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Quantum computing of semiclassical formulas

B. Georgeot and O. Giraud
Laboratoire de Physique Théorique, Université de Toulouse, CNRS, 31062 Toulouse, France

(Dated: January 30, 2008)

We show that semiclassical formulas such as the Gutzwiller trace formula can be implemented
on a quantum computer more efficiently than on a classical device. We give explicit quantum
algorithms which yield quantum observables from classical trajectories, and which alternatively test
the semiclassical approximation by computing classical actions from quantum evolution. The gain
over classical computation is in general quadratic, and can be larger in some specific cases.

PACS numbers: 03.67.Ac, 05.45.Mt, 05.45.Pq

I. INTRODUCTION

It is now widely recognized that the principles of quan-
tum mechanics allow to realize new computational de-
vices which can be more efficient than their classical
counterparts [1–4]. Quantum algorithms have been pro-
posed which take advantage of the quantum mechani-
cal properties of these devices to perform specific tasks
faster than on a classical computer. The most famous
such algorithm is due to Shor [5] and factors large in-
tegers exponentially faster than any known classical al-
gorithm. Another algorithm, for which the gain is only
quadratic, enables to search an unsorted database [6]. Ef-
forts have been devoted also to using such quantum com-
puters to simulate the behavior of complex physical sys-
tems, a task of much practical interest. Algorithms have
been set up enabling to simulate certain quantum me-
chanical systems efficiently [7–11], as was originally en-
visioned by Feynman. However, as quantum algorithms
use procedures different from classical algorithms, it is
by no means obvious which problems can be sped up
by using a quantum computer. It is therefore impor-
tant to precisely specify the class of problems that can
be solved efficiently on a quantum computer, especially
among problems which have been implemented by scien-
tists on classical devices because of their practical inter-
est.

On classical computers, a great deal of activity in the
past decades has been devoted to the numerical imple-
mentation of semiclassical formulas. Such formulas ap-
proximate quantum mechanics through classical quanti-
ties, and have been used since the beginning of quantum
mechanics. Although they have been much studied, their
application to practical computation of quantum observ-
ables is often hampered by the exponential proliferation
of classical orbits involved when the system is chaotic.
Semiclassical formulas enable to approximate the exact
quantum mechanics for small ~, and give an insight into
the relationship between classical and quantum mechan-
ics. For integrable systems with n degrees of freedom,
classical dynamics takes place on n-dimensional tori in
the 2n-dimensional phase space. In this case, semiclassi-
cal formulas quantize individual tori. They are relatively
straightforward to implement and have been constructed

and used early in the development of quantum mechan-
ics. In contrast, for chaotic systems this quantization of
tori is not valid, as pointed out by Einstein as early as in
1917 [12], and individual wavefunctions cannot be built
from a single classical structure. As a substitute, various
formulas have been constructed, which express the quan-
tum quantities in terms of an (infinite) set of classical
orbits. The most famous such formula is the Gutzwiller

trace formula [13], where the quantum density of states
d(E) =

∑

n δ(E − En) (where En are the energy levels)
is written as a function of all classical periodic orbits of
the system. It has the general form d(E) ≡ ∑

p Ape
iϕp/~,

where the sum runs over all periodic orbits, Ap is related
to the stability of the orbit and ϕp to its action. It can
be viewed as a Fourier-type duality between the set of
all eigenenergies of the system on the one hand and the
set of all actions of periodic orbits on the other hand.
Other formulas of the same kind give the quantum prop-
agator G(x, x′) in terms of all classical orbits from x to
x′ (Van Vleck formula) [14] or scattering amplitudes in
term of scattering orbits (Miller’s formula) [15]. Many
works have implemented numerically such formulas by
truncating the sum over classical orbits (see e.g. [16–21]),
e.g. to obtain the semiclassical spectrum, but because of
the exponential proliferation of classical orbits typical of
chaotic systems only a few semiclassical eigenvalues can
be extracted. Several methods have been devised to re-
duce the number of orbits entering the sum [22–24], but
they all require summing up contributions from a still
exponential number of orbits.

