2j K=0 K Q=-K Y * KQ (α 0 )Y KQ (α)
which is not non-negative for all nite j (its tail away from the maximum at α = α 0 oscillates around zero).

In view of the non-uniqueness of P (α) we reformulate the denition of P representability demanding that the condition P ≥ 0 must be fullled at least for one particular P (α). Under this denition the pure coherent state ρ = |α 0 α 0 | will be P rep, which is intuitively reasonable. We are thus led to the following denition: Denition 1 A density matrix ρ is called P rep if it can be written as a convex sum of coherent states, i.e. as in Eq. ( 2) with a non-negative function P (α). Spinj coherent states are the states with the smallest quantum uncertainty and are in this sense the most classical pure states. Their relative uncertainty ∆J i /j scales like 1/ √ j. In the classical limit → 0 (or equivalently, j → ∞), the phase space volume occupied by these states shrinks to a single point [START_REF] Haake | Quantum Signatures of Chaos[END_REF]. P rep states are classical mixtures of these most classical states. In analogy to quantum optics, we therefore call P rep states classical states. Alternative aspects of classicality have been introduced in dierent contexts, such as quantum computation [18], or quantum nonlocality [START_REF] Bell | Speakable and Unspeakable in Quantum Mechanics[END_REF]. In the former case, classicality is related to the eciency of classical simulability. In the latter case classicality is related to the absence of strongerthanclassical correlations between observables of dierent subsystems. However, the latter denition can only be applied to systems where different subsystems can be distinguished, and even in the absence of such correlations, quantum uctuations might still be very large. We will come back to relation between these dierent notions of classicality below.

Let us now derive some simple consequences of our denition.

C. Consequences

Let V be the vector space of (2j+1)×(2j+1) hermitian matrices. The scalar product X, Y = trX † Y denes an operator norm ||X|| = √ trX † X on V. We denote by N the subset of non-negative density matrices, and by C the subset of P rep states. The boundaries of these sets are respectively denoted ∂N and ∂C. The following statements follow immediately from the above denition:

1. The totally mixed state ρ 0 ≡ 1 2j+1 1 2j+1 is P rep, which is readily seen from Eq. (1) taking P (α) = 1/4π.

2. The set C of P rep states is the convex hull of the set of coherent states. In particular, it is a convex set.

3. Since all P rep states are non-negative (but not vice versa) we have C ⊆ N ⊆ V. Proof. The if part is trivial. For the only if part, assume that a state ρ is P rep, i.e. that there exists a decomposition such as in (7). We have

trρ 2 = i,j λ i λ j | α i |α j | 2 ≤ ( i λ i ) 2 = 1
, where equality occurs only for | α i |α j | = 1 for all i, j.

The latter condition can only be fullled if there is a single term in the sum. Thus a pure P rep state, for which trρ 2 = 1, has to be a coherent state.

6. Any density matrix can be decomposed as a sum of the totally mixed state ρ 0 and a traceless hermitian operator ρ with trace norm one multiplied by a positive real parameter κ,

ρ κ = ρ 0 + κρ. ( 8 
)
Since C is convex, there is, for any given direction ρ, an extremal value κ e of κ such that ρ κ ∈ C if 0 ≤ κ < κ e and ρ κ / ∈ C if κ > κ e . The states ρ = ρ 0 +κ e ρ form the boundary ∂C of P rep states. They belong to C provided we accept states ρ as P rep if they can be approximated in the trace norm by a convex sum of coherent states, that is for all > 0 there exists a positive function P (α) such that ρ -dαP (α) |α α| < . With this extended denition the set of P rep states becomes compact. In some directions the boundary ∂C may touch ∂N , e.g. when ρ = |α α| is a pure coherent state.

7. ∂C is separated by a nite distance from the state ρ 0 . In other words, all density operators in some nite neighborhood of ρ 0 are P rep. To show it let us choose P (α) containing only the mandatory components with K ≤ 2j,

P (α) = 1 4π + P (α) , P (α) = 2j K=1 K Q=-K P KQ Y KQ (α). (9) 
The P KQ are bounded since they are related to the coordinates ρ KQ of ρ by ( 6) and trρ 2 ≤ 1. As the spherical harmonics are bounded on the sphere and ( 9) is a nite sum, there is an upper bound Pe to the non-trivial part P (α) when ρ and α are varied. Thus, all matrices ρ 0 + κρ with κ < 1/(4π Pe ) will be P rep.