In this paper, we study the implementation of semi-
classical formulas on quantum computers. We show that
for certain dynamical systems, such formulas can be com-
puted more efficiently on a quantum computer than on a
classical device. From the quantum information point of
view, this gives new examples of algorithms where a gain
can be reached compared to classical algorithms. From
the point of view of quantum chaos, this would enable
these formula to become more practical on a quantum
computer if such a device becomes available, and thus to
explore the quantum-classical correspondence in regimes
which are difficult to reach on a classical computer. The
paper is organized as follows. In section II, we present
in detail the most famous semiclassical formula which
relates the density of states to classical periodic orbits
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(Gutzwiller trace formula), in the specific case of quan-
tum maps. We then discuss in section III a quantum
algorithm which implements this semiclassical formula
in the form where it is most difficult classically, i.e. sum-
ming up classical orbits and extracting quantum observ-
ables. In section IV we implement the same formula but
in the reverse direction, i.e. using quantum observables
to extract classical quantities. Our method can be con-
sidered as a new way of extracting information from the
quantum simulation of quantum systems. Indeed, while
many quantum systems can be simulated efficiently on
a quantum computer, a crucial point to get a complete
algorithm and make the gain effective is to devise a read-
out method once the simulation is performed. It has
been shown that the gain over classical computation can
depend critically on the observable measured at the end
of the simulation [25–27]. In the present paper we show
that in general we can expect a quadratic gain over classi-
cal computation using the algorithms of sections III-IV,
and that this gain can be quartic for some quantities.
The original hope of this study was to use the quantum
Fourier transform which is exponentially faster than the
classical Fourier transform to ensure an exponential gain
for this type of problem. It turned out that for most sys-
tems counting the total number of gates involved shows
that only a polynomial gain can be reached. However, in
section V, we give an example of a related problem where
exponential gain can be reached.

II. SEMICLASSICAL TRACE FORMULA FOR

QUANTUM MAPS

Classical and quantum maps represent a particularly
simple class of dynamical systems. Indeed, such systems,
where one iteration of the map corresponds to a discrete
time step, are easier to handle and yield simpler formulas.
In what follows, we will restrict ourselves to such systems.
This does not entail a major loss of generality, since it is
known that Hamiltonian systems can in general be rep-
resented by maps through the construction of Poincaré
surfaces of section [28]. Furthermore, most of the phe-
nomena observed in more complicated systems can be re-
produced in well-known models of quantum maps. This
explains why many works on semiclassical formulas have
used classical and quantum maps as testbeds.

Here we consider two-dimensional maps on a toroidal
phase space. Let us first give examples of well-known
classical maps that we will use later on. A much stud-
ied instance is the family of cat maps [28–31], i.e. linear
automorphisms of the torus characterized by 2 × 2 ma-

trices of SL(2, Z). For a matrix M =

(

t11 t12
t21 t22

)

, the

corresponding map is

p̄ = t11p + t12q (mod1)

q̄ = t21p + t22q (mod1), (1)

where (p, q) are phase-space variables and bars denote

new variables after one iteration of the map.
Another well-known example is the baker’s map [28]:

(q̄, p̄) = (2q,
p

2
) for 0 ≤ q ≤ 1

2

(q̄, p̄) = (2q − 1,
p + 1

2
) for

1

2
< q ≤ 1. (2)

Maps (1)-(2) are instances of strongly chaotic systems,
with homogeneous exponential divergence of trajectories,
positive Kolmogorov-Sinai entropy, and exponential pro-
liferation of periodic orbits with the length.

More generally, many classical maps can be written in
the form

p̄ = p − kV ′(q)

q̄ = q + T p̄, (3)

where the potential V (q) is a function of position. Such
maps correspond to the integration over one period of
a free rotator periodically kicked by a potential V (q).
They include the standard map (the classical version of
the kicked rotator) [32] for V (q) = cos q, or the saw-
tooth map [10] for V (q) = −(p − π)2/2. These maps
display a wide range of different behaviors depending on
the parameters. In particular, for the standard map the
dynamics changes from close to integrability for small
values of the parameter kT to fully developed chaos for
large values of kT .