III. P REP FOR SYSTEMS OF SMALL SPIN

In the case of a spin1/2 or a spin1, it is possible to obtain a complete characterization of P rep states.

A. Spin1/2

We denote by σ = (σ x , σ y , σ z ) the vector formed by the Pauli matrices. Together with the identity matrix 1 2 they form a basis of the space of 2 × 2 matrices. Any 2 × 2 Hermitian matrix with unit trace can be written as

ρ = 1 2 (1 2 + u.σ) , (10) 
and u is given by u = tr(ρσ). The matrix ρ is nonnegative if and only if |u| ≤ 1. A physical density matrix ρ can thus be represented by a point inside the unit sphere (the Bloch sphere). Matrices corresponding to points on the unit sphere are pure states. Since for spin 1/2 any pure state is a coherent state, the convex hull of coherent states is the convex hull of pure states, which is the set of all density matrices. Thus all states are P rep.

It is straightforward to nd an explicit decomposition in terms of angular momentum coherent states by simply diagonalizing ρ, which leads to the sum of two projectors with two positive eigenvalues. Nevertheless, there is a large freedom in choosing the coherent states. According to (7), nding a P representation for ρ amounts to nding positive real coecients λ i and projectors on coherent states

|α i α i | = 1 2 1 2 + n (i) .σ with |n (i) | = 1 such that ρ = i λ i |α i α i |.
Since the σ i form a basis of the 2 × 2 density matrices, this is equivalent to nding λ i and norm-1 vectors n (i) such that

u = i λ i n (i) . ( 11 
)
This can be trivially achieved e.g. by taking any pair of points on the Bloch sphere such that the line joining these two points contains the point representing u inside the sphere.

B. Spin1

Let us now consider a spin1 density matrix. We shall use the representation

ρ = 1 3 1 3 + 1 2 u.J+ 1 2 a,b=x,y,z W ab - 1 3 δ ab J a J b + J b J a 2 , (12) 
where J a are matrices of the angular momentum with j = 1. The J a and the (J a J b + J b J a )/2, together with the identity matrix 1 3 , form a basis of the vector space V of 3 × 3 hermitian matrices. Inverting relation (12) we obtain u a = tr (ρJ a ) , W ab = Tr ρ (J a J b + J b J a ) -δ ab , (13) which shows that u ∈R 3 while W is a 3×3 real symmetric tensor with trace 1. The projector on a coherent state |n , written in the form (12), reads

|n n| = 1 3 1 3 + 1 2 n.J+ 1 2 a,b=x,y,z n a n b - 1 3 δ ab J a J b + J b J a 2 .
(14) According to (7), ρ is P rep if and only if there exist λ i > 0 with i λ i = 1 and coherent states corresponding to vectors n (i) ∈ R 3 of length 1 such that

i λ i n (i) a = u a , (15) 
i λ i n (i) a n (i) b = W ab ,
(with a, b running over x, y, z). It turns out that these equations admit a solution and hence ρ is P rep if and only if the real symmetric 3×3 matrix Z with matrix elements

Z ab = W ab -u a u b (16) 
is non-negative.

Proof. First let us assume that the Eqs. ( 15) do have a solution. Then Z can be written

Z ab = i,j (λ i δ ij -λ i λ j ) n (i) a n (j) b , (17) 
and for any vector y ∈ R 3 we have

y t Zy = i λ i y.n (i) 2 - i λ i y.n (i) 2 ≥ 0 (18)
since the weights λ i > 0 sum to 1 and f (x) = x 2 is a convex function. Therefore Z is indeed non-negative for all P rep operators ρ.