The quantum version of the classical maps acts on a
Hilbert space of dimension N corresponding to the in-
verse of Planck’s constant 2π~. It is represented by an
N × N matrix U [30]. In the case of a cat map (1), the
quantization yields [30, 31]

UQ1,Q2
=

√

it12
N

〈e2iπNS(Q1/N,Q2/N+m)〉m, (4)

where S(q1, q2) = (t11q
2
1 − 2q1q2 + t22q

2
2)/(2t12) and the

average is taken over all integers m.
The quantized baker’s map [33] is even simpler. The

evolution operator on a N -dimensional space is given by

F−1
n

(

Fn−1 0
0 Fn−1,

)

(5)

where Fn is the N ×N matrix with (Fn)kj = 1√
N

e−
2iπkj

N

(discrete Fourier transform).
At last, maps of the form (3) yield, upon quantization,

quantum maps of the form:

Û = e−iT p̂2/2~e−ikV (q̂)/~. (6)

These evolution operators can be implemented effi-
ciently on a quantum computer. This was shown for (5)
in [34] using the quantum Fourier transform instead of
the classical one, and in [9, 10] for maps of the form (6).

One of the advantages of maps over generic systems is
that some of the steps leading to the trace formula link-
ing the spectrum to periodic orbits can be made exact.
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Indeed, the spectral density for an N ×N quantum map
U with eigenphases θk, 1 ≤ k ≤ N , is given by

d(θ) ≡
∞
∑

m=−∞

N
∑

k=1

δ (θ − θk + 2πm)

=
N

2π
+

1

2π

∞
∑

t=1

(

e−itθtrU t + eitθtrU−t
)

. (7)

This expression, obtained by Poisson summation for-
mula, is exact and only depends on the traces of iterates
of the quantum map. Similarly, one can express the co-
efficients of the characteristic polynomial det (I − xU) =
∑

k βkxk only in terms of traces of powers of U by using
the recurrence relation

βk = −1

k

k
∑

t=1

βk−ttrU
t, β0 = 1. (8)

This relation can be easily proved by expanding det(I +
zU) = exp tr log(I + zU) into powers of z. Unitarity of
the operator U implies the symmetry relation

βN−k = det(−U)βk. (9)

Thanks to this resurgence relation the computation of
trU t for t ≤ N/2 suffices to calculate the characteristic
polynomial.

The semiclassical approximation of the spectrum can
be obtained by calculating the coefficients of the char-
acteristic polynomial (8) using semiclassical expressions
for the traces. For large N the main contribution to
trU t comes from periodic orbits. For a classical map
φ mapping the phase-space onto itself, a periodic orbit
of length t is a fixed point of φt. It is given by a se-
quence (p0, q0, p1, q1, ..., pt, qt) of phase-space points such
that (pi, qi) = φ(pi−1, qi−1) for all i, 1 ≤ i ≤ t, and
(pt, qt) = (p0, q0). If tp is the smallest integer such that
(ptp

, qtp
) = (p0, q0), then tp divides t and the periodic or-

bit is the repetition of r = t/tp times a primitive periodic
orbit. A given primitive periodic orbit is characterized
by its monodromy matrix Mp (which is the linearized
version of the map φ in the vicinity of the periodic or-

bit), its action Sp =
∑tp

j=1 S(qi−1, qi) where S(q, q′) is

the classical action from q to q′, and its Maslov index νp.
The semiclassical expansion of trU t reads

trU t ≈ τt =
∑

p∈Pt

tpe
ir(Sp/~−νpπ/2)

| det(I − Mr
p )|1/2

, (10)

where the sum runs over the set Pt of all periodic orbits
of length (number of time steps) t = rtp. The action,
Maslov index and monodromy matrix correspond to the
associated primitive periodic orbit [35].

For maps (1)-(3), the classical dynamics displays some
form of chaos, up to the strongest types with exponential
divergence of nearby trajectories and exponential prolif-
eration of periodic orbits with increasing length. Such

properties make difficult the practical use of semiclassi-
cal formulas, which need enormous numbers of orbits to
be accurate. As we will show in the next section, this
task can be made easier on a quantum computer. The
fact already mentioned that the quantum evolution op-
erator of these maps can often be implemented efficiently
on a quantum computer opens the way to the use of semi-
classical formulas in the reverse direction, using quantum
observables to infer results on classical quantities. This
will be the subject of section IV.

III. SPECTRUM FROM CLASSICAL

QUANTITIES

We first discuss an algorithm allowing to obtain semi-
classically the set of eigenvalues of the quantum map,
or equivalently the coefficients (8) of the characteristic
polynomial of the map.

In order to calculate the traces using (10) we need to be
able to characterize periodic orbits of the classical map.
There are instances of systems where this task is very
easy. For instance for cat maps (1), the iterates of the
classical map can be calculated analytically, and there-
fore periodic orbits are entirely characterized. This is also
the case for perturbed cat maps which are Anosov maps
of the form φ = φ0 ◦ χε, where φ0 is a cat map and χε

is a perturbation close to the identity. It was shown [36]
that for sufficiently weak perturbations orbits of Anosov
maps remain topologically conjugate to periodic orbits of
the unperturbed cat map. Thus periodic orbits can be
described completely [37]. More generically we will con-
sider systems in which periodic orbits can be described
by a symbolic dynamics associated with a finite Markov
partition. That is, phase space can be partitioned into
sets Rk, 1 ≤ k ≤ m, and intersections of the images of
the Rk under the (forward and backward) iterates of the
classical map define finer and finer partitions so that at
infinity the intersections contain either no point or a sin-
gle one [38]. Thus a given (infinite) sequence of labels
corresponds to at most one point of phase space. The
mapping rules between the Rk under one iteration of the
map can be summarized in a m × m transition matrix
T such that Tij = 1 if the image of Ri has a non-empty
intersection with Rj , and 0 otherwise. This transition
matrix sums up the grammar rules that discriminate be-
tween allowed words and forbidden ones. There is a one-
to-one correspondence between phase-space points and
allowed symbolic sequences, and periodic orbits corre-
spond to periodic sequences of symbols.

Simple examples of quantum maps with symbolic dy-
namics are perturbed cat maps, or the baker’s map [39].
In the latter example, symbolic dynamics is described by
only two symbols 0 and 1, and all sequences of symbols
are allowed. Dynamical systems such as the 3-disk [40]
or motion on surfaces with constant negative curvature
[41] also provide examples where a symbolic dynamics
exists with all sequences allowed. In such examples,
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periodic trajectories are in one-to-one correspondence
with periodic strings of 0 and 1.

We will now sketch the steps of a quantum algo-
rithm allowing to compute the semiclassical traces
(10) in a parallel way. To simplify notation, for
each periodic orbit p of length t = rtp we define the

amplitude Ap = tp/| det(I − Mr
p )|1/2 and the phase

φp = r(Sp/~ − νpπ/2). Thus we have to calculate the
quantities τt =

∑

p Ape
iφp . Let us consider a system

whose symbolic dynamics is described by a finite Markov
partition. For simplicity we assume that the partition
consists of only two sets. Then only two symbols 0 and
1 are required (if there are more than two sets in the
partition we code labels by binary strings). The trace
formula (10) will be truncated at tmax, which means that
only periodic orbits of length t < tmax will be considered.
We distinguish five registers in the computational state.
Register A will hold the lengths t, 0 ≤ t < tmax of the
periodic orbits. It requires nA = log2(tmax) qubits. Reg-
ister B will hold, on its last t qubits, the 2t codewords
corresponding to a given orbit length t. This register
has to contain nB = tmax qubits. Register C is used
to store the phases φp, and register D is used for the
”tuning” of the amplitudes Ap associated to each orbit.
Additional registers will serve as workspace. We will
make use of following one-qubit operations: rotation of

the kth qubit Rk(θ) = exp
(

−iθσ
(k)
y

)

and phase shifts

Pk(θ) = exp
(

−iθσ
(k)
z

)

. The steps are as follows.

Step I: Let λ be such that the number of allowed
codewords scales exponentially with t as exp(λt).
We define Λ such that for each t, the amplitude
Ap = tp/|det(I − Mr

p )|1/2 of each periodic orbit p of
length t = rtp is upper bounded by exp(−Λt). The
amplitude Ap in many cases will be actually close
to exp(−Λt). Let us set µ = Λ − λ/2. We define

angles θk ∈ [0, π/2] by cos θk = 1/
√

1 + e−2µ2k . Ap-
plying nA rotations Rk(θk) to register A of the initial
state gives (up to a normalization factor) the state
∑

t<tmax
exp(−µt)|t〉A|0〉B |0〉C |0〉D.