Conversely, if Z ≥ 0, then it is possible to exhibit a decomposition of ρ by nding an explicit solution to Eqs. (15). Let A be such that Z = AA t . If we denote by t (i) the eight column vectors (±1, ±1, ±1) obtained from all combinations of the ± signs, and dene

τ i = - u t At (i) 1 -|u| 2 + 1 + u t At (i) 1 -|u| 2 2 , (19) 
then one can check that a solution to Eqs. ( 15) is given by

n (i) = u + τ i At (i) (20) 
λ i = 1 4 1 1 + τ 2 i , (21) 
which proves that ρ is P rep. The necessary and sucient condition Z ≥ 0 in the case of spin1 allows to characterize the boundary ∂C of P rep states. Indeed, let us consider a one-parameter family of states as in (8). If u and W are the vector and matrix corresponding to the expansion (12) of the state ρ 0 + ρ, then the vector and the matrix associated with ρ κ = ρ 0 + κρ are given by

u κ = κu (22) W κ = κW + 1 -κ 3 1 3 ,
and thus the 3 × 3 matrix Z κ associated with ρ κ reads

Z κ = κW + 1 -κ 3 1 3 -κ 2 uu t . (23) 
The value κ = κ e at which the scaled operator ρ κ ceases to be P rep corresponds to the smallest κ for which Z κ has a zero eigenvalue. Thus κ e is the smallest solution of the equation det Z κ = 0, and the equation of ∂C in the vector space V is

κ 2 e u t κ e W + 1 -κ e 3 1 3 -1 u = 1. (24) 
This equation gives implicitly the value κ e for each direction ρ in the vector space V.

As the examples of spin 1/2 and spin1 show, the proportion of P rep matrices among all density operators depends on j.

It is easy to nd states of spin1 which are not P rep.

As mentioned in Sec.II C, all pure states which are not coherent states are not P rep. For instance the state |1, 0

(in |jm notation) can be visualized as a ring around the equator on the Bloch sphere, which entails large uctuations of J x and J y well beyond the minimal uncertainty imposed by Heisenberg's uncertainty relation [13].

C. Necessary conditions for higher spins

It is possible to derive more general necessary conditions for P representability of spinj states, as follows.

Let us denote by J t = t.J the spin operator in direction t. For a coherent state |n corresponding to a vector n, the mean values of J t and J 2 t are given by n|J t |n = j t.n

n|J 2 t |n = j 2 + j j - 1 2 (t.n) 2 . (25) 
Any P rep state ρ can be written as ρ = i λ i |n (i) n (i) |, which implies for the mean values of J t and J 2 t in the state ρ

J t = j i λ i t.n (i) (27) 
J 2 t = j 2 + j j - 1 2 i λ i t.n (i) 2 . ( 28 
)
Convexity of f (x) = x 2 applied to the sums over i leads to the inequality

2j J 2 t -(2j -1) J t 2 -j 2 ≥ 0 ∀t, |t| = 1, ( 29 
)
with equality if and only if ρ is itself a coherent state. This is a necessary condition for P rep, valid for any j.

In the particular case of spin1/2 this inequality becomes J 2 t ≥ 1/4, which is obviously true for all states ρ and all directions t. In the case of spin1 the inequality (29) can be rewritten as

a,b (2 J a J b -J a J b -δ ab ) t a t b ≥ 0 ∀t = (t x , t y , t z ), |t| = 1. (30)
As can be seen from Eqs. ( 13) and ( 16), this inequality exactly corresponds to the condition Z ≥ 0 derived in the previous section.

For higher spins, one can similarly derive other necessary conditions. For instance for a P rep state of spin 3/2, one has

J 3 t = 21 8 i λ i t.n (i) + 3 4 i λ i t.n (i) 3 , (31) 
and a necessary condition imposed by the fact that

| i λ i x 3 i | ≤ i λ i x 2 i for any x i ∈ [-1, 1] reads ∀t, 2 J 3 t - 7 4 J t ≤ J 2 t - 3 4 . 
(32)

These necessary conditions can be considered as nonclassicality witnesses, as a state ρ is not in C if at least one of these conditions is not fullled.