Step II: All allowed codewords are generated on reg-
ister B. In the simplest case where there is no grammar
rule one wants, for each value t on register A, to put
the last t qubits of B into a uniform superposition. This
is performed by applying, for each t, t Hadamard gates
controlled by register A on the last t qubits of B (see
Fig. 1). This gives (up to normalization) the state

∑

t

∑

p

e−Λt|t〉A|p〉B |0〉C |0〉D, (11)

where the second sum runs over all codewords p,
0 ≤ p ≤ 2t − 1. If there is a finite number of grammar
rules the allowed codewords can be generated by replac-
ing the Hadamard gates by rotations Rk. For each value
of t these rotations are controlled not only by register A

(as in Fig. 1) but also by qubits of register B. Steps I
and II are polynomial in tmax.

��������
• • • • •

register A •
�������� ��������

• • •

H

registerB H H

H H H

FIG. 1: Circuit for step II and two-letter symbolic dynamics.
Register A codes for lengths t, 0 ≤ t ≤ 3 on two qubits.
The Hadamard gates are controlled by the values of t, and on

register B the state |t〉|0〉 becomes 2−t/2
P

2
t
−1

i=0
|t〉|i〉.

Step III: From each codeword p of length t it
is possible to recover the phase-space coordinates
(p0, q0, p1, q1, ..., pt, qt) of the trajectory coded by this
codeword, as well as the characteristics of this trajec-
tory: action Sp, monodromy matrix Mp, Maslov index
νp. These quantities can be calculated in a parallel
way by classical operations implemented on the quantum
workspace registers, as has been done classically in many
systems [16–21]. The values of φp and lnAp + Λt are
then calculated and written on registers C and D. For
the kind of systems considered here, this step is polyno-
mial in tmax as the operations are performed in parallel.
After erasing intermediate steps we get a state

∑

t

∑

p∈Pt

e−Λt|t〉A|p〉B |φp〉C | lnAp + Λt〉D. (12)

Step IV: As in step I we use rotations Rk(θk) to trans-
fer the value stored in register D into an exponential
prefactor exp(lnAp + Λt). The angles θk are now given

by cos θk = 1/
√

1 + e−2κ2k , where the constant κ sets
the precision that one wants to achieve on the prefactor.
For each value of t and p, register D is the sum of two
orthogonal components |0〉D and |ψp〉D. As the prefac-
tor e−Λt in (12) is meant to yield a rough estimate of
the amplitudes Ap, it can be expected that the quanti-
ties lnAp + Λt are small and that the relative weight of
〈ψp|ψp〉 is small.

By controlled phase shifts on register C the states are
then multiplied by the phase factor eiφp , and step III is
run backwards to erase register C. This yields

∑

t

∑

p∈Pt

Ape
iφp |t〉A|p〉B |0〉C(|0〉D + |ψp〉D) (13)

Step V: In order to get the semiclassical traces τt =
∑

p Ape
iφp , we perform tmax Quantum Fourier Trans-

forms (QFT) on register B. Each QFT corresponds to a
given value of t and operates on the last t qubits of reg-
ister B. That is, the gates of the QFT are controlled by
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register A (as in step II, see Fig. 1). This yields a state

∑

t

2t−1
∑

k=0

∑

p∈Pt

Ape
iφpe−2iπkp/2t |t〉A|k〉B |0〉C(|0〉D+|ψp〉D).

(14)
Step VI: In (14) the amplitude of the |k = 0〉B term

corresponds to the semiclassical traces τt. Therefore we
now just have to perform a quantum search of |0〉B |0〉D in
(14). This is done by amplitude amplification performed
on registers B and D. This process, which is the slowest
part of our algorithm, requires O(2tmax/2) operations (as
〈ψp|ψp〉 is small, the search on register D is expected to
contribute only a prefactor). It brings the state (14) into
a state
∑

t

∑

p∈Pt

Ape
iφp |t〉A|0〉B |0〉C |0〉D =

∑

t

τt|t〉A|0〉B |0〉C |0〉D.

(15)
Quantum state tomography then gives the relative values
of all semiclassical traces τt. The knowledge of τ1 (easily
computed classically) allows to obtain the absolute
values of the τt, and thus the characteristic polynomial.
Because of the symmetry relation (9) only traces up to
tmax = N/2 are required. Therefore the cost of our quan-
tum algorithm (which is essentially the cost of amplitude
amplification in step VI) is O(2N/4). This is to be com-
pared with the classical cost of O(2N/2) required for the
calculation of the semiclassical characteristic polynomial.

As already mentioned our algorithm aims at estimat-
ing the accuracy of the semiclassical approximation. Ob-
viously, the cost of calculating the exact characteristic
polynomial, with a scaling in O(N3), is far less. Thus for
systems where the trace formula is exact, the result of
the semiclassical sum should only yield with much more
efforts the same result as the exact diagonalization. For
instance for cat maps the exact equality trU t = τt holds
in Eq. (10), and thus cat maps are not suited to study-
ing discrepancies between exact and semiclassical energy
levels if the full semiclassical sum is used. There are
however instances of systems for which characterization
of classical periodic orbits remains easy while the traces
obtained through the trace formula (10) are truly approx-
imations, such as e. g. the perturbed cat maps described
above. In such cases, our algorithm yields the semiclassi-
cal spectrum with quadratic efficiency compared to clas-
sical computation. Besides, even when the trace formula
is exact, its truncation is not, and therefore its implemen-
tation has some interest and has been done classically in
[16, 17, 19]. Indeed, it enables to understand the conver-
gence properties of the sum over periodic orbits in (7).

IV. CLASSICAL ORBITS FROM QUANTUM

OPERATOR

Another way of estimating the accuracy of the semi-
classical approximation is to calculate how well the clas-

sical actions of the periodic orbits are reproduced when
calculated from the spectrum through the trace formula.
In the semiclassical approximation the trace of the it-
erates of the quantum operator can be written as a sum
over periodic orbits. This sum can be put under the form
τt =

∑

p Ape
2iπNSp ≈ trU t (see Eq. (10)). The actions

Sp calculated from the quantum spectrum through the
semiclassical formula (10) are obtained by performing a
Fast Fourier Transform (FFT) on the set of traces trU t

calculated for all matrix sizes 0 ≤ N < Nmax. The num-
ber of traces Nmax to evaluate depends on the precision
required for the actions.

We now discuss a quantum algorithm allowing
to calculate each trace trU t, for any matrix size
0 ≤ N < Nmax. Let m be the smallest integer such
that N ≤ 2m, and M = 2m. We distinguish three
registers in the state vector on which the computation is
performed. Register A stores the lengths t of the orbits,
0 ≤ t < tmax, on nA = log tmax qubits; here tmax is some
fixed integer specifying the highest period that we want
to consider. The two other registers, each of length m,
will store the computational basis vectors. Additional
workspace registers will be used as well in the course of
the computations. Starting from the state |0〉A|0〉B |0〉C ,
we perform the following steps.

Step I: We first apply Hadamard gates on registers A,
B and C to put them in an equal superposition of basis
vectors. We obtain

∑

t

M−1
∑

i=0

|t〉A|i〉B |i〉C . (16)

What we want is in fact a sum running over a range
0 ≤ i ≤ N − 1. To obtain this from (16) we use an
auxiliary qubit (register D) that is set to |0〉 if i−N < 0
and to |1〉 if i − N ≥ 0. The relative weight of the state

∑

t

N−1
∑

i=0

|t〉A|i〉B |i〉C |0〉D (17)

is greater than 1/2.

Step II: The N × N matrix U t has to be applied to
register B of each state |t〉A|i〉B |i〉C . As an illustration
we focus on operators of the type (6). It was shown in
[9] that for such maps one iteration can be implemented
efficiently for a fixed matrix of size a power of 2. The
algorithm consists in using QFTs to shift back and forth
between p and q representation, while the operators
eif(p̂) and eiV (q̂) are applied in the basis where they
are diagonal by multiplication of basis vectors by a
phase. For N 6= 2m the simulation of the quantum map
involves a QFT on vectors of size not a power of 2. Such
a procedure was proposed in [42] for any fixed vector
size N . The simulation of U can therefore be done
efficiently. The simulation of U t can be done sequen-
tially, controlled by the qubits of register A (as in Fig. 1).
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Step III: The state (17) is now transformed into:

∑

t

N−1
∑

i

|t〉A
(

U t|i〉B
)

|i〉C |0〉D =
∑

t

N−1
∑

i,j=0

U t
j,i|t〉A|j〉B |i〉C |0〉D.