IV. NUMERICAL IMPLEMENTATION

A. Variational approach to P representability Suppose we are given a density operator and want to establish whether it is P representable. Let us use the multipole expansion (4). The coecients P KQ with 0 ≤ K ≤ 2j will be dened by Eq. ( 6). Orthogonality of the spherical harmonics implies that the hypothetical P (α) ≥ 0 satises the integral equations

P (α)Y * KQ (α)dα = P KQ , 0 < K ≤ 2j, |Q| ≤ K, (33) 
together with P (α)dα = trρ = 1.

If we nd any P (α) ≥ 0 satisfying these equations the state in question is P representable.

We can ask for more and try to nd the representability boundary for all matrices of the form ρ κ = ρ 0 + κρ obtained by scaling a given traceless normalized hermitian matrix ρ. To that end, we consider the set of matrices ρ 0 /κ + ρ, κ > 0. These states all have the same traceless part ρ, thus they are represented by P functions P (α) that satisfy Eqs. (33) with P KQ corresponding to ρ, but with P (α)dα = 1 κ . We look at the minimum of the functional F [P ] ≡ P (α)dα over these states. Suppose that the minimum is realized by some function P e (α) and introduce κ e through min P (α)dα = P e (α)dα = 1 κ e .

(34)

The corresponding density operator ρ κe = ρ 0 + κ e ρ is represented by the function κ e P e (α). As we pointed out it means that all operators ρ κ with 0 ≤ κ < κ e are P representable and that ρ e belongs to the boundary ∂C.

B.

Concavity of 1/κ e

The parameter κ e corresponding to the border of P rep depends on the matrix ρ, such that κ e = κ e (ρ). Let us take two matrices, ρ I and ρ II and calculate the respective κ e (ρ I ), κ e (ρ II ). Consider now a convex combination

ρ (c) = cρ I + (1 -c)ρ II , 0 < c < 1. Then 1 κ e (ρ (c) ) ≤ c κ e (ρ I ) + 1 -c κ e (ρ II ) ,
i.e., 1/κ e is a concave function of ρ. The proof is based on Eq. (34). Let P I e , P II e be the functions minimizing P dα under constraints corresponding to the operators ρ I and ρ II respectively. Then the function P (c) = cP I e + (1c)P II e will obey the constraints corresponding to the operator ρ (c) . Therefore we must have

1 κ e (ρ (c) )
= min P (α) dα ≤ P (c) (α) dα

= c P I e (α) dα + (1 -c) P II e (α) dα = c κ e (ρ I ) + 1 -c κ e (ρ II ) ,
which implies concavity of 1/κ e . Thus the knowledge of κ e for two density matrices gives a lower bound for a whole family of convex combinations of these density matrices.

C. Linear programming

In order to numerically implement the variational approach described here, let us choose the trial P function in the form of a linear combination of δ-peaks

P (α) = n i=1 w i δ (α -α i ) (35) 
where the points α i = (θ i , φ i ) are more or less uniformly distributed on the unit sphere, and w i ≥ 0 are non-negative variational parameters; the delta-functions are assumed to be normalized on the unit sphere, δ (α

-α i ) = δ (cos θ -cos θ i ) δ (φ -φ i ).
Inserting this P (α) in (33) we come to the optimization problem: nd w = {w 1 , . . . , w n } with all w i ≥ 0, i = 1 . . . n, minimizing the sum

F (w) = n i=1 w i , (36) 
and subject to M = (2j + 1) 2 -1 linear constraints

n i=1 Y KQ (α i ) w i = P KQ , 0 < K ≤ 2j, |Q| ≤ K.
This is a problem of linear programming [START_REF] Cormen | Introduction to Algorithms[END_REF]. Its wellknown theorem states that whatever the number of unknowns n the minimum of F is realized on a solution containing no more than M non-zero components. This number is one less than predicted by Caratheodory's theorem because the solution is a boundary, not an internal, point of the set of the density matrices P -representable by (35). The minimum found numerically for a given n yields an upper bound on the exact value of 1/κ e (Eq. ( 34)), i.e., the lower bound on the value of the scaling parameter κ at the border of P rep in ρ κ = ρ 0 + κρ. The linear programming approach was numerically tested and found ecient for moderate values of j. For a given ρ, the minimal value of κ -1 diminished fast with the increase of n and was stable. On the other hand, the solution w changed erratically with the change of n. That was to be expected considering the freedom in the choice of P (α).

V. COMPOSITE SYSTEMS

The denition of classicality can be extended to systems of more than one particle in a natural way. In the present section we shall consider the case of two particles, but the formalism generalizes to an arbitrary number of particles.

A.

Classicality for two particles

The P representation of a density operator in the case of two spins j A and j B , 

ρ = d 2 α A d 2 α B P (α A , α B ) |α A |α B α A | α B | (
ρ = 2jA KA=0 K A QA=-KA 2jB KB =0 K B QB =-KB ρ KAQA,KB QB T A KAQA T B KB QB , (38) 
and we have the P function expanded into products of spherical harmonics,

P (α) = ∞ KA=0 KA QA=-KA ∞ KB =0 KB QB =-KB P KAQA,KB QB Y KAQA (α A )Y KB QB (α B ).
The relation between the coecients of ρ and P is given by

ρ KAQA,KB QB = P KAQA,KB QB ×4π (2j A )! (2j B )! (2j A -K A )!(2j A + K A + 1)!(2j B -K B )!(2j B + K B + 1)! ,
and the density operator with a scaled non-trivial part by

ρ κ = ρ 0 + κρ, ρ 0 = 1 (2jA+1)×(2jB +1) (2j A + 1)(2j B + 1)
.

The following variational problem needs to be solved when the boundary of P representability is to be found: minimize the functional

F [P ] = d 2 α A d 2 α B P (α A , α B ) with P (α A , α B ) ≥ 0 satisfying the integral equations d 2 α A d 2 α B P (α A , α B )Y * K A Q A (α A )Y * K B Q B (α B ) = P KAQA,KB QB , (39) 
where K A , K B run from 0 to 2j excluding K A = K B = 0, and

|Q A | ≤ K A , |Q B | ≤ K B .
If the minimum of F is equal to

F e = min F = d 2 α A d 2 α B P e (α A , α B ) ≡ 1 κ e ,
then the density operator lying on the boundary of P representability will be ρ κe .

For the numerical implementation, the integrals are now taken over a product of two unit spheres of Alice and Bob. Let us choose the trial P function as

P (α A , α B ) = nA iA=1 nB iB =1 w iAiB δ α A -α A iA δ α B -α B iB (40) 
where n A points α A iA and n B points α B iB are uniformly scattered over the spheres of Alice and Bob, respectively, and w iAiB ≥ 0 are n A n B variational parameters. We now solve the linear programming task: minimize

F (w) = nA iA=1 nB iB =1 w iA iB with w iA iB ≥ 0 satisfying M = (2j 1 + 1) 2 (2j 2 + 1) 2 -1 linear constraints, nA iA=1 nB iB =1 Y * K A Q A (α A i A )Y * K B Q B (α B i B ) w iAiB = P KAQA,KB QB .
Here K A , Q A , K B , Q B take all possible values excluding K A = K B = 0. Again, the optimal solution contains no more than M non-zero elements w iAiB . Considering that the density operator of a single spin1/2 is always P rep it is easy to see that the density operator for a system of two spins is P -rep if and only if it is separable. Consequently, the necessary and sucient condition of P rep is given by the Peres-Horodecki theorem [START_REF] Peres | Quantum Theory: Concepts and Methods[END_REF][START_REF] Horodecki | [END_REF]. It means that the boundary of P representability in the family ρ κ = ρ 0 + κρ is reached when either ρ κ or its partial transpose ρ TA κ ceases to be non-negative. This was checked numerically in the linear programming approach: the minima 1/κ e of the functional F [P ] calculated with the matrix ρ and its partial transpose ρ T A in all cases coincided with each other and agreed with the scaling necessary to shift the smallest eigenvalue of either ρ or ρ TA to zero. The optimal P was obtained as a combination of M = 15 coherent states, some of them with very small weights.

C.