(18)
By amplitude amplification on registers B, C, D we select
vectors with |j〉B = |i〉C and |0〉D, leading to

∑

t

N−1
∑

i=0

U t
i,i|t〉A|i〉B |i〉C |0〉D. (19)

After erasing register C we perform a QFT on register
B. As in section III, we use amplitude amplifica-
tion to select the state |0〉B , whose amplitude is
∑

i U t
i,i/

√
M = trU t/

√
M . This is the slowest step

in our computation. For chaotic systems the matrix
elements U t

i,j for N ×N matrices are of order 1/
√

N and

the traces trU t are expected to be of order 1. Thus each
amplitude amplification has a cost O(

√
N) and step III

requires N Grover iterations in total. For integrable
systems the traces are of order

√
N , and therefore only

one of the amplitude amplifications is needed, requiring√
N Grover iterations in total for step III.

Step IV: We are now in the state
∑

t

trU t|t〉A|0〉B |0〉C |0〉D. (20)

The relative values of the traces for different values
of t are obtained by quantum state tomography. The
traces themselves are then deduced from the classical
calculation of trU , requiring O(N) classical operations.

The algorithm requires the calculation of Nmax traces
trU t, with 0 ≤ N < Nmax. Thus the cost of the quantum
algorithm is of order N2

max. Classically, we need to com-
pute all Nmax traces. Except for trUN this would need
O(N2) classical operations if the map is of the type (6),
and up to O(N3) in the general case where diagonaliza-
tion of the operator is required. Thus the classical cost
is of order N3

max to N4
max operations. Thus in both cases

the quantum algorithm outperforms classical computa-
tion, albeit polynomially.

We note that if one is interested in distinguishing inte-
grable and chaotic systems via the form factor as in the
algorithm proposed in [26], then one needs only to be

able to distinguish traces of order
√

N (integrable case)
from ones of order 1 (chaotic case), for a specific value
of N . In this case one can stop at step III and check
that

√
N Grover iterations are enough to get to the state

|0〉, in which case one concludes that the system is inte-
grable, or not enough, in which case one concludes that
the system is chaotic. Our algorithm then only needs
O(

√
N) quantum operations instead of O(N2) classical

operations, an improvement from the quadratic gain in
[26]. One can also compute exactly the trace (stopping
at step IV), and compute the form factor for small t, with

a quadratic improvement compared to classical compu-
tation.

V. EXPONENTIAL SPEED-UP BY PHASE

ESTIMATION

The preceding processes can be applied to many phys-
ical systems and yield a polynomial speed-up compared
to classical computation. However there exist systems
where a larger (up to exponential) gain might be ob-
tained, following a different strategy based on phase es-
timation. This method [8, 42] enables to obtain an
eigenvalue of a given operator U by applying condition-
ally iterates of U to an eigenvector |Ψ〉; this gives the
state

∑

i |i〉U i|Ψ〉 which, by Fourier transform on the
first register, gives |θ〉|Ψ〉, where exp(iθ) is the eigen-
value corresponding to |Ψ〉. If |Ψ〉 is not an eigenvec-
tor but some randomly chosen state, the same process
leads to

∑

j αj |θj〉|Ψj〉 where |Ψj〉 are eigenvectors and

|Ψ〉 =
∑

j αj |Ψj〉. To be efficient, this method criti-
cally requires not only that U can be efficiently imple-
mented, but also that exponential iterates of U can be
implemented with polynomial number of quantum gates,
a much more stringent requirement. In the case of the
quantum cat map, this method is efficient and remark-
ably enough can lead to classical quantities with expo-
nential efficiency.

It is known [30] that the nth iterate of the quantized
cat map (4) coincides with the quantization of the classi-
cal nth iterate. In [43], it was shown that one can simu-
late the classical cat map efficiently on a quantum com-
puter, while in [44], it was further shown that one can
compute the classical nth iterate for exponentially large
n with polynomial number of gates. Thus if one starts
from a random vector |Ψ〉, one can compute

∑

i |i〉U i|Ψ〉
in polynomial number of gates for exponential i’s and
N ; a quantum Fourier transform followed by a quantum
measurement leads to the value |θj〉 of one eigenvalue of
the quantum cat map. It is known [31] that these eigen-
values are very constrained, being of the form

θj =
2πj + φ(N)

n(N)
, (21)

where n(N) is the quantum period function, that is the
smallest integer such that

Un(N) = Ieiφ(N), (22)

and the phase φ(N) can be calculated easily from the
components of matrix L [31].

Thus using this algorithm the quantum period func-
tion can be obtained in polynomial time on a quan-
tum computer. This quantity is related to the classical
period function, which for each matrix L is the short-
est integer g such that Lg = I modN . Indeed, the
quantum period n(N) is also the smallest integer such
that Ln(N) = I (modN) if N is odd, and such that
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Ln(N) =

(

1 (modN) 0 (mod2N)
0 (mod2N) 1 (modN)

)

if N is even. The

two functions in all cases differ by at most a factor of
two [31], so knowing one of them enables to test and find
easily the other one. The classical period function de-
scribes the periodic orbits of the classical cat map. It
has been shown in [44] that finding it is as complex as
factorization of integers, and can nevertheless be realized
on a quantum computer polynomially fast using a vari-
ant of order-finding. The use of the quantum cat map
enables to get this classical quantity by an equally effi-
cient alternate quantum algorithm, showing that in this
specific case classical quantities can be obtained through
quantum mechanics with exponential efficiency compare
to classical algorithms.

VI. CONCLUSION

In the studies above, we have shown that it is possible
to implement semiclassical formulas on quantum com-
puters, with a gain on efficiency over the implementation
on a classical computer. The gain is in general polyno-
mial, but in specific instances an exponential gain can be
obtained for related problems. We mention again that
the algorithms of Section IV can also be used to study
quantum systems without reference to the semiclassical
approximation, in the manner of [26], with actually a
larger gain.

The algorithms of sections III and IV can be general-
ized to a large class of systems. Indeed, to generalize sec-
tion III one can use the tool of Poincaré surface of section
to transform systems with continuous time to discrete
maps. For example, a popular system to study quantum
chaos corresponds to billiards, i.e. classically a parti-
cle bouncing between walls, and quantum mechanically

a wave function obeying Helmholtz equation with bound-
ary conditions. In this case, a simple surface of section is
represented by the boundary, the phase space coordinates
being the curvilinear abscissa along the boundary and the
angle that the outgoing trajectory makes with the vector
normal to the boundary. An alternate possibility would
be to stick with the continuous time dynamics and use the
semiclassical formulas appropriate for this case. In both
cases, it is important to be able to enumerate the clas-
sical trajectories used in the semiclassical sums, which
requires that a reasonably good symbolic dynamics can
be constructed (e.g. with finite Markov partition). This
is already the case for classical implementations of these
formulas, which have all been performed in such cases.
Additionally, the method exposed in section III is all the
more efficient since the Lyapunov exponent of orbits is
uniform. In the case where the stability of different orbits
varies widely in different phase space regions, the quan-
tum algorithm will become less efficient. Thus although
strongly chaotic systems are the most difficult to treat by
semiclassical formulas, they are probably the ones where
the algorithms above will be the most efficient compared
to classical algorithms.

To generalize Section IV to systems with continuous
time is probably possible, but would necessitate to first
build an algorithm to simulate such systems on quantum
computers. We think that once this is done, the main
ideas of our algorithm in section IV should then be ap-
plicable.

The quantum algorithms presented here can be applied
to a wide variety of systems. They show that in a domain
where extensive numerical simulations have been used in
the past decades, a quantum computer could significantly
improve the speed of the calculations.

We thank the French ANR (project INFOSYSQQ) and
the IST-FET program of the EC (project EUROSQIP)
for funding.
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