Spins 1/2 and 1

In this case the separability and P rep conditions do not coincide. Indeed consider for instance the pure product state (in |jm notation) |ψ = | 1 2 1 2 ⊗|10 . Then the mean value of the operator 1 2 ⊗J 2 z in the state |ψ is 10|J 2 z |10 = 0, while using Eq. ( 28) one should have for a P rep state 1 2 ⊗ J 2 z ≥ 1/2. Thus, |ψ is not P rep. This is to be expected as the state |1, 0 is not P rep (see Sec.III B), and leads already by itself to large quantum uctations. More generally, it is easy to show numerically that ∂C is well inside the separability boundary. An example is shown in Fig. 1, where we display the two boundaries for a density matrix of the form ρ = ρ 0 + κ 1 ρ1 + κ 2 ρ2 with two random but xed traceless parts ρ1 and ρ2 .

D.

Classicality witness A simple necessary condition for P rep can be formulated for the density operator ρ of the system of two particles A and B. Let V A be any non-negative operator in the Hilbert space of A and take the partial trace of ρV A over the A-variables. Assuming that ρ is P rep and using the coherent states |α ′ for the calculation of the trace we obtain can be considered as a density operator in the B-space which is P representable by a function P (β) / Tr ρV A . Therefore ρ can be P rep only if ρ B is also P rep (not vice versa). The P rep of ρ B is easy to check using our result for j = 1. One can take, e.g., V A = 1 A getting ρ B = Tr A ρ.

VI. CONCLUSION

The P representable states are classical mixtures of projectors on angular momentum coherent states, i.e. of angular momentum states with minimal uncertainty.

The P rep states have many interesting properties. They can be seen as the most classical states, an inner circle within the linear space of density operators which forms a convex set C that contains the totally mixed state in its interior. In the case of two spins, C is a subset of the set of separable states. The study of the P representation provides thus important information on the structure of space of density matrices.

We have studied conditions for P representability, and completely characterized the set of classical states for small spins: for a spin1/2 all states are P rep, and for a spin1 we deduced a necessary and sucient condition for P rep. In the case of two spins1/2, P rep is equivalent to separability, but already for a spin1/2 combined with a spin1, there are states which are separable but not P rep. In addition, we have shown that the question whether a given state is P rep or not can be solved with a practical numerical method based on the linear programming algorithm for nding the border of P rep. We have also formulated necessary conditions based on measurable observables for P rep, which can be considered non-classicality witnesses for spin systems.

Both analytical and computational methods have been used so far on very modest values of j (up to j ∼ 2); for large j the numerical methods become forbiddingly slow.

It would be important to investigate the limit of large j and provide thus a bridge to the case of continuous variables where the P rep states were an object of intense studies for many years and proved to be of great physical importance.

2 FIG. 1 :

 21 FIG.1:(Color online) Example of a set of classical states C for a bipartite system of two spins 1/2 and 1 parametrized by two parameters, ρ = ρ 0 + κ1ρ 1 + κ2ρ 2 with some traceless ρ1 , ρ2 . Boundaries are shown of non-negativity of ρ (bold black line), non-negativity of its partial transpose ρ T A (dashed line), and of P representability of ρ, ρ T A (inner red line).

Tr

  A ρV A = 2j + 1 4π dα ′ α ′ |ρV A |α ′ dβ |β β| dαP (α, β) dα ′ α|V A |α ′ α ′ |α (42) = dβ P (β) |β β|(43)where P (β) = dαP (α, β) α|V A |α is manifestly non-negative. Consequently, ρ B = (Tr A ρV A ) / Tr ρV A (44)

  37)with P ≥ 0 is possible for separable states only; consequently P rep is a sucient criterion of separability. The partially transposed matrices ρ TA and ρ TB are dened in a xed computational basis |ij ≡ |i A ⊗ |j B as ρ TA ij,kl = ρ kj,il and ρ TB ij,kl = ρ il,kj . They are P rep if and only if ρ is P rep, and the corresponding P functions P TA and P TB are simply related to the P function of ρ by P T A (α A , α B ) = P (α A , α B ), αA = (θ A , -ϕ A ), and correspondingly for P TB . All previously considered equa-tions are reformulated for two spins in a straightforward manner; we shall list them without commenting. The representation of ρ in terms of products of spherical multipole operators reads
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